首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Neuronal cell death, neurofibrillary tangles, and amyloid beta peptide (Abeta) deposition depict Alzheimer's disease (AD) pathology, but neuronal loss correlates best with dementia. We have shown that increased production of Abeta is a consequence of neuronal apoptosis, suggesting that apoptosis activates proteases involved in amyloid precursor protein (APP) processing. Here, we investigate key effectors of cell death, caspases, in human neuronal apoptosis and APP processing. We find that caspase-6 is activated and responsible for neuronal apoptosis by serum deprivation. Caspase-6 activity precedes the time of commitment to neuronal apoptosis by 10 h, indicating possible activity without subsequent apoptosis. Inhibition of caspase-6 activity prevents serum deprivation-mediated increase of Abeta. Caspase-6 directly cleaves APP at the C terminus and generates a C-terminal fragment of 3 kDa (Capp3) and an Abeta-containing 6.5-kDa fragment, Capp6.5, that increases in serum-deprived neurons. A pulse-chase experiment reveals a precursor-product relationship between Capp6.5, intracellular Abeta, and secreted Abeta, indicating a potential alternate amyloidogenic pathway. Caspase-6 proenzyme is present in adult human brain tissue, and the p10 active caspase-6 fragment is detected in AD brain tissue. These results indicate a possible alternate pathway for APP amyloidogenic processing in human neurons and a potential implication for this pathway in the neuronal demise of AD.  相似文献   

2.
Alzheimer's disease (AD) is a common neurodegenerative disease that affects cognitive function in the elderly. Large extracellular beta-amyloid (Abeta) plaques and tau-containing intraneuronal neurofibrillary tangles characterize AD from a histopathologic perspective. However, the severity of dementia in AD is more closely related to the degree of the associated neuronal and synaptic loss. It is not known how neurons die and synapses are lost in AD; the current review summarizes what is known about this issue. Most evidence indicates that amyloid precursor protein (APP) processing is central to the AD process. The Abeta in plaques is a metabolite of the APP that forms when an alternative (beta-secretase and then gamma-secretase) enzymatic pathway is utilized for processing. Mutations of the APP gene lead to AD by influencing APP metabolism. One leading theory is that the Abeta in plaques leads to AD because Abeta is directly toxic to the adjacent neurons. Other theories advance the notion that neuronal death is triggered by intracellular events that occur during APP processing or by extraneuronal preplaque Abeta oligomers. Some investigators speculate that in many cases there is a more general disorder of protein processing in neurons that leads to cell death. In the later models, Abeta plaques are a byproduct of the disease process, rather than the direct cause of neuronal death. A direct correlation between Abeta plaque burden and neuronal (or synaptic) loss should occur in AD if Abeta plaques cause AD through a direct toxic effect. However, histopathologic studies indicate that the correlation between Abeta plaque burden and neuronal (or synaptic) loss is poor. We conclude that APP processing and Abeta formation is important to the AD process, but that neuronal alterations that underlie symptoms of AD are not due exclusively to a direct toxic effect of the Abeta deposits that occur in plaques. A more general problem with protein processing, damage due to the neuron from accumulation of intraneuronal Abeta or extracellular, preplaque Abeta may also be important as underlying factors in the dementia of AD.  相似文献   

3.
Oxidative stress is observed in Alzheimer's disease (AD) brain, including protein oxidation and lipid peroxidation. One of the major pathological hallmarks of AD is the brain deposition of amyloid beta-peptide (Abeta). This 42-mer peptide is derived from the beta-amyloid precursor protein (APP) and is associated with oxidative stress in vitro and in vivo. Mutations in the PS-1 and APP genes, which increase production of the highly amyloidogenic amyloid beta-peptide (Abeta42), are the major causes of early onset familial AD. Several lines of evidence suggest that enhanced oxidative stress, inflammation, and apoptosis play important roles in the pathogenesis of AD. In the present study, primary neuronal cultures from knock-in mice expressing mutant human PS-1 and APP were compared with those from wild-type mice, in the presence or absence of various oxidizing agents, viz, Abeta(1-42), H2O2 and kainic acid (KA). APP/PS-1 double mutant neurons displayed a significant basal increase in oxidative stress as measured by protein oxidation, lipid peroxidation, and 3-nitrotyrosine when compared with the wild-type neurons (p < 0.0005). Elevated levels of human APP, PS-1 and Abeta(1-42) were found in APP/PS-1 cultures compared with wild-type neurons. APP/PS-1 double mutant neuron cultures exhibited increased vulnerability to oxidative stress, mitochondrial dysfunction and apoptosis induced by Abeta(1-42), H2O2 and KA compared with wild-type neuronal cultures. The results are consonant with the hypothesis that Abeta(1-42)-associated oxidative stress and increased vulnerability to oxidative stress may contribute significantly to neuronal apoptosis and death in familial early onset AD.  相似文献   

