首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A comparative study of some physico-chemical properties of high-purified preparations of extracellular penicillin-V-acylase and aminoacylase, isolated from the actinomycete Streptoverticillium No 62, revealed the difference in pH and temperature optima, in the sensitivity to the ionic composition of buffer solutions, in the enzyme stability during storage. As for the aminoacylase preparation, its thermostability was studied at different pH values, as well as the effect of specific compounds was tested. Similar to other fungal enzymes, the aminoacylase possesses a wide substrate specificity, and by its stereospecificity can be related to L-aminoacylases, while penicillin-V-acylase is a high-specific enzyme, active against phenoxymethylpenicillin.  相似文献   

2.
A range of cross-linked enzyme aggregates (CLEAs) was prepared from commercially available aminoacylase I. Results from three test reactions showed that aminoacylase does not possess aminolysis or alcoholysis activity, both previously ascribed to this enzyme. This result was confirmed using aminoacylase purified by chromatographic techniques, which leads us to conclude that the previously observed acylations of esters and amines is due to other enzymes present as impurities in the crude aminoacylase I.  相似文献   

3.
The kinetics of hydrolysis of acetyl-dl-methionine in DEAE-cellulose-aminoacylase (EC 3.5.1.14) column and DEAE-Sephadex-aminoacylase column was studied.

The rate of hydrolysis of substrate was shown to be dependent on the flow rate and independent to the dimension of the enzyme column. The rate of hydrolysis of the substrate was equal in cases of down-ward flow and of up-ward flow. The deteriorated aminoacylase columns by long period operation were reactivated by the recharge of aminoacylase to them. The continuous enzyme reaction using an aminoacylase column was superior to the batch enzyme reaction using native aminoacylase.

The enzymatic properties of the water-insoluble aminoacylase prepared by linking mold aminoacylase (EC 3.5.1.14) to DEAE-Sephadex were studied and compared with those of the native aminoacylase.

Optimum pH values for hydrolysis of several substrates by the DEAE-Sephadex-amino-acylase complex (DSA-complex) shifted about 0.5~1.5 pH units more to the acid side than those by the native enzyme. On the effects of metal ions and inhibitors, substrate specificity, optical specificity and kinetic constants, no marked difference was observed between the native enzyme and the DSA-complex. Heat stability, optimum temperature and resistance towards proteases were increased by conversion from the native form to the insoluble enzyme. It was also observed that the DSA-complex was activated by urea.  相似文献   

4.
Aminoacylase 1 is a zinc-binding enzyme which hydrolyzes N-acetyl amino acids into the free amino acid and acetic acid. Deficiency of aminoacylase 1 due to mutations in the aminoacylase 1 (ACY1) gene follows an autosomal-recessive trait of inheritance and is characterized by accumulation of N-acetyl amino acids in the urine. In affected individuals neurological findings such as febrile seizures, delay of psychomotor development and moderate mental retardation have been reported. Except for one missense mutation which has been studied in Escherichia coli, mutations underlying aminoacylase 1 deficiency have not been characterized so far. This has prompted us to approach expression studies of all mutations known to occur in aminoacylase 1 deficient individuals in a human cell line (HEK293), thus providing the authentic human machinery for posttranslational modifications. Mutations were inserted using site directed mutagenesis and aminoacylase 1 enzyme activity was assessed in cells overexpressing aminoacylase 1, using mainly the natural high affinity substrate N-acetyl methionine. Overexpression of the wild type enzyme in HEK293 cells resulted in an approximately 50-fold increase of the aminoacylase 1 activity of homogenized cells. Most mutations resulted in a nearly complete loss of enzyme function. Notably, the two newly discovered mutations p.Arg378Trp, p.Arg378Gln and the mutation p.Arg393His yielded considerable residual activity of the enzyme, which is tentatively explained by their intramolecular localization and molecular characteristics. In contrast to aminoacylase 1 variants which showed no detectable aminoacylase 1 activity, aminoacylase 1 proteins with the mutations p.Arg378Trp, p.Arg378Gln and p.Arg393His were also detected in Western blot analysis. Investigations of the molecular bases of additional cases of aminoacylase 1 deficiency contribute to a better understanding of this inborn error of metabolism whose clinical significance and long-term consequences remain to be elucidated.  相似文献   

