首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
An anaerobic landfill leachate bioreactor was operated with crystalline cellulose and sterile landfill leachate until a steady state was reached. Cellulose hydrolysis, acidogenesis, and methanogenesis were measured. Microorganisms attached to the cellulose surfaces were hypothesized to be the cellulose hydrolyzers. 16S rRNA gene clone libraries were prepared from this attached fraction and also from the mixed fraction (biomass associated with cellulose particles and in the planktonic phase). Both clone libraries were dominated by Firmicutes phylum sequences (100% of the attached library and 90% of the mixed library), and the majority fell into one of five lineages of the clostridia. Clone group 1 (most closely related to Clostridium stercorarium), clone group 2 (most closely related to Clostridium thermocellum), and clone group 5 (most closely related to Bacteroides cellulosolvens) comprised sequences in Clostridium group III. Clone group 3 sequences were in Clostridium group XIVa (most closely related to Clostridium sp. strain XB90). Clone group 4 sequences were affiliated with a deeply branching clostridial lineage peripherally associated with Clostridium group VI. This monophyletic group comprises a new Clostridium cluster, designated cluster VIa. Specific fluorescence in situ hybridization (FISH) probes for the five groups were designed and synthesized, and it was demonstrated in FISH experiments that bacteria targeted by the probes for clone groups 1, 2, 4, and 5 were very abundant on the surfaces of the cellulose particles and likely the key cellulolytic microorganisms in the landfill bioreactor. The FISH probe for clone group 3 targeted cells in the planktonic phase, and these organisms were hypothesized to be glucose fermenters.  相似文献   

2.
Members of the bacterial genus Fibrobacter have long been considered important components of the anaerobic cellulolytic community in the herbivore gut, but their presence and activity in other environments is largely unknown. In this study, a specific polymerase chain reaction (PCR) primer set, targeting the 16S rRNA gene of Fibrobacter spp., was applied to community DNA from five landfill sites followed by temporal thermal gel electrophoresis (TTGE) analysis of cloned amplification products. Phylogenetic analysis of clone sequences indicated the presence of novel clusters closely related to the genus Fibrobacter . There are two named species, Fibrobacter succinogenes and F. intestinalis , and only two of the 58 sequenced clones were identified with them, and both were F. succin ogenes. The clone sequences from landfill were recovered in five distinct clusters within the Fibrobacter lineage, and four of these were novel. Quantitative PCR (qPCR) assays of reverse-transcribed community RNA from landfill leachates and rumen fluid samples indicated that the abundance of Fibrobacter spp. relative to total bacteria varied from 0.2% to 40% in landfill, and 21% to 32% in the rumen, and these data demonstrate that fibrobacters can be a significant component of the microbial community in landfill ecosystems. This is the first evidence for Fibrobacter spp. outside the gut ecosystem, and as the only cultivated representatives of this group are actively cellulolytic, their diversity and abundance points to a possible role in cellulose hydrolysis in landfill, and perhaps other anaerobic environments also.  相似文献   

3.
An anaerobic landfill leachate bioreactor was operated with crystalline cellulose and sterile landfill leachate until a steady state was reached. Cellulose hydrolysis, acidogenesis, and methanogenesis were measured. Microorganisms attached to the cellulose surfaces were hypothesized to be the cellulose hydrolyzers. 16S rRNA gene clone libraries were prepared from this attached fraction and also from the mixed fraction (biomass associated with cellulose particles and in the planktonic phase). Both clone libraries were dominated by Firmicutes phylum sequences (100% of the attached library and 90% of the mixed library), and the majority fell into one of five lineages of the clostridia. Clone group 1 (most closely related to Clostridium stercorarium), clone group 2 (most closely related to Clostridium thermocellum), and clone group 5 (most closely related to Bacteroides cellulosolvens) comprised sequences in Clostridium group III. Clone group 3 sequences were in Clostridium group XIVa (most closely related to Clostridium sp. strain XB90). Clone group 4 sequences were affiliated with a deeply branching clostridial lineage peripherally associated with Clostridium group VI. This monophyletic group comprises a new Clostridium cluster, designated cluster VIa. Specific fluorescence in situ hybridization (FISH) probes for the five groups were designed and synthesized, and it was demonstrated in FISH experiments that bacteria targeted by the probes for clone groups 1, 2, 4, and 5 were very abundant on the surfaces of the cellulose particles and likely the key cellulolytic microorganisms in the landfill bioreactor. The FISH probe for clone group 3 targeted cells in the planktonic phase, and these organisms were hypothesized to be glucose fermenters.  相似文献   

