首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
One cervical cancer cell line, C9, carrying human papillomavirus type 18 (HPV18) genes that is one of the major etiologic oncoviruses for cervical cancer was characterized. This cell line was further characterized for its capacity related to the epithelial cell proliferation, stratification and differentiation in reconstituted artificial epithelial tissue. Thein vitro construction of three dimensional artificial cervical epithelial tissue has been engineered using C9 epithelial cancer cells, human foreskin fibroblasts and a matrix made of type I collagen by organotypic culture of epithelial cells. The morphology of paraffin embedded artificial tissue was examined by histochemical staining. The artificial epithelial tissues were well developed having multilayer. However, the tissue morphology was similar to the cervical tissue having displasia induced by HPV infection. The characteristics of the artificial tissues were examined by determining the expression of specific marker proteins. In the C9 derived artificial tissues, the expression of EGF receptor, an epithelial proliferation marker proteins for stratum basale was observed up to the stratum spinosum. Another epithelial proliferation marker for stratum spinosum, cytokeratins 5/6/18, were observed well over the stratum spinosum. For the differentiation markers, the expression of involucrin and filaggrin were observed while the terminal differentiation marker, cytokeratins 10/13 were not detected at all. Therefore the reconstituted artificial epithelial tissues expressed the same types of differentiation marker proteins that are expressed in normal human cervical epithelial tissues but lacked the final differentiation capacity representing characteristics of C9 cell line as a cancer tissue derived cell line. Expression of HPV18 E6 oncoprotein was also observed in this artificial cervical epithelial tissue though the intensity of the staining was weak. Thus this artificial cervical epithelial tissue though the intensity of the staining was weak. Thus this artificial epithelial tissue could be used as a useful model system to examine the relationship between HPV-induced cervical oncogenesis and epithelial cell differentiation.  相似文献   

2.
Cell-cell interactions promote mammary epithelial cell differentiation   总被引:16,自引:6,他引:10       下载免费PDF全文
Mammary epithelium differentiates in a stromal milieu of adipocytes and fibroblasts. To investigate cell-cell interactions that may influence mammary epithelial cell differentiation, we developed a co-culture system of murine mammary epithelium and adipocytes and other fibroblasts. Insofar as caseins are specific molecular markers of mammary epithelial differentiation, rat anti-mouse casein monoclonal antibodies were raised against the three major mouse casein components to study this interaction. Mammary epithelium from mid-pregnant mice was plated on confluent irradiated monolayers of 3T3-L1 cells, a subclone of the Swiss 3T3 cell line that differentiates into adipocytes in monolayer culture and other cell monolayers (3T3-C2 cells, Swiss 3T3 cells, and human foreskin fibroblasts). Casein was synthesized by mammary epithelium only in the presence of co-cultured cells and the lactogenic hormone combination of insulin, hydrocortisone, and prolactin. Synthesis and accumulation of alpha-, beta-, and gamma-mouse casein within the epithelium was shown by immunohistochemical staining of cultured cells with anti-casein monoclonal antibodies, and the specificity of the immunohistochemical reaction was demonstrated using immunoblots. A competitive immunoassay was used to measure the amount of casein secreted into the culture medium. In a 24-h period, mammary epithelium co-cultured with 3T3-L1 cells secreted 12-20 micrograms beta-casein per culture dish. There was evidence of specificity in the cell-cell interaction that mediates hormone-dependent casein synthesis. Swiss 3T3 cells, newborn foreskin fibroblasts, substrate-attached material ("extracellular matrix"), and tissue culture plastic did not support casein synthesis, whereas monolayers of 3T3-L1 and 3T3-C2 cells, a subclone of Swiss 3T3 cells that does not undergo adipocyte differentiation, did. We conclude that interaction between mammary epithelium and other specific nonepithelial cells markedly influences the acquisition of hormone sensitivity of the epithelium and hormone-dependent differentiation.  相似文献   

