首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tetrazolium dyes MTS and XTT were reduced to their soluble formazans by superoxide radical anions (O2_) produced by the oxidation of xanthine by xanthine oxidase under standard conditions. These reactions were compared to the well-known reductions of NBT and cytochrome c by the xanthine/xanthine oxidase system. Reduction of the dyes was completely inhibited by superoxide dismutase (SOD). Rate constants for the reaction of MTS and XTT with O2_: were estimated at 1.3 × .1 × 105 M-1s-1 and 8.6 × .8 × 104 M-1s-1 respectively. The stable MTS and XTT formazans have high extinction coefficients in the visible range which enable sensitive detection and quantification of superoxide radicals, avoiding some of the problems inherent in assays based on production of the insoluble NBT formazan. MTS and XTT have considerable potential both for the quantitative assay of radical production in living tissues and for the assay of superoxide dismutase activity in tissue extracts. Implications for the interpretation of cell culture growth assays which employ these dyes are discussed.  相似文献   

2.
3.
A kinetic model has been used to estimate the rate constant for the reaction of superoxide (O2/OOH) with the superoxide spin adduct of 5.5-dimethylpyrroline-N-oxide. DMPO/OOH. This rate constant is estimated to be 4.9 (± 2.2) × 106 M-1 s-1, pH 7.4 and 25°C.  相似文献   

4.
The effect of oxygen and anaerobiosis on the redox properties of Cyt b 559 was investigated in PSII preparations from spinach with different degree of disintegration of the donor side. Comparative studies were performed on intact PSII membranes and PSII membranes that were deprived of the 18-kDa peripheral subunit (0.25 NaCl washed), the 18- and 24-kDa peripheral subunits (1 M NaCl washed), the 18-, 24- and 33-kDa peripheral subunits (1.2 M CaCl2 washed), Cl depleted and after complete depletion of the Mn cluster (Tris washed). In active PSII centers, about 75% of Cyt b 559 was found in the high-potential form and the rest in the intermediate potential form. With decomposition of the donor side, the intermediate potential form started to dominate, reaching more than 90% after Tris treatment. The oxygen-dependent conversion of the intermediate potential form of Cyt b 559 into the low-potential and high-potential forms was only observed after treatments that directly affect the Mn cluster. In PSII membranes, deprived of all three extrinsic subunits (CaCl2 treatment), 21% of the intermediate potential form was converted into the low-potential form and 14% into the high-potential form by the removal of oxygen. In Tris-washed PSII membranes, completely lacking the Mn cluster, this conversion amounted to 60 and 33%, respectively. In intact PSII membranes, the oxygen-dependent conversion did not occur. The possible physiological role of this oxygen-dependent behavior of the Cyt b 559 redox forms during the assembly/photoactivation cycle of PSII is discussed.  相似文献   

5.
Thioctic acid (TA) and its reduced form dihydrolipoic acid (DHLA) have recently gained somc recognition as useful biological antioxidants. In particular, the ability of DHLA to inhibit lipid peroxidation has been reported. In the present study, the effects of TA and DHLA on reactive oxygen species (ROS) generated in the aqueous phase have been investigated. Xanthine plus xanthine oxidase-generated superoxide radicals (O2), detected by electron spin resonance spectroscopy (ESR) using DMPO as a spin trap. were eliminated by DHLA but not by TA. The sulhydryl content of DHLA, measured using Ellman's reagent decreased subsequent to the incubation with xanthine plus xanthine oxidase confirming the interaction between DHLA and O2-. An increase of hydrogen peroxide concentration accompanied the reaction between DHLA and O2x, suggesting the reduction of O2- by DHLA. Competition of O2- with epinephrine allowed us to estimate a second order kinetic constant of the reaction between O2- and DHLA, which was found to be a 3.3 × 105 M-1 s-1. On the other hand, the DMPO signal of hydroxyl radicals (HO ·) generated by Fenton's reagent were eliminated by both TA and DHLA. Inhibition of the Fenton reaction by TA was confirmed by a chemiluminescence measurement using luminol as a probe for HO ·. There was no electron transfer from Fe2+ to TA or from DHLA to Fe3 + detected by measuring the Fe2+ -phenanthroline complex. DHLA did not potentiate the DMPO signal of HO · indicating no prooxidant activity of DHLA. These results suggest that both TA and DHLA possess antioxidant properties. In particular. DHLA is very effective as shown by its dual capability by eliminating both O2-; and HO ·.  相似文献   