4.
Carbon metabolism in anaerobic cellulolytic bacteria has been investigated essentially in Clostridium thermocellum, Clostridium cellulolyticum, Fibrobacter succinogenes, Ruminococcus flavefaciens, and Ruminococcus albus. While cellulose depolymerization into soluble sugars by various cellulases is undoubtedly the first step in bacterial metabolisation of cellulose, it is not the only one to consider. Among anaerobic cellulolytic bacteria, C. cellulolyticum has been investigated metabolically the most in the past few years. Summarizing metabolic flux analyses in continuous culture using either cellobiose (a soluble cellodextrin resulting from cellulose hydrolysis) or cellulose (an insoluble biopolymer), this review aims to stress the importance of the insoluble nature of a carbon source on bacterial metabolism. Furthermore, some general and specific traits of anaerobic cellulolytic bacteria trends, namely, the importance and benefits of (i) cellodextrins with degree of polymerization higher than 2, (ii) intracellular phosphorolytic cleavage, (iii) glycogen cycling on cell bioenergetics, and (iv) carbon overflows in regulation of carbon metabolism, as well as detrimental effects of (i) soluble sugars and (ii) acidic environment on bacterial growth. Future directions for improving bacterial cellulose degradation are discussed.  相似文献   

5.
Newspaper as a substrate for cellulolytic landfill bacteria   总被引:1,自引:0,他引:1  
Five cellulolytic bacterial isolates ( Clostridium and Eubacterium spp.) from a methane-producing landfill were examined to determine their ability to utilize newspaper as a substrate for growth. Solubilization was poor with even the most actively cellulolytic bacteria. The major factor causing the low activity seemed to be that as much as 24% of the newspaper was composed of the high molecular weight polymer lignin, which exerts a protective effect on the attack of otherwise susceptible polymers. The presence of ink on heavily printed paper also reduced the rate of cellulose solubilization. Although the ink did not appear directly toxic to the bacteria it masked the surface of the paper, covering the cellulose fibres and preventing bacterial adhesion to the substrate. The action of the cellulolytic isolates was also strongly inhibited below the optimum growth temperature of 37°C.  相似文献   

6.
The phylum Fibrobacteres currently comprises one formal genus, Fibrobacter, and two cultured species, Fibrobacter succinogenes and Fibrobacter intestinalis, that are recognised as major bacterial degraders of lignocellulosic material in the herbivore gut. Historically, members of the genus Fibrobacter were thought to only occupy mammalian intestinal tracts. However, recent 16S rRNA gene-targeted molecular approaches have demonstrated that novel centres of variation within the genus Fibrobacter are present in landfill sites and freshwater lakes, and their relative abundance suggests a potential role for fibrobacters in cellulose degradation beyond the herbivore gut. Furthermore, a novel subphylum within the Fibrobacteres has been detected in the gut of wood-feeding termites, and proteomic analyses have confirmed their involvement in cellulose hydrolysis. The genome sequence of F. succinogenes rumen strain S85 has recently suggested that within this group of organisms a “third” way of attacking the most abundant form of organic carbon in the biosphere, cellulose, has evolved. This observation not only has evolutionary significance, but the superior efficiency of anaerobic cellulose hydrolysis by Fibrobacter spp., in comparison to other cellulolytic rumen bacteria that typically utilise membrane-bound enzyme complexes (cellulosomes), may be explained by this novel cellulase system. There are few bacterial phyla with potential functional importance for which there is such a paucity of phenotypic and functional data. In this review, we highlight current knowledge of the Fibrobacteres phylum, its taxonomy, phylogeny, ecology and potential as a source of novel glycosyl hydrolases of biotechnological importance.  相似文献   