3.
Rhesus monkey embryonic stem cells (ESCs) (R366.4), cultured on a three-dimensional (3D) collagen matrix with or without human neonatal foreskin fibroblasts (HPI.1) as feeder cells, or embedded in the collagen matrix, formed complex tubular or spherical gland-like structures and differentiated into phenotypes characteristic of neural, epithelial and endothelial lineages. Here, we analysed the production of endogenous extracellular matrix (ECM) proteins, cell-cell adhesion molecules, cell-surface receptors, lectins and their glycoligands, by differentiating ESCs, forming a micro-environment, a niche, able to positively influence cell behaviour. The expression of some of these molecules was modulated by HPI.1 cells while others were unaffected. We hypothesized that both soluble factors and the niche itself were critical in directing growth and/or differentiation of ESCs in this 3D environment. Creating such an appropriate experimental 3D micro-environment, further modified by ESCs and modulated by exogenous soluble factors, may constitute a template for adequate culture systems in developmental biology studies concerning differentiation of stem cells.  相似文献   

4.
Apoptosis, or programmed cell death, is a naturally occurring process mediated by extracellular signals. We studied anti-Fas (CD95/Apo-1) antibody-induced apoptosis in cultured human foreskin and adult dermal fibroblasts. Induction of apoptosis was identified by fluorescence in situ DNA end-labeling. Anti-Fas antibody induced apoptosis in fibroblasts in a dose- and time-dependent manner. Adult dermal skin fibroblasts were more susceptible to anti-Fas antibody-induced apoptosis than foreskin fibroblasts, with 21–52% dead cells in different strains. In foreskin fibroblasts, anti-Fas antibody (1.0 μg/ml) predominantly induced proliferation ([3H]thymidine incorporation increased to 115–165% of control level) and only low levels of apoptotic cell death after 48 hours of treatment. No induction of proliferation by anti-Fas was found in the adult fibroblasts. Addition of tumor necrosis factor-α (TNF-α) slightly augmented the anti-Fas antibody-induced apoptosis in both cell types. When we examined the levels of Fas expression using flow cytometry, we found two- to threefold higher Fas expression in adult fibroblasts. C6-ceramide treatment, which induces Fas-independent apoptosis, gave similar levels of cell death in both foreskin and adult fibroblasts. No proliferation was observed in C6-ceramide-treated fibroblasts. Thus, this difference in apoptosis between adult dermal and foreskin fibroblasts appears to be related to the level of Fas expression. When clones of foreskin fibroblasts were examined, there was heterogeneity of anti-Fas antibody-induced apoptosis and proliferation in the cloned fibroblast subpopulations, but this was not correlated with differences in Fas expression. Alterations in fibroblast populations during the process of differentiation and aging may result from selective loss of apoptosis-susceptible populations. J. Cell. Physiol. 175:19–29, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

5.
Human bone marrow stromal cells (hBMSC) are pluripotent cells that have the ability to differentiate into bone, cartilage, hematopoietic-supportive stroma, and adipocytes in a process modulated by dexamethasone (DEX). To characterize changes in hBMSC in response to DEX, we carried out differential display experiments using hBMSC cultured for 1 week in the presence or absence of 10(-8) M DEX. When RNA from these cells was used for differential display, numerous cDNA bands were identified that were up-regulated and down-regulated by DEX. The cDNA bands were reamplified by PCR and directly used to screen an hBMSC cDNA library. Seven clones were isolated and characterized by DNA sequencing and found to encode the following genes: transforming growth factor-beta-induced gene product ((beta)ig-h3), calphobindin II, cytosolic thyroid-binding protein, 22-kDA smooth muscle protein (SM22), and the extracellular matrix proteins osteonectin/SPARC, type III collagen, and fibronectin. To confirm that these genes were regulated by DEX, the cells were treated continuously with this hormone for periods ranging from 2 to 30 days, and steady-state mRNA levels were measured by Northern blot analysis. All genes showed some level of regulation by DEX. The most profound regulation by DEX was observed in the (beta)ig-h3 gene, which showed a relative 10-fold decrease in mRNA levels after 6 days of treatment. Interestingly, (beta)ig-h3 expression was not altered by DEX in fibroblasts from other human tissues, including thymus stromal fibroblasts, spleen stromal fibroblasts, and foreskin fibroblasts. In summary, differential display of DEX-treated hBMSC revealed unique patterns of gene expression and has provided new information about phenotypic changes that accompany the differentiation of hBMSC toward osteogenesis. J. Cell. Biochem. 76:231-243, 1999. Published 1999 Wiley-Liss, Inc.  相似文献   