6.
Human neutrophils (PMN) activated by N-formyl-methionyl-leucyl-phenylalanine (fMLP) simultaneously release nitric oxide (.NO), superoxide anion (O2-) and its dismutation product, hydrogen peroxide (H2O2). To assess whether NO production shares common steps with the activation of the NADPH oxidase, PMN were treated with inhibitors and antagonists of intracellular signaling pathways and subsequently stimulated either with fMLP or with a phorbol ester (PMA). The G-protein inhibitor, pertussis toxin (1-10 μg/ml) decreased H2O2 yield without significantly changing. NO production in fMLP-stimulated neutrophils; no effects were observed in PMA-activated cells. The inhibition of tyrosine kinases by genistein (1-25 μg/ml) completely abolished H2O2 release by fMLP-activated neutrophils; conversely, NO production increased about 1.5- and 3-fold with fMLP and PMA, respectively. Accordingly, orthovanadate, an inhibitor of phosphotyrosine phosphatase, markedly decreased -NO production and increased O2;- release. On the other hand, inhibition of protein kinase C with staurosporine and the use of burst antagonists like adenosine, cholera toxin or dibutyryl-cAMP diminished both H2O2 and NO production. The results suggest that the activation of the tyrosine kinase pathway in stimulated human neutrophils controls positively O2- and H2O2 generation and simultaneously maintains -NO production in low levels. In contrast, activation of protein kinase C is a positive modulator for O2;-and *NO production.  相似文献   

7.
The 1:1 complex of copper (II) and human serum albumin (HSA) slowly reacts with radiolytically generated O2- radical-anion at a rate constant of 6.1×106 M-1 s-1. Absorbance and fluorescence spectroscopies demonstrate that addition of an equimolar portion of quercetin (QH2) to the solution of the copper (II)-HSA complex induces a relocalization of the copper resulting in a ternary copper (II)-QH2-HSA complex. This form of quercetin slowly oxidizes in air-saturated solutions. A 10-fold excess urate, a plasma antioxidant, cannot displace copper (II) bound to HSA. In N2O-saturated solutions the ternary complex form of QH2 can repair the urate radical with a rate constant of 2.7×106 M-1 s-1 by an electron transfer reaction similar to that observed in the absence of copper (II). In O2-saturated solutions and in the absence of copper, HSA-bound QH2 fails to repair the urate radical because of the fast competitive reaction of O2- with urate radicals. However, addition of equimolar copper (II) restores the electron transfer from QH2 to the urate radical. These contrasting results are tentatively explained either by an enhanced reactivity of copper (II) with O2- in the ternary complex or by direct production of quercetin radicals via a copper-catalyzed reduction of the O2- radicals by QH2.  相似文献   

8.
B.L. Epel  J. Neumann 《BBA》1973,325(3):520-529

1. 1. The mechanism of the photooxidation of ascorbate and of Mn2+ by isolated chloroplasts was reinvestigated.

2. 2. Our results suggest that ascorbate or Mn2+ oxidation is the result of the Photosystem I-mediated production of the radical superoxide, and that neither ascorbate nor Mn2+ compete with water as electron donors to Photosystem II nor affect the rate of electron transport through the two photosystems: The radical superoxide is formed as a result of the autooxidation of the reduced forms of low potential electron acceptors, such as methylviologen, diquat, napthaquinone, or ferredoxin.

3. 3. In the absence of ascorbate or Mn2+ the superoxide formed dismutases either spontaneously or enzymatically producing O2 and H2O2. In the presence of ascorbate or Mn2+, however, the superoxide is reduced to H2O2 with no formation of O2. Consequently, in the absence of reducing compounds, in the reaction H2O to low potential acceptor one O2 (net) is taken up per four electrons transported where as in the presence of ascorbate, Mn2+ or other suitable reductants up to three molecules O2 can be taken up per four electrons transported.

4. 4. This interpretation is supported by the following observations: (a) in a chloroplast-free model system containing NADPH and ferredoxin-NADP reductase, methylviologen can be reduced to a free radical which is autooxidizable in the presence of O2; the addition of ascorbate or Mn2+ to this system results in a two fold stimulation of O2 uptake, with no stimulation of NADPH oxidation. The stimulation of O2 uptake is inhibited by the enzyme superoxide dismutase; (b) the stimulation of light-dependent O2 uptake in the system H2O → methylviologen in chloroplasts is likewise inhibited by the enzyme superoxide dismutase.