7.
The fibrolytic microbiota of the human large intestine was examined to determine the numbers and types of cellulolytic and hemicellulolytic bacteria present. Fecal samples from each of five individuals contained bacteria capable of degrading the hydrated cellulose in spinach and in wheat straw pretreated with alkaline hydrogen peroxide (AHP-WS), whereas degradation of the relatively crystalline cellulose in Whatman no. 1 filter paper (PMC) was detected for only one of the five samples. The mean concentration of cellulolytic bacteria, estimated with AHP-WS as a substrate, was 1.2 X 10(8)/ml of feces. Pure cultures of bacteria isolated on AHP-WS were able to degrade PMC, indicating that interactions with other microbes were primarily responsible for previous low success rates in detecting fecal cellulolytic bacteria with PMC as a substrate. The cellulolytic bacteria included Ruminococcus spp., Clostridium sp., and two unidentified strains. The mean concentration of hemicellulolytic bacteria, estimated with larchwood xylan as a substrate, was 1.8 X 10(10)/ml of feces. The hemicellulose-degrading bacteria included Butyrivibrio sp., Clostridium sp., Bacteroides sp., and two unidentified strains, as well as four of the five cellulolytic strains. This work demonstrates that many humans harbor intestinal cellulolytic bacteria and that a hydrated cellulose source such as AHP-WS is necessary for their consistent detection and isolation.  相似文献   

8.
Northern peatlands represent a major global carbon store harbouring approximately one-third of the global reserves of soil organic carbon. A large proportion of these peatlands consists of acidic Sphagnum-dominated ombrotrophic bogs, which are characterized by extremely low rates of plant debris decomposition. The degradation of cellulose, the major component of Sphagnum-derived litter, was monitored in long-term incubation experiments with acidic (pH 4.0) peat extracts. This process was almost undetectable at 10°C and occurred at low rates at 20°C, while it was significantly accelerated at both temperature regimes by the addition of available nitrogen. Cellulose breakdown was only partially inhibited in the presence of cycloheximide, suggesting that bacteria participated in this process. We aimed to identify these bacteria by a combination of molecular and cultivation approaches and to determine the factors that limit their activity in situ. The indigenous bacterial community in peat was dominated by Alphaproteobacteria and Acidobacteria. The addition of cellulose induced a clear shift in the community structure towards an increase in the relative abundance of the Bacteroidetes. Increasing temperature and nitrogen availability resulted in a selective development of bacteria phylogenetically related to Cytophaga hutchinsonii (94-95% 16S rRNA gene sequence similarity), which densely colonized microfibrils of cellulose. Among isolates obtained from this community only some subdivision 1 Acidobacteria were capable of degrading cellulose, albeit at a very slow rate. These Acidobacteria represent indigenous cellulolytic members of the microbial community in acidic peat and are easily out-competed by Cytophaga-like bacteria under conditions of increased nitrogen availability. Members of the phylum Firmicutes, known to be key players in cellulose degradation in neutral habitats, were not detected in the cellulolytic community enriched at low pH.  相似文献   

9.
The fibrolytic microbiota of the human large intestine was examined to determine the numbers and types of cellulolytic and hemicellulolytic bacteria present. Fecal samples from each of five individuals contained bacteria capable of degrading the hydrated cellulose in spinach and in wheat straw pretreated with alkaline hydrogen peroxide (AHP-WS), whereas degradation of the relatively crystalline cellulose in Whatman no. 1 filter paper (PMC) was detected for only one of the five samples. The mean concentration of cellulolytic bacteria, estimated with AHP-WS as a substrate, was 1.2 X 10(8)/ml of feces. Pure cultures of bacteria isolated on AHP-WS were able to degrade PMC, indicating that interactions with other microbes were primarily responsible for previous low success rates in detecting fecal cellulolytic bacteria with PMC as a substrate. The cellulolytic bacteria included Ruminococcus spp., Clostridium sp., and two unidentified strains. The mean concentration of hemicellulolytic bacteria, estimated with larchwood xylan as a substrate, was 1.8 X 10(10)/ml of feces. The hemicellulose-degrading bacteria included Butyrivibrio sp., Clostridium sp., Bacteroides sp., and two unidentified strains, as well as four of the five cellulolytic strains. This work demonstrates that many humans harbor intestinal cellulolytic bacteria and that a hydrated cellulose source such as AHP-WS is necessary for their consistent detection and isolation.  相似文献   