4.
APP processing and synaptic function   总被引:39,自引:0,他引:39  
A large body of evidence has implicated Abeta peptides and other derivatives of the amyloid precursor protein (APP) as central to the pathogenesis of Alzheimer's disease (AD). However, the functional relationship of APP and its proteolytic derivatives to neuronal electrophysiology is not known. Here, we show that neuronal activity modulates the formation and secretion of Abeta peptides in hippocampal slice neurons that overexpress APP. In turn, Abeta selectively depresses excitatory synaptic transmission onto neurons that overexpress APP, as well as nearby neurons that do not. This depression depends on NMDA-R activity and can be reversed by blockade of neuronal activity. Synaptic depression from excessive Abeta could contribute to cognitive decline during early AD. In addition, we propose that activity-dependent modulation of endogenous Abeta production may normally participate in a negative feedback that could keep neuronal hyperactivity in check. Disruption of this feedback system could contribute to disease progression in AD.  相似文献   

5.
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the presence in the brain of senile plaques which contain an amyloid core made of beta-amyloid peptide (Abeta). Abeta is produced by the cleavage of the amyloid precursor protein (APP). Since impairment of neuronal calcium signalling has been causally implicated in ageing and AD, we have investigated the influence of an influx of extracellular calcium on the metabolism of human APP in rat cortical neurones. We report that a high cytosolic calcium concentration, induced by neuronal depolarization, inhibits the alpha-secretase cleavage of APP and triggers the accumulation of intraneuronal C-terminal fragments produced by the beta-cleavage of the protein (CTFbeta). Increase in cytosolic calcium concentration specifically induces the production of large amounts of intraneuronal Abeta1-42, which is inhibited by nimodipine, a specific antagonist of l-type calcium channels. Moreover, calcium release from endoplasmic reticulum is not sufficient to induce the production of intraneuronal Abeta, which requires influx of extracellular calcium mediated by the capacitative calcium entry mechanism. Therefore, a sustained high concentration of cytosolic calcium is needed to induce the production of intraneuronal Abeta1-42 from human APP. Our results show that this accumulation of intraneuronal Abeta1-42 induces neuronal death, which is prevented by a functional gamma-secretase inhibitor.  相似文献   

6.
Alzheimer's disease (AD) is a progressive neurodegenerative disorder. Although the pathogenesis of AD is unknown, it is widely accepted that AD is caused by extracellular accumulation of a neurotoxic peptide, known as Abeta. Mutations in the beta-amyloid precursor protein (APP), from which Abeta arises by proteolysis, are associated with some forms of familial AD (FAD) and result in increased Abeta production. Two other FAD genes, presenilin-1 and -2, have also been shown to regulate Abeta production; however, studies examining the biological role of these FAD genes suggest an alternative theory for the pathogenesis of AD. In fact, all three genes have been shown to regulate programmed cell death, hinting at the possibility that dysregulation of apoptosis plays a primary role in causing neuronal loss in AD. In an attempt to reconcile these two hypotheses, we investigated APP processing during apoptosis and found that APP is processed by the cell death proteases caspase-6 and -8. APP is cleaved by caspases in the intracellular portion of the protein, in a site distinct from those processed by secretases. Moreover, it represents a general effect of apoptosis, because it occurs during cell death induced by several stimuli both in T cells and in neuronal cells.  相似文献   

7.
The tumor necrosis factor (TNF)-alpha converting enzyme (TACE) can cleave the cell-surface ectodomain of the amyloid-beta precursor protein (APP), thus decreasing the generation of amyloid-beta (Abeta) by cultured non-neuronal cells. While the amyloidogenic processing of APP in neurons is linked to the pathogenesis of Alzheimer's disease (AD), the expression of TACE in neurons has not yet been examined. Thus, we assessed TACE expression in a series of neuronal and non-neuronal cell types by Western blots. We found that TACE was present in neurons and was only faintly detectable in lysates of astrocytes, oligodendrocytes, and microglial cells. Immunohistochemical analysis was used to determine the cellular localization of TACE in the human brain, and its expression was detected in distinct neuronal populations, including pyramidal neurons of the cerebral cortex and granular cell layer neurons in the hippocampus. Very low levels of TACE were seen in the cerebellum, with Purkinje cells at the granular-molecular boundary staining faintly. Because TACE was localized predominantly in areas of the brain that are affected by amyloid plaques in AD, we examined its expression in a series of AD brains. We found that AD and control brains showed similar levels of TACE staining, as well as similar patterns of TACE expression. By double labeling for Abeta plaques and TACE, we found that TACE-positive neurons often colocalized with amyloid plaques in AD brains. These observations support a neuronal role for TACE and suggest a mechanism for its involvement in AD pathogenesis as an antagonist of Abeta formation.  相似文献   