5.
A factor stimulating the production of exoproteases by Aspergillus kanagawaensis both in a single culture and during combined cultivation with Aspergillus wentii was isolated from the cultural broth of a component in the microbial association according to our scheme. The factor is a pigment of the hydroxyanthraquinone nature. It made the enzyme biosynthesis increase 3.7 times. Its effect on the biosynthesis was compared to that produced by other anthraquinone pigments, viz. alizarin, rubomycin and cinerubins. The compounds stimulated the biosynthesis only 2 to 2.5 times.  相似文献   

6.
Extractive fermentation with nonionic surfactants is a potential method for producing Monascus pigments. In this study, the correlation between mycelium morphology and pigment production was investigated in extractive fermentation of Monascus anka GIM 3.592. The results demonstrated that pigment biosynthesis was associated with mycelial morphology and the accumulation of granular inclusions in cells. The physiological status in terms of hyphal and pellet diameters exhibited an excellent correlation with pigment accumulation, especially the yield of extracellular pigment in extractive fermentation (r > 0.85, p < 0.05). Nonionic surfactants could reduce pigment yield by influencing the morphology of hyphae and mycelium pellets. High yields of both intracellular and extracellular pigments could be achieved by controlling variations in hyphal diameters in two-stage extractive fermentation. Moreover, continuous extractive fermentation led to stable pigment production, with a relatively high productivity of total pigments reaching 72.3 AU/day. This study proposed a simple method for monitoring pigment biosynthesis in extractive fermentation using mycelium morphology as an indicating factor.  相似文献   

7.
Citrinin is a mycotoxin, which is produced by fungi belonging to the genus Monascus, known in biotechnology as producers of azaphilone pigments. The relation between biosynthesis of these secondary metabolites was investigated in different species of the genus Monascus in batch-culture at the following cultivation conditions: T = 28 degrees C, agitation 220 rpm, and a medium, which induce citrinin production, containing ethanol as a carbon source. The screening was carried out with 16 fungal strains and the biosynthesis of citrinin and pigments was monitored quantitatively at the standard conditions mentioned above. Some kinetic parameters of the process have been determined. The values of the growth yield coefficient Y(X/C) were between 0.32 and 0.57. The amount of the extracellular red and orange pigments at the end of cultivation varied for the different strains between 0.09 and 1.33 OU/ mg dry weight, and 0.15 and 0.96 OU/mg dry weight, respectively. The amount of the total pigments measured was between 0.16 and 3.6 OU/mg dry weight, and between 0.21 and 3.39 OU/mg dry weight. The determined ratio 500 nm/400 nm, characterizing the pigment production, ranged between 0.60 and 1.06. Twelve of the investigated strains produced citrinin and pigments, two of them produced only pigments. Two strains were not able to produce neither pigments nor citrinin. Thus, the biosynthesis of citrinin appeared to be strain-specific and does not correlate with the pigments' biosynthesis by the fungal strains belonging to the genus Monascus.  相似文献   