10.
The enrichment from nature of novel microbial communities with high cellulolytic activity is useful in the identification of novel organisms and novel functions that enhance the fundamental understanding of microbial cellulose degradation. In this work we identify predominant organisms in three cellulolytic enrichment cultures with thermophilic compost as an inoculum. Community structure based on 16S rRNA gene clone libraries featured extensive representation of clostridia from cluster III, with minor representation of clostridial clusters I and XIV and a novel Lutispora species cluster. Our studies reveal different levels of 16S rRNA gene diversity, ranging from 3 to 18 operational taxonomic units (OTUs), as well as variability in community membership across the three enrichment cultures. By comparison, glycosyl hydrolase family 48 (GHF48) diversity analyses revealed a narrower breadth of novel clostridial genes associated with cultured and uncultured cellulose degraders. The novel GHF48 genes identified in this study were related to the novel clostridia Clostridium straminisolvens and Clostridium clariflavum, with one cluster sharing as little as 73% sequence similarity with the closest known relative. In all, 14 new GHF48 gene sequences were added to the known diversity of 35 genes from cultured species.The exploration and understanding of cellulose fermentation capabilities in nature could inform and enable industrial processes converting cellulosic biomass to fuels and other products. Enrichment of microbial communities that can utilize cellulose is useful in this context for the identification of novel organisms, novel metabolisms, and novel functions. Of particular interest are communities that can utilize cellulose at high temperatures and under anaerobic conditions, featuring high rates of solubilization under conditions where the energy and the reducing power of substrates are conserved in potentially useful fermentation products.Some evidence indicates that cocultures may be able to utilize cellulose more fully and produce higher concentrations of ethanol than pure cultures of model cellulolytic organisms such as Clostridium thermocellum and Clostridium straminisolvens (16, 20, 34). An initial step toward understanding the functional roles of community members in cooperative cellulose degradation is answering the question of what organisms are present in cellulolytic consortia obtained from nature. Currently, diversity estimation methods applied to cellulolytic communities range from traditional methods targeting the 16S rRNA gene (4, 12) to complex metagenomic analyses targeting the breadth of functional genes present in genomes of mixed cultures and the environment (3).From a functional gene standpoint, cellulase systems are complex assemblages of multifunctional glycosyl hydrolases. Even particularly relevant families, such as family 5 and family 9, tend to include hydrolases with multiple substrate specificities, deep evolutionary roots, and extensive sequence diversity within the same organism (19). However, family 48 glycosyl hydrolases include a select group of cellulosomal and unbound cellulases thought to play an essential role in cellulose solubilization by model cellulolytic clostridia (5, 7, 15), actinobacteria (6, 13), and anaerobic fungi (31). One key feature of this family of glycosyl hydrolases (mostly exoglucanases) is their ability to enhance cellulose solubilization in synergistic interactions with family 9 glycosyl hydrolases (2, 13). But unlike the latter, and with the notable exception of CelS and CelY in Clostridium thermocellum, family 48 hydrolases are present mostly in single copies in the genomes of cellulolytic microbes, making family 48 hydrolase genes a desirable target for primer design and molecular characterization.In this paper we describe the enrichment of microbial communities from a thermophilic compost pile and provide an assessment of diversity in stable cellulolytic enrichments by addressing total bacterial diversity using the 16S rRNA gene as well as introducing a novel method to assess functional diversity in cellulolytic consortia by targeting glycosyl hydrolase family 48 (GHF48) genes.  相似文献   

11.
4 ruminally cannulated cows were fed a forage diet (93% hay + 7% straw) and a mixed diet (33 % hay + 7% straw + 40% barley) in a 2 x 2 crossover experimental design. In sacco degradation of forage, fibrolytic activities (polysaccharidases and glycosidases) of the solid-associated bacteria (SAB), and distribution of the 3 main cellulolytic bacterial species (Fibrobacter succinogenes, Ruminococcus albus, Ruminococcus flavefaciens) were determined for both diets. Barley supplementation decreased the hay degradation rate and mainly the polysaccharidase activities of the SAB (30% on average). The sum of rRNA of the 3 cellulolytic bacterial species represented on average 17% of the total bacterial signal and R. albus was the dominant cellulolytic bacterial species of the 3 studied. Barley supplementation did not modify the proportion of the 3 cellulolytic bacteria attached to plant particles. The negative effect of barley on the ruminal hay degradation rate is due to a decrease in fibrolytic activity of the SAB, and not to a modification of the balance of the three cellulolytic bacterial species examined.  相似文献   