5. 5. In Class II chloroplasts in the system H2O → NADP upon the addition of ascorbate or Mn2+ an apparent inhibition of O2 evolution is observed. This is explained by the interaction of these reductants with the superoxide formed by the autooxidation of ferredoxin, a reaction which proceeds simultaneously with the photoreduction of NADP. Such an effect usually does not occur in Class I chloroplasts in which the enzyme superoxide dismutase is presumably more active than in Class II chloroplasts.

6. 6. It is proposed that since in the Photosystem I-mediated reaction from reduced 2,4-dichlorophenolindophenol to such low potential electron acceptor as methylviologen, superoxide is formed and results in the oxidation of the ascorbate present in the system, the ratio ATP/2e in this system (when the rate of electron flow is based on the rate of O2 uptake) should be revised in the upward direction.

Abbreviations: DCMU, 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea; HEPES, hydroxyethyl-piperazineethanesulfonic acid; MES, (N-morpholino)ethanesulfonic acid; DCIP, 2,4-dichlorophenol-indophenol  相似文献   


9.
Of production by homogenates and isolated membranes of E. coli has been examined. Approximately one-fourth of the O2-generated by extracts in the prescence of NAD (P) H is attributable to the membranes. The autoxidizable membrane component is a member of the respiratory chain, since O2-production is NADH-specific, amplified by cyanide, and absent from membranes lacking the respiratory NADH dehyd-rogenase. Other respiratory substrates (succinate, I -phosphoglycerol, D-lactate. and L-lactate) supported Or production at efficiencies between 3 and 30 O2-released per 10.000 electrons transferred, under conditions of substrate saturation.

Membranes from quinoneless mutants quantitatively retain the ability to evolve O2-. indicating that the dehydrogenases are the sites of O2-production. Relative O2-production was greater at low substrate concentrations, probably reflecting the facilitation of unpairing of electrons that may occur when enzymes with multiple redox centers are only partially reduced.

Respiration rate, cell volume, rates of membraneous and cytosolic O2-production, and SOD levels were used to calculate a steady-state concentration of O2-between 10--10 and 10--9 M in well-fed, aerobic, SOD-proficient cells.  相似文献   

10.
Hydrogen peroxide, produced by inflammatory and vascular cells, induces oxidative stress that may contribute to endothelial dysfunction. In smooth muscle cells, H2O2 induces production of O2 by activating NADPH oxidase. However, the mechanisms whereby H2O2 induces oxidative stress in endothelial cells are poorly understood. We examined the effects of H2O2 on O2 levels on porcine aortic endothelial cells (PAEC). Treatment with 60 μmol/L H2O2 markedly increased intracellular O2 levels (determined by conversion of dihydroethidium to hydroxyethidium) and produced cytotoxicity (determined by propidium iodide staining) in PAEC. Overexpression of human manganese superoxide dismutase in PAEC reduced O2 levels and attenuated cytotoxicity resulting from treatment with H2O2. L-NAME, an inhibitor of nitric oxide synthase (NOS), and apocynin, an inhibitor of NADPH oxidase, reduced O2 levels in PAEC treated with H2O2, suggesting that both NOS and NADPH oxidase contribute to H2O2-induced O2 in PAEC. Inhibition of NADPH oxidase using apocynin and NOS rescue with L-sepiapterin together reduced O2 levels in PAEC treated with H2O2 to control levels. This suggests interaction-distinct NOS and NADPH oxidase pathways to superoxide. We conclude that H2O2 produces oxidative stress in endothelial cells by increasing intracellular O2 levels through NOS and NADPH oxidase. These findings suggest a complex interaction between H2O2 and oxidant-generating enzymes that may contribute to endothelial dysfunction.  相似文献   