6.
7.
The expression of fibronectin in heterokaryons of normal human fibroblasts and normal or malignant epithelial cells was studied by indirect immunofluorescence microscopy. Fibroblasts and their homokaryons showed a characteristic pericellular fibronectin matrix, whereas both normal (MDCK) and malignant (HeLa) epithelial cells, and their homokaryons, lacked such a matrix. The fibroblast homokaryons also showed a typical strong, perinuclear cytoplasmic, fibronectin-specific fluorescence. This was much weaker or absent in the MDCK and HeLa cells and their homokaryons. When human fibroblasts were fused with either normal or malignant epithelial cells, no pericellular matrix-like, fibronectin-specific fluorescence could be seen in the heterokaryons. Interestingly, however, a distinct intracellular fluorescence was seen in the heterokaryons, indicating continued production of fibronectin. The results of the present study indicate that both malignant and normal epithelial cells, which do not deposit fibronectin matrix, can cause its loss in heterokaryons with fibroblasts. Thus, discontinued fibronectin matrix formation does not point exclusively to malignancy, but may also reflect the state of differentiation of the parental cells.  相似文献   

8.
Human bone marrow stromal cells (hBMSC) are pluripotent cells that have the ability to differentiate into bone, cartilage, hematopoietic‐supportive stroma, and adipocytes in a process modulated by dexamethasone (DEX). To characterize changes in hBMSC in response to DEX, we carried out differential display experiments using hBMSC cultured for 1 week in the presence or absence of 10−8 M DEX. When RNA from these cells was used for differential display, numerous cDNA bands were identified that were up‐regulated and down‐regulated by DEX. The cDNA bands were reamplified by PCR and directly used to screen an hBMSC cDNA library. Seven clones were isolated and characterized by DNA sequencing and found to encode the following genes: transforming growth factor‐β‐induced gene product (βig‐h3), calphobindin II, cytosolic thyroid‐binding protein, 22‐kDA smooth muscle protein (SM22), and the extracellular matrix proteins osteonectin/SPARC, type III collagen, and fibronectin. To confirm that these genes were regulated by DEX, the cells were treated continuously with this hormone for periods ranging from 2 to 30 days, and steady‐state mRNA levels were measured by Northern blot analysis. All genes showed some level of regulation by DEX. The most profound regulation by DEX was observed in the βig‐h3 gene, which showed a relative 10‐fold decrease in mRNA levels after 6 days of treatment. Interestingly, βig‐h3 expression was not altered by DEX in fibroblasts from other human tissues, including thymus stromal fibroblasts, spleen stromal fibroblasts, and foreskin fibroblasts. In summary, differential display of DEX‐treated hBMSC revealed unique patterns of gene expression and has provided new information about phenotypic changes that accompany the differentiation of hBMSC toward osteogenesis. J. Cell. Biochem. 76:231–243, 1999. Published 1999 Wiley‐Liss, Inc.  相似文献   

9.
Summary The microenvironment plays a key role in the cellular differentiation of the two main cell lineages of the human breast, luminal epithelial, and myoepithelial. It is not clear, however, how the components of the microenvironment control the development of these cell lineages. To investigate how lineage development is regulated by 3-D culture and microenvironment components, we used the PMC42-LA human breast carcinoma cell line, which possesses stem cell characteristics. When cultured on a two-dimensional glass substrate, PMC42-LA cells formed a monolayer and expressed predominantly luminal epithelial markers, including cytokeratins 8, 18, and 19; E-cadherin; and sialomucin. The key myoepithelial-specific proteins α-smooth muscle actin and cytokeratin 14 were not expressed. When cultured within Engelbreth-Holm-Swarm sarcoma-derived basement membrane matrix (EHS matrix), PMC42-LA cells formed organoids in which the expression of luminal markers was reduced and the expression of other myoepithelial-specific markers (cytokeratin 17 and P-cadherin) was promoted. The presence of primary human mammary gland fibroblasts within the EHS matrix induced expression of the key myoepithelial-specific markers, α-smooth muscle actin and cytokeratin 14. Immortalized human skin fibroblasts were less effective in inducing expression of these key myoepithelial-specific markers. Confocal dual-labeling showed that individual cells expressed luminal or myoepithelial proteins, but not both. Conditioned medium from the mammary fibroblasts was equally effective in inducing myoepithelial marker expression. The results indicate that the myoepithelial lineage is promoted by the extracellular matrix, in conjunction with products secreted by breast-specific fibroblasts. Our results demonstrate a key role for the breast microenvironment in the regulation of breast lineage development.  相似文献   