12.
AIMS: To elucidate whether a dominant uncultured clostridial (Clostridium thermocellum-like) species in an environmental sample (landfill leachate), possesses an autoinducing peptide (AIP) quorum-sensing (QS) gene, although it may not be functional. METHODS AND RESULTS: A modified AIP accessory gene regulator (agr)C PCR protocol was performed on extracted DNA from a landfill leachate sample (also characterized by 16S rRNA gene cloning) and the PCR products were cloned, sequenced and phylogenetically analysed. It appeared that two agrC gene phylotypes existed, most closely related to the C. thermocellum agrC gene, differing by only 1 bp. CONCLUSIONS: It is possible to specifically identify and characterize the agrC AIP QS gene from uncultured Firmicutes (C. thermocellum-like) bacteria derived from environmental (landfill leachate) sample. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first successful attempt at identifying AIP QS genes from a cellulolytic environment (landfill). The agrC gene was identified as being most closely related to the C. thermocellum agrC gene, the same bacterium identified as being dominant, according to 16S rRNA gene cloning and subsequently fluorescence in situ hybridization analyses, in the same biomass.  相似文献   

13.
The Fibrobacteres phylum contains two described species, Fibrobacter succinogenes and Fibrobacter intestinalis, both of which are prolific degraders of cellulosic plant biomass in the herbivore gut. However, recent 16S rRNA gene sequencing studies have identified novel Fibrobacteres in landfill sites, freshwater lakes and the termite hindgut, suggesting that members of the Fibrobacteres occupy a broader ecological range than previously appreciated. In this study, the ecology and diversity of Fibrobacteres was evaluated in 64 samples from contrasting environments where cellulose degradation occurred. Fibrobacters were detected in 23 of the 64 samples using Fibrobacter genus-specific 16S rRNA gene PCR, which provided their first targeted detection in marine and estuarine sediments, cryoconite from Arctic glaciers, as well as a broader range of environmental samples. To determine the phylogenetic diversity of the Fibrobacteres phylum, Fibrobacter-specific 16S rRNA gene clone libraries derived from 17 samples were sequenced (384 clones) and compared with all available Fibrobacteres sequences in the Ribosomal Database Project repository. Phylogenetic analysis revealed 63 lineages of Fibrobacteres (95% OTUs), with many representing as yet unclassified species. Of these, 24 OTUs were exclusively comprised of fibrobacters derived from environmental (non-gut) samples, 17 were exclusive to the mammalian gut, 15 to the termite hindgut, and 7 comprised both environmental and mammalian strains, thus establishing Fibrobacter spp. as indigenous members of microbial communities beyond the gut ecosystem. The data highlighted significant taxonomic and ecological diversity within the Fibrobacteres, a phylum circumscribed by potent cellulolytic activity, suggesting considerable functional importance in the conversion of lignocellulosic biomass in the biosphere.  相似文献   

14.
Mixed cultures of the cellulolytic fungus Trichoderma harzianum with the anaerobic diazotroph Clostridium butyricum were shown to co-operatively degrade cellulose and utilize the degradation products for N2 fixation. Cellulose degradation and N2 fixation were stimulated by small (0.1 mg/ml) additions of (NH4)2SO4. The (NH42SO4 stimulates cellulolysis thereby increasing the supply of cellulose degradation products to the diazotroph. In aerobic environments the anaerobe depends on the respiration of the aerobe to create anaerobic microsites. The N source increased O2 uptake by the fungus increasing the number of sites suitable for the development of the anaerobe. Stimulation in the growth of T. harzianum by (NH42SO4 resulted in increased growth and N2 fixation by Cl. butyricum.  相似文献   