8.
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the loss of neurocortical and hippocampal synapses that precedes amyloidosis and neurodegeneration and closely correlates with memory impairment. Mutations in the amyloid precursor protein (APP) cause familial AD and result in the increased production of amyloid-beta-protein (Abeta). To gain insights into synaptic effects of APP, we expressed APP, mutant form APP-Swedish and BACE in the motor neurons of fly larvae. We have shown that targeted expression of APP (APP-Swedish) in Drosophila larval motor neurons causes significant morphological and functional changes in neuromuscular junctions (NMJs): a dramatic increase in the number of synaptic buttons and changes in exocytosis as revealed by incorporation of the styryl dye FM4-64. Analysis of the number and distribution of mitochondria showed that motor neurons overexpressing APP (APP-Swedish) had a significant reduction of functional mitochondria in the presynaptic terminal. Significant synaptic abnormalities were observed for APP (APP-Swedish) and human beta-secretase (BACE) resulting in secretion of amyloid beta protein (Abeta). We suggest that APP participates in regulation of synaptic functions and its elevated expression leads to synaptic pathology independently from neurotoxic effects of Abeta.  相似文献   

9.
Alzheimer disease (AD), the most frequent cause of dementia, is characterized by an important neuronal loss. A typical histological hallmark of AD is the extracellular deposition of beta-amyloid peptide (A beta), which is produced by the cleavage of the amyloid precursor protein (APP). Most of the gene mutations that segregate with the inherited forms of AD result in increasing the ratio of A beta 42/A beta 40 production. A beta 42 also accumulates in neurons of AD patients. Altogether, these data strongly suggest that the neuronal production of A beta 42 is a critical event in AD, but the intraneuronal A beta 42 toxicity has never been demonstrated. Here, we report that the long term expression of human APP in rat cortical neurons induces apoptosis. Although APP processing leads to production of extracellular A beta 1-40 and soluble APP, these extracellular derivatives do not induce neuronal death. On the contrary, neurons undergo apoptosis as soon as they accumulate intracellular A beta 1-42 following the expression of full-length APP or a C-terminal deleted APP isoform. The inhibition of intraneuronal A beta 1-42 production by a functional gamma-secretase inhibitor increases neuronal survival. Therefore, the accumulation of intraneuronal A beta 1-42 is the key event in the neurodegenerative process that we observed.  相似文献   

10.
The Alzheimer amyloid precursor protein (APP) is a transmembrane protein whose abnormal processing is associated with the pathogenesis of Alzheimer's disease. Activated caspases cleave APP and generate its carboxyl-terminally truncated fragment (APPdeltaC31). We have previously reported that overexpression of wild-type APP induces caspase-3 activation and apoptosis in postmitotic neurons. We now report that APPdeltaC31 potentially plays pathophysiological roles in neuronal death. Adenovirus-mediated overexpression of wild-type APP695 induced activation of caspase-3 and accumulation of APPdeltaC31 in postmitotic neurons derived from human NT2 embryonal carcinoma cells, whereas an APP mutant lacking the Abeta(1-20) region induced neither caspase-3 activation nor APPdeltaC31 generation. Inhibition of caspase-3 suppressed the generation of APPdeltaC31 in APP-overexpressing neurons. Forced expression of APPdeltaC31 induced apoptotic changes of neurons and non-neuronal cells, but failed to activate caspase-3. The cytotoxicity of APPdeltaC31 was also dependent on the Abeta(1-20) region. These results suggest that accumulation of wild-type APP activates neuronal caspase-3 to generate APPdeltaC31 that mediates caspase-3-independent cell death.  相似文献   