10.
Connective tissue growth factor (CTGF) is overexpressed in a variety of fibrotic disorders, presumably secondary to the activation and production of transforming growth factor-beta (TGF-beta), a key inducer of fibroblast proliferation and matrix synthesis. The CTGF gene promoter has a TGF-beta response element that regulates its expression in fibroblasts but not epithelial cells or lymphocytes. Recent studies have shown that the macrophage-produced cytokine tumor necrosis factor alpha (TNFalpha) is necessary to promote inflammation and to induce genes, such as matrix metalloproteinases, involved with the early stages of wound healing. In this study, we examined the ability of TNFalpha to modulate CTGF gene expression. TNFalpha was found to suppress the TGF-beta-induced expression of CTGF protein in cultured normal fibroblasts. The activity of TNFalpha was blocked by NF-kappaB inhibitors. We showed that sequences between -244 and -166 of the CTGF promoter were necessary for both TGF-beta and TNFalpha to modulate CTGF expression. There was a constitutive expression of CTGF by scleroderma fibroblasts that was increased by TGF-beta treatment. Although TNFalpha was able to repress TGF-beta-induced CTGF and collagen synthesis both in normal and scleroderma skin fibroblasts, fibroblasts cultured from scleroderma patients were more resistant to TNFalpha as TNFalpha was unable to suppress the basal level of CTGF expression in scleroderma fibroblasts. Thus, we suspect that the high level of constitutive CTGF expression in scleroderma fibroblasts and its inability to respond to negative regulatory cytokines may contribute to the excessive scarring of skin and internal organs in patients with scleroderma.  相似文献   

11.
Epithelium in the nail matrix is different from that at other body sites, in terms of clinical and histological appearance. Hard keratins are exclusively expressed in the nail matrix and bed and the hair apparatus, and hard keratin is considered a differentiation marker of these sites. Whether the expression of hard keratin in non-nail-matrical keratinocytes could be induced by nail-matrical fibroblasts was examined. Skin equivalents were constructed in three ways; ventral keratinocytes (from the ventral side of the digit) were cocultured with ventral fibroblasts (group A), ventral keratinocytes were cocultured with nail-matrical fibroblasts (group B), and nail-matrical keratinocytes were cocultured with ventral fibroblasts (group C). Immunohistochemical examinations with anti-hard keratin antibody (HKN-7) revealed hard keratin expression in groups B and C. HKN-7-positive cells were distributed continuously in the entire epithelial strata or in the suprabasal layer in group B, whereas HKN-7-positive cells were distributed spottily in group C. This study indicates extrinsic hard keratin induction in non-nail-matrical keratinocytes by nail-matrical fibroblasts and suggests that non-nail-matrical epidermal grafts may be effective in the treatment of deepithelized nail injuries. In addition, it is possible that lost nails could be reconstructed with grafts of "tissue-engineered" nail equivalent.  相似文献   

12.
Neurotrophic factors play an important role in the development and maintenance of not only neural but also nonneural tissues. Several neurotrophic factors are expressed in dental tissues, but their role in tooth development is not clear. Here, we report that neurotrophic factor neurotrophin (NT)-4 promotes differentiation of dental epithelial cells and enhances the expression of enamel matrix genes. Dental epithelial cells from 3-day-old mice expressed NT-4 and three variants of TrkB receptors for neurotrophins (full-length TrkB-FL and truncated TrkB-T1 and -T2). Dental epithelial cell line HAT-7 expressed these genes, similar to those in dental epithelial cells. We found that NT-4 reduced HAT-7 cell proliferation and induced the expression of enamel matrix genes, such as ameloblastin (Ambn). Transfection of HAT-7 cells with the TrkB-FL expression construct enhanced the NT-4-mediated induction of Ambn expression. This enhancement was blocked by K252a, an inhibitor for Trk tyrosine kinases. Phosphorylation of ERK1/2, a downstream molecule of TrkB, was induced in HAT-7 cells upon NT-4 treatment. TrkB-FL but not TrkB-T1 transfection increased the phosphorylation level of ERK1/2 in NT-4-treated HAT-7 cells. These results suggest that NT-4 induced Ambn expression via the TrkB-MAPK pathway. The p75 inhibitor TAT-pep5 decreased NT-4-mediated induction of the expression of Ambn, TrkB-FL, and TrkB-T1, suggesting that both high affinity and low affinity neurotrophin receptors were required for NT-4 activity. We found that NT-4-null mice developed a thin enamel layer and had a decrease in Ambn expression. Our results suggest that NT-4 regulates proliferation and differentiation of the dental epithelium and promotes production of the enamel matrix.  相似文献   