15.
Enrichment of microbial consortia provides an approach to simulate and investigate microbial communities in natural environments. In this study, a cellulolytic microbial consortium SQD-1.1 was enriched from mangrove soil of Qinglan port (Hainan, China) by 27 times continuous subcultivation under anaerobic static conditions. The consortium could completely degrade 0.2 % (w/v) filter paper within 3 days and utilized it as the sole carbon source. PCR-denaturing gradient gel electrophoresis analysis revealed a stable microbial community structure in the incubation process of 10 days and in the procedure of subcultivation. Twenty-four operational taxonomic units belonging to seven phyla were obtained from the full-length 16S rRNA gene library. Five clones, closest related to the genera Alkaliflexus, Clostridium, Alistipes, Spirochaeta, and Trichococcus, were the predominant ones. Among them, M117, phylogeneticly showing high similarity (16S rRNA gene identity, 95.3 %) with the cellulolytic anaerobic bacterium Clostridium straminisolvens CSK1T, was the potential key cellulolytic bacterium. Using the plate cultivation method, 12 strains, including one potential new species and four potential new species of new genera, were isolated. The strain P2, corresponding to the most frequently detected clone (M05) in the 16S rRNA gene library, showed both CMCase and xylanase activity and may be another important cellulolytic bacterium. The findings of cellulase activity in cell pellet and cohesion and dockerin domains in metagenome data further suggested the potential of utilization of cellulosomes by the consortium to degrade cellulose. Consortium SQD-1.1 provides a candidate for investigating the mechanism of cellulose degradation under anoxic conditions in natural environments.  相似文献   

16.
Nine thermophilic cellulolytic clostridial isolates and four other noncellulolytic bacterial isolates were isolated from self-heated biocompost via preliminary enrichment culture on microcrystalline cellulose. All cellulolytic isolates grew vigorously on cellulose, with the formation of either ethanol and acetate or acetate and formate as principal fermentation products as well as lactate and glycerol as minor products. In addition, two out of nine cellulolytic strains were able to utilize xylan and pretreated wood with roughly the same efficiency as for cellulose. The major products of xylan fermentation were acetate and formate, with minor contributions of lactate and ethanol. Phylogenetic analyses of 16S rRNA and glycosyl hydrolase family 48 (GH48) gene sequences revealed that two xylan-utilizing isolates were related to a Clostridium clariflavum strain and represent a distinct novel branch within the GH48 family. Both isolates possessed high cellulase and xylanase activity induced independently by either cellulose or xylan. Enzymatic activity decayed after growth cessation, with more-rapid disappearance of cellulase activity than of xylanase activity. A mixture of xylan and cellulose was utilized simultaneously, with a significant synergistic effect observed as a reduction of lag phase in cellulose degradation.  相似文献   

17.
Degradation of cellulose by basidiomycetous fungi   总被引:5,自引:0,他引:5  
Cellulose is the main polymeric component of the plant cell wall, the most abundant polysaccharide on Earth, and an important renewable resource. Basidiomycetous fungi belong to its most potent degraders because many species grow on dead wood or litter, in environment rich in cellulose. Fungal cellulolytic systems differ from the complex cellulolytic systems of bacteria. For the degradation of cellulose, basidiomycetes utilize a set of hydrolytic enzymes typically composed of endoglucanase, cellobiohydrolase and beta-glucosidase. In some species, the absence of cellobiohydrolase is substituted by the production of processive endoglucanases combining the properties of both of these enzymes. In addition, systems producing hydroxyl radicals based on cellobiose dehydrogenase, quinone redox cycling or glycopeptide-based Fenton reaction are involved in the degradation of several plant cell wall components, including cellulose. The complete cellulolytic complex used by a single fungal species is typically composed of more than one of the above mechanisms that contribute to the utilization of cellulose as a source of carbon or energy or degrade it to ensure fast substrate colonization. The efficiency and regulation of cellulose degradation differs among wood-rotting, litter-decomposing, mycorrhizal or plant pathogenic fungi and yeasts due to the different roles of cellulose degradation in the physiology and ecology of the individual groups.  相似文献   