8.
The effect of inhibiting and stimulating agents on the biosynthesis of secondary metabolites (actinomycin X and melanoid pigments) was studied in Streptomyces galbus as a function of the growth temperature. D-Valine was shown to inhibit actinomycin synthesis and to stimulate production of melanoid pigments. Tryptophan stimulated the synthesis of both actinomycin and melanoid pigments. The temperature of growth was found to regulate the biosynthesis of secondary metabolites by the culture. The organism synthesized actinomycin at 28 degrees C, but it switched to the production of melanoid pigments at 42 degrees C. This may be considered as a protective reaction of the organism to an increase in the temperature of the environment and in UV radiation which is possible under natural conditions as a consequence of temperature elevation. The paper presents a hypothetical scheme for the regulation of biosynthesis of actinomycin and melanoid pigments by temperature. According to the scheme, the culture synthesizes secondary metabolites from tryptophan to hydroxykynurenine via a general pathway which is then bifurcated: at 28 degrees C--through methylhydroxyanthranilic acid to actinocin to actinomycin; at 42 degrees C--through hydroxyanthranilic acid, o-aminophenol, pyrocatechol, and possibly, o-benzoquinone, to melanin.  相似文献   

9.
A genomic DNA fragment encoding aminoacylase activity of the eubacterium Bacillus stearothermophilus was cloned into Escherichia coli. Transformants expressing aminoacylase activity were selected by their ability to complement E. coli mutants defective in acetylornithine deacetylase activity, the enzyme that converts N-acetylornithine to ornithine in the arginine biosynthetic pathway. The 2.3-kb cloned fragment has been entirely sequenced. Analysis of the sequence revealed two open reading frames, one of which encoded the aminoacylase. B. stearothermophilus aminoacylase, produced in E. coli, was purified to near homogeneity in three steps, one of which took advantage of the intrinsic thermostability of the enzyme. The enzyme exists as homotetramer of 43-kDa subunits as shown by cross-linking experiments. The deacetylating capacity of purified aminoacylase varies considerably depending on the nature of the amino acid residue in the substrate. The enzyme hydrolyzes N-acyl derivatives of aromatic amino acids most efficiently. Comparison of the predicted amino acid sequence of B. stearothermophilus aminoacylase with those of eubacterial acetylornithine deacylase, succinyldiaminopimelate desuccinylase, carboxypeptidase G2, and eukaryotic aminoacylase I suggests a common origin for these enzymes.  相似文献   

10.
The preparation and properties of immobilized aminoacylase on porous glass by covalent binding [Porous glass-CVB-aminoacylase] and the continuous enzymatic reactions using such preparations are described.

Two types of porous glass-CVB-aminoacylase were prepared. One was aminoacylase covalently bound to alkylaminosilane derivative of porous glass with glutaraldehyde as a coupling agent [Alkylamino-porous glass-CVB-aminoacylase], and the other was aminoacylase covalently bound to arylaminosilane derivative of porous glass with nitrous acid as a coupling agent [Arylamino-porous glass-CVB-aminoacylase]. The enzyme activities of such immobilized aminoacylases were 3.2~13.0 units/ml glass for the former and 1.9~6.8 units/ml glass for the latter. Especially, alkylamino porous glass-CVB-aminoacylase showed excellent stability at pH 6~9 and temperature below 50°C, and was able to be stored for more than six months without appreciable loss of the activity.

The continuous enzyme reaction using the alkylamino porous glass-CVB-aminoacylase packed in a column was operated for 54 days at 37°C, and the half-life of the immobilized enzyme was calculated to be 78 days. From these results, it was recognized that such an immobilized aminoacylase on porous glass would be applicable in an industrial preparation of various l-amino acids from their dl-forms.  相似文献   

11.
12.
Summary A resting cell system was developed for the biosynthesis of soluble red pigments byMonascus. The medium contains glucose, glycine, ZnSO4 and MnSO4 in pH 7.0 MOPS buffer containing cycloheximide to prevent protein synthesis. The linear production observed over a period of at least four h was due to de novo polyketide synthesis and biological methylation, as shown by inhibition with cerulenin, iodoacetamide and ethionine. Production was inhibited by carbonyl reagents and stimulated by pyridoxamine suggesting that the conversion of endogenous intracellular orange pigments to extracellular red pigments involves Schiff base intermediates and vitamin B6 a cofactor. The resting cell system was used to study the mode of action of nutritional effectors previously pinpointed by experiments with growing cells. The negative effects of high concentrations of phosphate and Mg++ are due to inhibition of pigment synthase action, not to repression or inactivation of these enzymes. The positive effects of trace metals, especially Zn++, are due to stimulation of growth and enzyme action, not to induction or stabilization of the synthases.  相似文献   