13.
Lu R  Bian F  Lin J  Su Z  Qu Y  Pflugfelder SC  Li DQ 《PloS one》2012,7(6):e38825
There is a great interest in using epithelium generated in vitro for tissue bioengineering. Mouse 3T3 fibroblasts have been used as a feeder layer to cultivate human epithelia including corneal epithelial cells for more than 3 decades. To avoid the use of xeno-components, we evaluated human fibroblasts as an alternative feeder supporting human corneal epithelial regeneration. Five human fibroblast cell lines were used for evaluation with mouse 3T3 fibroblasts as a control. Human epithelial cells isolated from fresh corneal limbal tissue were seeded on these feeders. Colony forming efficiency (CFE) and cell growth capacity were evaluated on days 5-14. The phenotype of the regenerated epithelia was evaluated by morphology and immunostaining with epithelial markers. cDNA microarray was used to analyze the gene expression profile of the supportive human fibroblasts. Among 5 strains of human fibroblasts evaluated, two newborn foreskin fibroblast cell lines, Hs68 and CCD1112Sk, were identified to strongly support human corneal epithelial growth. Tested for 10 passages, these fibroblasts continually showed a comparative efficiency to the 3T3 feeder layer for CFE and growth capacity of human corneal epithelial cells. Limbal epithelial cells seeded at 1 × 10(4) in a 35-mm dish (9.6 cm(2)) grew to confluence (about 1.87-2.41 × 10(6) cells) in 12-14 days, representing 187-241 fold expansion with over 7-8 doublings on these human feeders. The regenerated epithelia expressed K3, K12, connexin 43, p63, EGFR and integrin β1, resembling the phenotype of human corneal epithelium. DNA microarray revealed 3 up-regulated and 10 down-regulated genes, which may be involved in the functions of human fibroblast feeders. These findings demonstrate that commercial human fibroblast cell lines support human corneal epithelial regeneration, and have potential use in tissue bioengineering for corneal reconstruction.  相似文献   

14.
The stratified squamous epithelia differ regionally in their patterns of morphogenesis and differentiation. Although some reports suggested that the adult epithelial phenotype is an intrinsic property of the epithelium, there is increasing evidence that subepithelial connective tissue can modify the phenotypic expression of the epithelium. The aim of this study was to elucidate whether the differentiation of cutaneous and oral epithelia is influenced by underlying mesenchymal tissues. Three normal skin samples and three normal buccal mucosa samples were used for the experiments. Skin equivalents were constructed in four ways, depending on the combinations of keratinocytes (cutaneous or mucosal keratinocytes) and fibroblasts (dermal or mucosal fibroblasts), and the effects of subepithelial fibroblasts on the differentiation of oral and cutaneous keratinocytes were studied with histological examinations and immunohistochemical analyses with anti-cytokeratin (keratins 10 and 13) antibodies. For each experiment, three paired skin equivalents were constructed by using single parent keratinocyte and fibroblast sources for each group; consequently, nine (3 x 3) organotypic cultures per group were constructed and studied. The oral and cutaneous epithelial cells maintained their intrinsic keratin expression. The keratin expression patterns in oral and cutaneous epithelia of skin equivalents were generally similar to their original patterns but were partly modified exogenously by the topologically different fibroblasts. The mucosal keratinocytes were more differentiated and expressed keratin 10 when cocultured with dermal fibroblasts, and the expression patterns of keratin 13 in cutaneous keratinocytes cocultured with mucosal fibroblasts were different from those in keratinocytes cocultured with cutaneous fibroblasts. The results suggested that the epithelial phenotype and keratin expression could be extrinsically modified by mesenchymal fibroblasts. In epithelial differentiation, however, the intrinsic control by epithelial cells may still be stronger than extrinsic regulation by mesenchymal fibroblasts.  相似文献   