18.
Fibrobacter succinogenes S85 is an anaerobic non-cellulosome utilizing cellulolytic bacterium originally isolated from the cow rumen microbial community. Efforts to elucidate its cellulolytic machinery have resulted in the proposal of numerous models which involve cell-surface attachment via a combination of cellulose-binding fibro-slime proteins and pili, the production of cellulolytic vesicles, and the entry of cellulose fibers into the periplasmic space. Here, we used a combination of RNA-sequencing, proteomics, and transmission electron microscopy (TEM) to further clarify the cellulolytic mechanism of F. succinogenes. Our RNA-sequence analysis shows that genes encoding type II and III secretion systems, fibro-slime proteins, and pili are differentially expressed on cellulose, relative to glucose. A subcellular fractionation of cells grown on cellulose revealed that carbohydrate active enzymes associated with cellulose deconstruction and fibro-slime proteins were greater in the extracellular medium, as compared to the periplasm and outer membrane fractions. TEMs of samples harvested at mid-exponential and stationary phases of growth on cellulose and glucose showed the presence of grooves in the cellulose between the bacterial cells and substrate, suggesting enzymes work extracellularly for cellulose degradation. Membrane vesicles were only observed in stationary phase cultures grown on cellulose. These results provide evidence that F. succinogenes attaches to cellulose fibers using fibro-slime and pili, produces cellulases, such as endoglucanases, that are secreted extracellularly using type II and III secretion systems, and degrades the cellulose into cellodextrins that are then imported back into the periplasm for further digestion by β-glucanases and other cellulases.  相似文献   

19.
Cellulose is the most abundant carbon source in nature but it is very difficult to degrade because of its insolubility, quasi‐crystalline structure and its presence in plant cell walls in a matrix with other polymers that limit access to the cellulose surface. Most cellulose in soils is degraded by cellulolytic microorganisms that use a number of different approaches to overcome the recalcitrance of cellulose in plant cell walls. All of these approaches involve multiple cellulases and, since cellulose is insoluble and microorganisms cannot ingest particles, the cellulases are present outside of the cell although they can be attached to its outer surface. An impressive article by Tolonen et al. in this issue of Molecular Microbiology shows that deletion of the single family 9 cellulase gene in Clostridium phytofermentans prevents growth on cellulose although the mutant strain grows perfectly well on glucose and its other cellulase genes are transcribed normally. These results show for the first time that a single cellulase can be essential for cellulose degradation by an organism despite the presence of several other cellulases. It will be interesting to learn the detailed mechanism that C. phytofermentans uses to degrade cellulose.  相似文献   

20.
The defined ruminal bacterial strains Fibrobacter succinogenes S85, Ruminococcus flavefaciens FD1, Ruminococcus albus 7, Butyrivibrio fibrisolvens D1, and Bacteroides ruminicola GA33 were grown, in monocultures or as combinations of pair strains, on isolated lucerne cell-walls (CW) as the sole carbohydrate substrate. Fibrobacter succinogenes S85 was the dominant strain determining extent of CW hydrolysis in all combinations with S85. The hydrolysis of cellulose, xylan, hemicellulose side-sugars, and total CW monosaccharides by pure S85 were: 58·8, 47·3, 66·9 and 57·0%, respectively. The strains combination S85 plus D1 comprised the highest complementary effect, increasing significantly the hydrolysis of cellulose and total CW monosaccharides by 16% and 13%, respectively, above the values obtained by pure S85. This complementation was expressed also in growth pattern of bacteria.
The monocultures of FD1, D1 and GA33 had very little hydrolytic effect on lucerne cellulose, but higher effects on xylan and hemicellulose side-sugars. The combinations D1 plus GA33 and 7 plus GA33 were complementary in the hydrolysis of all CW polysaccharides. The combinations FD1 plus D1, FD1 plus GA33, and 7 plus D1 were complementary only with respect to hemicellulose hydrolysis. On the other hand, the cellulolytic combinations S85 plus FD1, S85 plus 7 and FD1 plus 7 demonstrated negative interactions in lucerne CW polysaccharides hydrolysis.
Under scanning electron microscopy (SEM), S85 comprised the most dense layer of bacterial cell mass attached to and colonized on CW particles. The cell surface topology of the cellulolytic strains S85, FD1 and 7 attached to CW particles was specified by a coat of characteristic protuberant structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号