13.
14.
Summary The preparations of calcium alginate beads stabilized with poly-L-lysine and encapsulating aminoacylase were conducted at different pH conditions. The interaction of poly-L-lysine and alginate beads proceeds readily. The beads prepared at pH 7.0 exhibited high operational and storage stability with the elimination of enzyme leakage and the immobilized aminoacylase possessed high biological activity.  相似文献   

15.
The refolding and reactivation of aminoacylase is particularly difficult because of serious off-pathway aggregation. The effects of 4 osmolytes--dimethylsulphoxide, glycerol, proline, and sucrose--on the refolding and reactivation of guanidine-denatured aminoacylase were studied by measuring aggregation, enzyme activity, intrinsic fluorescence spectra, 1-anilino-8-naphthalenesulfonate (ANS) fluorescence spectra, and circular dichroism (CD) spectra. The results show that all the osmolytes not only inhibit aggregation but also recover the activity of aminoacylase during refolding in a concentration-dependent manner. In particularly, a 40% glycerol concentration and a 1.5 mol/L sucrose concentration almost completely suppressed the aminoacylase aggregation. The enzyme activity measurements revealed that the influence of glycerol is more significant than that of any other osmolyte. The intrinsic fluorescence results showed that glycerol, proline, and sucrose stabilized the aminoacylase conformation effectively, with glycerol being the most effective. All 4 kinds of osmolytes reduced the exposure of the hydrophobic surface, indicating that osmolytes facilitate the formation of protein hydrophobic collapse. The CD results indicate that glycerol and sucrose facilitate the return of aminoacylase to its native secondary structure. The results of this study suggest that the ability of the various osmolytes to facilitate the refolding and renaturation of aminoacylase is not the same. A survey of the results in the literature, as well as those presented here, suggests that although the protective effect of osmolytes on protein activity and structure is equal for different osmolytes, the ability of osmolytes to facilitate the refolding of various proteins differs from case to case. In all cases, glycerol was found to be the best stabilizer and a folding aid.  相似文献   

16.
Genome sequencing of the thermophilic archaeon Pyrococcus horikoshii OT3 revealed a gene which had high sequence similarity to the gene encoding the carboxypeptidase of Sulfolobus solfataricus and also to that encoding the aminoacylase from Bacillus stearothermophilus. The gene from P. horikoshii comprises an open reading frame of 1,164 bp with an ATG initiation codon and a TGA termination codon, encoding a 43,058-Da protein of 387 amino acid residues. However, some of the proposed active-site residues for carboxypeptidase were not found in this gene. The gene was overexpressed in Escherichia coli with the pET vector system, and the expressed enzyme had high hydrolytic activity for both carboxypeptidase and aminoacylase at high temperatures. The enzyme was stable at 90 degrees C, with the highest activity above 95 degrees C. The enzyme contained one bound zinc ion per one molecule that was essential for the activity. The results of site-directed mutagenesis of Glu367, which corresponds to the essential Glu270 in bovine carboxypeptidase A and the essential Glu in other known carboxypeptidases, revealed that Glu367 was not essential for this enzyme. The results of chemical modification of the SH group and site-directed mutagenesis of Cys102 indicated that Cys102 was located at the active site and was related to the activity. From these findings, it was proven that this enzyme is a hyperthermostable, bifunctional, new zinc-dependent metalloenzyme which is structurally similar to carboxypeptidase but whose hydrolytic mechanism is similar to that of aminoacylase. Some characteristics of this enzyme suggested that carboxypeptidase and aminoacylase might have evolved from a common origin.  相似文献   