15.
Human embryonic stem cell differentiation towards various cell types belonging to ecto-, endo- and mesodermal cell lineages has been demonstrated, with high efficiency rates using standardized differentiation protocols. However, germ cell differentiation from human embryonic stem cells has been very inefficient so far. Even though the influence of various growth factors has been evaluated, the gene expression of different cell lines in relation to their differentiation potential has not yet been extensively examined. In this study, the potential of three male human embryonic stem cell lines to differentiate towards male gonadal cells was explored by analysing their gene expression profiles. The human embryonic stem cell lines were cultured for 14 days as monolayers on supporting human foreskin fibroblasts or as spheres in suspension, and were differentiated using BMP7, or spontaneous differentiation by omitting exogenous FGF2. TLDA analysis revealed that in the undifferentiated state, these cell lines have diverse mRNA profiles and exhibit significantly different potentials for differentiation towards the cell types present in the male gonads. This potential was associated with important factors directing the fate of the male primordial germ cells in vivo to form gonocytes, such as SOX17 or genes involved in the NODAL/ACTIVIN pathway, for example. Stimulation with BMP7 in suspension culture resulted in up-regulation of cytoplasmic SOX9 protein expression in all three lines. The observation that human embryonic stem cells differentiate towards germ and somatic cells after spontaneous and BMP7-induced stimulation in suspension emphasizes the important role of somatic cells in germ cell differentiation in vitro.  相似文献   

16.
In culture, keratinocytes generally express aberrant growth and differentiation programs, which are largely normalized in cell transplants. In order to study the underlying regulatory phenomena and to distinguish between intrinsic properties and external factors, different in vitro and in vivo models have been applied using human keratinocytes from foreskin and trunk skin. When transplanted onto nude mice, keratinocytes reformed a regular epithelium with expression of the differentiation markers, keratins K1 and K10, involucrin and filaggrin. Tissue homeostasis improved in later transplants, as made apparent by coexpression and regular distribution of K1 and K10. Since this was achieved in transplants, whether in contact with mesenchyme or separated by collagen matrix, renormalization was obviously mediated by diffusible factors. In vitro, the host-mesenchymal influence could largely be mimicked by recombining organotypic cultures (keratinocytes on lifted collagen gels) with de-epidermized dermis, but tissue homeostasis was apparently not achieved. Comparing keratinocytes from trunk skin and foreskin, differences observed in situ persisted in isolated cells and reconstituted tissues. The hyperproliferative character of foreskin epidermis, with its less-pronounced stratum granulosum, was maintained in recombinant cultures and transplants along with the expression of keratin K13 (typical for foreskin in situ) irrespective of the type of mesenchyme. Thus, we could demonstrate with these model systems that: (a) the regulation of keratinocyte growth and differentiation is mesenchyme-dependent; (b) it is mediated by diffusible factors; but that (c) differences between epidermis of different body sites are also controlled by intrinsic programs.  相似文献   

17.
The secreted glycoprotein YKL-40 participates in cell differentiation, inflammation, and cancer progression. High YKL-40 expression is reported during early human development, but its functions are unknown. Six human embryonic stem cell (hESC) lines were cultured in an atmosphere of low or high oxygen tension, in culture medium with or without basic fibroblast growth factor, and on feeder layers comprising mouse embryonic fibroblasts or human foreskin fibroblasts to evaluate whether hESCs and their progeny produced YKL-40 and to characterize YKL-40 expression during differentiation. Secreted YKL-40 protein and YKL-40 mRNA expression were measured by enzyme-linked immunosorbent assay (ELISA) and quantitative RT-PCR. Serial-sectioned colonies were stained for YKL-40 protein and for pluripotent hESC (OCT4, NANOG) and germ layer (HNF-3β, PDX1, CD34, p63, nestin, PAX6) markers. Double-labeling showed YKL-40 expression in OCT4-positive hESCs, PAX6-positive neuroectodermal cells, and HNF-3β-positive endodermal cells. The differentiating progeny showed strong YKL-40 expression. Abrupt transition between YKL-40 and OCT4-positive hESCs and YKL-40-positive ecto- and neuroectodermal lineages was observed within the same epithelial-like layer. YKL-40-positive cells within deeper layers lacked contact with OCT4-positive cells. YKL-40 may be important in initial cell differentiation from hESCs toward ectoderm and neuroectoderm, with retained epithelial morphology, whereas later differentiation into endoderm and mesoderm involves a transition into the deeper layers of the colony.  相似文献   