11.
Further characteristics of an oxygen-tolerant variant of Chinese hamster ovary cells (CHO-99) capable of stable proliferation at 99% O2/1% CO2, an O2 level that is lethal to the parental line (CHO-20), are described. Previous work has revealed that CHO-99 cells have 2- to 4-fold increased activities of superoxide dismutases, catalase and glutathione peroxidase, and substantially increased relative volumes of mitochondria and peroxisomes. To document possible additional mechanisms of O2 tolerance we compared CHO-20 cells growing at 20% O2 (normoxia) and CHO-99 cells at 99% O2 (normobaric hyperoxia). We show the following: (1) the estimated total (oxidative and glycolytic) ATP production in CHO-99 cells was 36% decreased. ATP production through oxidative phosphorylation was 52% lower in CHO-99 cells, while the relative contribution from glycolysis was increased from 6% to 30%. The ATP content was 29% lower in CHO-99 cells, the adenylate energy charge being also significantly decreased, indicating that energy production through oxidative phosphorylation is compromised in CHO-99 cells. Cyanide-resistant respiration was 4-fold higher in CHO-99 cells, probably reflecting, at least partly, the increased peroxisomal activity in these cells. (2) The level of reduced glutathione was several fold increased in CHO-99 cells, oxidized glutathione being unaltered; (NADPH + NADP+) levels were elevated 2.7-fold, while the ratio of NADPH to NADP+ was increased almost two-fold. These changes were associated with a 50% increased metabolism of glucose through the hexose monophosphate pathway. (3) No evidence was obtained for an increased steady-state level of endogenous lipid peroxidation in CHO-99 cells, in spite of a 50% increased content of polyunsaturated fatty acids in the phospholipid fraction.  相似文献   

12.
Biosynthesis and regulation of superoxide dismutases   总被引:16,自引:0,他引:16  
The past two decades have witnessed an explosion in our understanding of oxygen toxicity. The discovery of superoxide dismutases (SODs) (EC.1.15.1.1), which specifically catalyze the dismutation of superoxide radicals (O2) to hydrogen peroxide (H2O2) and oxygen, has indicated that O2 is a normal and common byproduct of oxygen metabolism. There is an increasing evidence to support the conclusion that superoxide radicals play a major role in cellular injury, mutagenesis, and many diseases. In all cases SODs have been shown to protect the cells against these deleterious effects. Recent advances in molecular biology and the isolation of different SOD genes and SOD c-DNAs have been useful in proving beyond doubt the physiological function of the enzyme. The biosynthesis of SODs, in most biological systems, is under rigorous controls. In general, exposure to increased pO2, increased intracellular fluxes of O2, metal ions perturbation, and exposures to several environmental oxidants have been shown to influence the rate of SOD synthesis in both prokaryotic and eukaryotic organisms. Recent developments in the mechanism of regulation of the manganese-containing superoxide dismutase of Escherichia coli will certainly open new research avenues to better understand the regulation of SODs in other organisms.  相似文献   

13.
Three-dimensionally (3D) ordered macroporous active carbon has been fabricated and used as electrode substrate for the direct electrochemistry of horse heart cytochrome c (Cyt c). The Cyt c immobilized on the surface of the ordered macroporous active carbon shows a pair of well-defined and nearly reversible redox waves at the formal potential of −0.033 V in pH 6.8 phosphate buffer solution. The interaction between Cyt c and the 3D macroporous active carbon makes the formal potential shift negatively compared to that of Cyt c in solution. Spectrophotometric and electrochemical methods have been used to investigate the interaction between Cyt c and the porous active carbon. The immobilized Cyt c maintains its biological activity, and shows a surface controlled electrode process with the electron-transfer rate constant (ks) of 17.6 s−1 and the charge-transfer coefficient (a) of 0.52, and displays the features of a peroxidase in the electrocatalytic reduction of hydrogen peroxide (H2O2). A potential application of the Cyt c-immobilized porous carbon electrode as a biosensor to monitor H2O2 has been investigated. The steady-state current response increases linearly with H2O2 concentration from 2.0 × 10−5 to 2.4 × 10−4 mol l−1. The detection limit (3σ) for determination of H2O2 has been found to be 1.46 × 10−5 mol l−1.  相似文献   

14.
The effects of reduced oxygen tension on swine granulosa cell   总被引:2,自引:0,他引:2  
Follicular growth is characterized by an augmented vascularization, possibly driven by a fall in the oxygen supply. The present study was undertaken to investigate the effects of hypoxia on swine granulosa cells. At first, we quantified oxygen partial pressure (pO2) in follicular fluid from different size follicles; the granulosa cells collected from large follicles (>5 mm) were subjected for 18 h to normoxia (19% O2), partial (5% O2) or total hypoxia (1% O2). The effects of these conditions were tested on the main parameters of granulosa cell function, steroidogenesis and cell proliferation, and on vascular endothelial growth factor (VEGF), nitric oxide (NO) and superoxide anion (O2) production. Oxygen tension in follicular fluid was negatively related to follicular size, pointing out a gradual reduction during follicular growth. Severe hypoxic conditions determined a reduction of both 17β estradiol and progesterone production, while partial hypoxia did not seem to affect them. Hypoxia increased VEGF as well as O2 production in swine granulosa cells without impairing cell growth; in addition, it decreased NO output.