17.
The refolding of aminoacylase denatured in 6M guanidine hydrochloride (GdnHCl) has been studied by measuring enzyme activity, fluorescence emission spectra, ANS fluorescence spectra and far-UV circular dichroism spectra. The results showed that GdnHCl-denatured aminoacylase could be refolded and reactivated by dilution. A refolding intermediate was observed for low concentrations of GdnHCl (between 0.5 and 1.2M). This refolding intermediate was characterized by an increased fluorescence emission intensity, a blue-shifted emission maximum, and by increased binding of the fluorescence probe 8-anilino-1-naphthalenesulfonate (ANS). The secondary structure of the intermediate was similar to that of the native enzyme, and was therefore quite similar to the molten globule state often found in the protein folding pathway. Combined with the previous evidence of existence of an intermediate during unfolding process, we therefore proposed that the unfolding and refolding of aminoacylase might share the same pathway. A comparison of the Apo-enzyme and Holo-enzyme showed that there was little effect of the zinc ion on the refolding of the aminoacylase. Our study, the first successful report of the refolding of this metalloenzyme, also showed that lowering the concentration and the temperature of the enzyme improved the refolding rate of aminoacylase. The system therefore provides a useful model to study the refolding of proteins with prosthetic groups.  相似文献   

18.
Immobilization of mold aminoacylase (N-acylamino acid amidohydrolase, EC 3.5.1.14) was investigated by covalently binding the enzyme to halogenoacetylcelluloses. As a result, the iodoacetylcellulose was found to be the best carrier among the halogenoacetylcelluloses. The yield of activity of the insoluble aminoacylase relative to that of the native aminoacylase used was 40–50%, and the specific activities of both enzyme preparations were the same within the limits of error of the estimation.  相似文献   

19.
L-蛋氨酸酰化酶基因工程菌培养条件的研究   总被引:1,自引:0,他引:1  
为提高L-氨基酰化酶基因工程菌1016的生物量及酶产量,优化了发酵工艺,确定了较佳的培养基成分,并初步考察了该酶的底物特异性。优化后工程菌摇瓶产酶稳定在980U/mL发酵液,发酵周期17 h,生物量A_(420)穗定在0.7。产酶量为原来的2倍以上。乙酰化的脂肪族氨基酸Met是该酶的最适底物。  相似文献   

20.
Genome sequencing of the thermophilic archaeon Pyrococcus horikoshii OT3 revealed a gene which had high sequence similarity to the gene encoding the carboxypeptidase of Sulfolobus solfataricus and also to that encoding the aminoacylase from Bacillus stearothermophilus. The gene from P. horikoshii comprises an open reading frame of 1,164 bp with an ATG initiation codon and a TGA termination codon, encoding a 43,058-Da protein of 387 amino acid residues. However, some of the proposed active-site residues for carboxypeptidase were not found in this gene. The gene was overexpressed in Escherichia coli with the pET vector system, and the expressed enzyme had high hydrolytic activity for both carboxypeptidase and aminoacylase at high temperatures. The enzyme was stable at 90°C, with the highest activity above 95°C. The enzyme contained one bound zinc ion per one molecule that was essential for the activity. The results of site-directed mutagenesis of Glu367, which corresponds to the essential Glu270 in bovine carboxypeptidase A and the essential Glu in other known carboxypeptidases, revealed that Glu367 was not essential for this enzyme. The results of chemical modification of the SH group and site-directed mutagenesis of Cys102 indicated that Cys102 was located at the active site and was related to the activity. From these findings, it was proven that this enzyme is a hyperthermostable, bifunctional, new zinc-dependent metalloenzyme which is structurally similar to carboxypeptidase but whose hydrolytic mechanism is similar to that of aminoacylase. Some characteristics of this enzyme suggested that carboxypeptidase and aminoacylase might have evolved from a common origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号