18.
Retinoic acid (RA) is known to have a profound effect on the growth and differentiation of human epidermal cells in vivo and in vitro. One of the proteins thought to be involved in mediating the action of RA is the cellular retinoic acid-binding protein (CRABP). We have used PCR technology to generate cDNAs for two distinct CRABPs from human skin and skin-derived cells. One is highly homologous to the CRABP I cDNAs previously cloned from bovine and murine sources. The second shares extensive deduced amino acid homology with CRABP II, a protein recently described in newborn rat and embryonic chick. Although both mRNAs can be detected in neonatal foreskin, CRABP II mRNA is the predominant one in this tissue, as well as in cultured newborn fibroblasts and keratinocytes. Northern blot analysis showed CRABP II mRNA level was only slightly reduced by addition of 10(-6) or 10(-5) M RA to cultures of neonatal foreskin-derived fibroblasts, as was the CRABP I mRNA level in cultured human gut epithelial cells. In contrast, expression of CRABP II mRNA by cultured neonatal keratinocytes was strongly downregulated by RA. We conclude that CRABP II is the predominant CRABP in human skin, at least in the newborn period, and that it is differentially regulated in fibroblasts versus keratinocytes. Our data are consistent with a role for CRABP in regulating the amount of RA delivered to the nucleus.  相似文献   

19.
The gene expression profile induced by Wnt 3a in NIH 3T3 fibroblasts   总被引:3,自引:2,他引:1  
Wnt proteins play important roles in regulating cell differentiation, proliferation and polarity. Wnts have been proposed to play roles in tissue repair and fibrosis, yet the gene expression profile of fibroblasts exposed to Wnts has not been examined. We use Affymetrix genome-wide expression profiling to show that a 6-h treatment of fibroblasts of Wnt3a results in the induction of mRNAs encoding known Wnt targets such as the fibrogenic pro-adhesive molecule connective tissue growth factor (CTGF, CCN2). Wnt3a also induces mRNAs encoding potent pro-fibrotic proteins such as TGFβ and endothelin-1 (ET-1). Moreover, Wnt3a promotes genes associated with cell adhesion and migration, vasculature development, cell proliferation and Wnt signaling. Conversely, Wnt3a suppresses gene associated with skeletal development, matrix degradation and cell death. Results were confirmed using real-time polymerase chain reaction of cells exposed to Wnt3a and Wnt10b. These results suggest that Wnts induce genes promoting fibroblast differentiation towards angiogenesis and matrix remodeling, at the expense of skeletal development.  相似文献   

20.
3D organotypic cultures of epithelial cells on a matrix embedded with mesenchymal cells are widely used to study epithelial cell differentiation and invasion. Rat tail type I collagen and/or matrix derived from Engelbreth-Holm-Swarm mouse sarcoma cells have been traditionally employed as the substrates to model the matrix or stromal microenvironment into which mesenchymal cells (usually fibroblasts) are populated. Although experiments using such matrices are very informative, it can be argued that due to an overriding presence of a single protein (such as in type I Collagen) or a high content of basement membrane components and growth factors (such as in matrix derived from mouse sarcoma cells), these substrates do not best reflect the contribution to matrix composition made by the stromal cells themselves. To study native matrices produced by primary dermal fibroblasts isolated from patients with a tumor prone, genetic blistering disorder (recessive dystrophic epidermolysis bullosa), we have adapted an existing native matrix protocol to study tumor cell invasion. Fibroblasts are induced to produce their own matrix over a prolonged period in culture. This native matrix is then detached from the culture dish and epithelial cells are seeded onto it before the entire coculture is raised to the air-liquid interface. Cellular differentiation and/or invasion can then be assessed over time. This technique provides the ability to assess epithelial-mesenchymal cell interactions in a 3D setting without the need for a synthetic or foreign matrix with the only disadvantage being the prolonged period of time required to produce the native matrix. Here we describe the application of this technique to assess the ability of a single molecule expressed by fibroblasts, type VII collagen, to inhibit tumor cell invasion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号