We may conclude that physiological hypoxia could play a pivotal role in the follicular angiogenic process stimulating VEGF synthesis by granulosa cells. ROS are possibly involved in hypoxic signalling.  相似文献   


15.
The production of singlet oxygen by H2O2 disproportionation and via the oxidation of H2O2 by NaOCl in a neutral medium was monitored by spin trapping with 2,2,6,6 tetramethyl-4-piperidone (TMPone). The singlet oxygen formed in both reactions oxidized 2,2,6,6 tetramethyl-4-piperidone to give nitroxide radicals. However the production of nitroxide radicals was relatively small considering the concentrations of H2O2 and NaOCl used in the reaction systems. Addition of electron donating agents: ascorbate, Fe2+ and desferrioxamine leads to an increase in the production of nitroxide radicals. We assumed that a very slow step of the reaction sequence, the homolytic breaking of the O-O bond of N-hydroperoxide (formed as an intermediate product during the reaction of 1O2 with TMPone) could be responsible for the relatively small production of nitroxide radicals. Electron donating agents added to the reaction system probably raise the rate of the hydroperoxide decomposition by allowing a more rapid heterolytic cleavage of the O-O bond leading to a greater production of nitroxide radicals. The largest effect was observed in the presence of desferrioxamine. Its participation in this process is proved by the concomitant appearance of desferrioxamine nitroxide radicals. The results obtained demonstrate that the method proposed by several authors and tested in this study to detect singlet oxygen is not convenient for precise quantitative studies. The reactivity of TMPone towards O2-7HO2' and 'OH has been also investigated. It has been found that both O2-7HO2' and 'OH radicals formed in a phosphate buffer solution (pH 7.4, 37°C), respectively by a xanthine-oxidase/hypoxanthine system and via H2O2 UV irradiation, do not oxidize 2,2,6,6 tetramethyl-4-piperidone to nitroxide radicals.  相似文献   

16.
Gourlet, P., P. De Neef, J. Cnudde, M. Waelbroeck and P. Robberecht. In vitro properties of a high affinity selective antagonist of the VIP1 receptor. Peptides 18(10) 1555–1560, 1997.—A selective high affinity VIP1 receptor antagonist [Acetyl-His1, D-Phe2, Lys15, Arg16, Leu17] VIP(3-7)/GRF(8-27) or PG 97-269 was synthesized, by analogy with recently obtained selective VIP1 receptor agonists. The properties of the new peptide were evaluated on Chinese hamster ovary (CHO) cell membranes expressing either the rat VIP1-, rat VIP2- or the human VIP2- recombinant receptors and on LoVo cell membranes expressing exclusively the human VIP1 receptor. The IC50 values of 125I-VIP binding inhibition by PG 97-269 were 10, 2000, 2 and 3000 nM on the rat VIP1-, rat VIP2-, human VIP1- and human VIP2 receptors, respectively. PG 97-269 had a negligible affinity for the PACAP I receptor type. It did not stimulate adenylate cyclase activity, but inhibited competitively effect of VIP on the VIP1 receptor mediated stimulation of adenylate cyclase activity. The Ki values were respectively of 15 ± 5 nM and 2 ± 1 nM for the rat and human VIP1 receptors. Thus the described molecule in the first reported VIP antagonist with an affinity in the nM range and with a high selectivity for the VIP1 receptor subclass. It may be useful for evaluation of the physiological role of VIP in rat and human tissues.  相似文献   

17.
平琴  徐胜  陈玮  何兴元  黄彦青  吴娴 《生态学杂志》2017,28(12):3862-3870
通过开顶箱(OTCs)模拟,以环境臭氧(O3)浓度约40 nmol·mol-1为对照,研究大气O3浓度升高(80和160 nmol·mol-1O3)对冷季型草坪草高羊茅生长、亚细胞结构及其活性氧代谢的影响.结果表明: 14 d的80 nmol·mol-1O3熏蒸使高羊茅株高和叶宽降低,总生物量降低43.7%,老叶变黄,而160 nmol·mol-1O3处理高羊茅叶出现大量枯死褐斑,叶尖坏死,新叶卷曲,总生物量降低46.2%,叶肉细胞膜卷曲,叶绿体和线粒体受损严重.与对照相比,80和160 nmol·mol-1O3熏蒸下高羊茅叶片超氧阴离子(O2)产生速率、过氧化氢(H2O2)和丙二醛(MDA)含量显著增加,抗氧化酶活性显著升高,但叶片总酚含量和抗氧化能力随O3浓度升高而先升高后降低.在明显O3伤害症状出现之前,O3已对高羊茅的生长和抗氧化代谢产生不利影响;高羊茅抗氧化系统虽对O3浓度的升高存在一定的适应性反应,但其不能抵御过高浓度的长期胁迫和伤害.  相似文献   

18.
Trehalose is known to protect membranes and macromolecules. Its accumulation has been implicated in allowing plants to tolerate stress, including heat-shock. However, under heat-shock, it is not clear whether trehalose eliminates reactive oxygen species (ROS) directly or indirectly by protecting antioxidant enzymes. In this study, we initially examined the effects of trehalose on the activities of key antioxidant enzymes, including superoxide dismutases (SODs), ascorbate catalases (CATs), and ascorbate peroxidases (APX) from wheat (Triticum aestivum L.), and then measured the ability of trehalose to scavenge hydrogen peroxide (H2O2) and superoxide anions (O2). Our results indicated that trehalose protected SOD activity slightly. However, it inhibited CAT and APX activities under heat stress, with a little protection of CAT activity (only about 7% promotion) at 22 °C. Moreover, trehalose scavenged H2O2 and O2 greatly in a concentration-dependent manner, reaching the maximal scavenging H2O2 rate of 95% and O2 rate of 78%, respectively, at 50 mM trehalose. These results suggest that trehalose plays a direct role in eliminating H2O2 and O2 in wheat under heat stress.  相似文献   

19.
Alcohol dehydrogenase (ADH) was used as a marker molecule to clarify the mechanism of gastric mucosal damage as a side effect of using piroxicam. Piroxicam inactivated ADH during interaction of ADH with horseradish peroxidase and H2O2 (HRP-H2O2). The ADH was more easily inactivated under aerobic than anaerobic conditions, indicating participation by oxygen. Superoxide dismutase, but not hydroxyl radical scavengers, inhibited inactivation of ADH, indicating participation by superoxide. Sulfhydryl (SH) groups in ADH were lost during incubation of piroxicam with HRP-H2O2. Adding reduced glutathione (GSH) efficiently blocked ADH inactivation. Other SH enzymes, including creatine kinase and glyceraldehyde-3-phosphate dehydrogenase, were also inactivated by piroxicam with HRP-H2O2. Thus SH groups in the enzymes seem vulnerable to piroxicam activated by HRP-H2O2. Spectral change in piroxicam was caused by HRP-H2O2. ESR signals of glutathionyl radicals occurred during incubation of piroxicam with HRP-H2O2 in the presence of GSH. Under anaerobic conditions, glutathionyl radical formation increased. Thus piroxicam free radicals interact with GSH to produce glutathionyl radicals. Piroxicam peroxyl radicals or superoxide, or both, seem to inactivate ADH. Superoxide may be produced through interaction of peroxyl radicals with H2O2. Thus superoxide dismutase may inhibit inactivation of ADH through reducing piroxicam peroxyl radicals or blocking interaction of SH groups with O2-, or both. Other oxicam derivatives, including isoxicam, tenoxicam and meloxicam, induced ADH inactivation in the presence of HRP-H2O2.  相似文献   

20.
N-phenylacetyl dehydroalanines are captodative olefins. They inhibit two processes mediated by superoxide anion (O2-) in a concentration dependent manner: reduction of NBT to blue formazan and oxidation of epinephrine to adrenochrome. They also inhibit in a dose related way the degradation of deoxyribose produced during either the Fenton reaction or the radiolysis of water, which are the two experimental sources of hydroxyl radical (HO-) production. Based on the results obtained with superoxide dismutase, mannitol, thiourea, and uric acid, we postulate that these competitive inhibitory effects suggest a reaction between the dehydroalanine derivatives and the two oxygen derived radicals. Hydroxyl free radical is scavenged more efficiently than superoxide anion. Substitution of the phenyl ring by methoxy groups does not modify significantly the activity. These molecules possess three target active sites which can react with free radicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号