11.
Extracellular amyloid beta peptides (Abetas) have long been thought to be a primary cause of Alzheimer's disease (AD). Now, detection of intracellular neuronal Abeta1--42 accumulation before extracellular Abeta deposits questions the relevance of intracellular peptides in AD. In the present study, we directly address whether intracellular Abeta is toxic to human neurons. Microinjections of Abeta1--42 peptide or a cDNA-expressing cytosolic Abeta1--42 rapidly induces cell death of primary human neurons. In contrast, Abeta1--40, Abeta40--1, or Abeta42--1 peptides, and cDNAs expressing cytosolic Abeta1--40 or secreted Abeta1--42 and Abeta1--40, are not toxic. As little as a 1-pM concentration or 1500 molecules/cell of Abeta1--42 peptides is neurotoxic. The nonfibrillized and fibrillized Abeta1--42 peptides are equally toxic. In contrast, Abeta1--42 peptides are not toxic to human primary astrocytes, neuronal, and nonneuronal cell lines. Inhibition of de novo protein synthesis protects against Abeta1--42 toxicity, indicating that programmed cell death is involved. Bcl-2, Bax-neutralizing antibodies, cDNA expression of a p53R273H dominant negative mutant, and caspase inhibitors prevent Abeta1--42-mediated human neuronal cell death. Taken together, our data directly demonstrate that intracellular Abeta1--42 is selectively cytotoxic to human neurons through the p53--Bax cell death pathway.  相似文献   

12.
The amyloid beta-protein precursor (APP) is proteolytically cleaved to generate the amyloid beta-protein (Abeta), the principal constituent of senile plaques found in Alzheimer's disease (AD). In addition, Abeta in its oligomeric and fibrillar forms have been hypothesized to induce neuronal toxicity. We and others have previously shown that APP can be cleaved by caspases at the C-terminus to generate a potentially cytotoxic peptide termed C31. Furthermore, this cleavage event and caspase activation were increased in the brains of AD, but not control, cases. In this study, we show that in cultured cells, Abeta induces caspase cleavage of APP in the C-terminus and that the subsequent generation of C31 contributes to the apoptotic cell death associated with Abeta. Interestingly, both Abeta toxicity and C31 pathway are dependent on the presence of APP. Both APP-dependent Abeta toxicity and C31-induced apoptotic cell death involve apical or initiator caspases-8 and -9. Our results suggest that Abeta-mediated toxicity initiates a cascade of events that includes caspase activation and APP cleavage. These findings link C31 generation and its potential cell death activity to Abeta cytotoxicity, the leading mechanism proposed for neuronal death in AD.  相似文献   

13.
Amyloid precursor protein (APP) mis-processing and aberrant tau hyperphosphorylation are causally related to the pathogenesis and neurodegenerative processes that characterize Alzheimer's disease (AD). Abnormal APP metabolism leads to the generation of neurotoxic amyloid beta (Abeta), whereas tau hyperphosphorylation culminates in cytoskeletal disturbances, neuronal dysfunction and death. Many AD patients hypersecrete glucocorticoids (GC) while neuronal structure, function and survival are adversely influenced by elevated GC levels. We report here that a rat neuronal cell line (PC12) engineered to express the human ortholog of the tau protein (PC12-htau) becomes more vulnerable to the toxic effects of either Abeta or GC treatment. Importantly, APP metabolism in GC-treated PC12-htau cells is selectively shifted towards increased production of the pro-amyloidogenic peptide C99. Further, GC treatment results in hyperphosphorylation of human tau at AD-relevant sites, through the cyclin-dependent kinase 5 (E.C. 2.7.11.26) and GSK3 (E.C. 2.7.11.22) protein kinases. Pulse-chase experiments revealed that GC treatment increased the stability of tau protein rather than its de novo synthesis. GC treatment also induced accumulation of transiently expressed EGFP-tau in the neuronal perikarya. Together with previous evidence showing that Abeta can activate cyclin-dependent kinase 5 and GSK3, these results uncover a potential mechanism through which GC may contribute to AD neuropathology.  相似文献   

14.
BACE1 suppression by RNA interference in primary cortical neurons   总被引:19,自引:0,他引:19  
Extracellular deposition of amyloid-beta (Abeta) aggregates in the brain represents one of the histopathological hallmarks of Alzheimer's disease (AD). Abeta peptides are generated from proteolysis of the amyloid precursor proteins (APPs) by beta- and gamma-secretases. Beta-secretase (BACE1) is a type I integral membrane glycoprotein that can cleave APP first to generate C-terminal 99- or 89-amino acid membrane-bound fragments containing the N terminus of Abeta peptides (betaCTF). As BACE1 cleavage is an essential step for Abeta generation, it is proposed as a key therapeutic target for treating AD. In this study, we show that small interfering RNA (siRNA) specifically targeted to BACE1 can suppress BACE1 (but not BACE2) protein expression in different cell systems. Furthermore, BACE1 siRNA reduced APP betaCTF and Abeta production in primary cortical neurons derived from both wild-type and transgenic mice harboring the Swedish APP mutant. The subcellular distribution of APP and presenilin-1 did not appear to differ in BACE1 suppressed cells. Importantly, pretreating neurons with BACE1 siRNA reduced the neurotoxicity induced by H2O2 oxidative stress. Our results indicate that BACE1 siRNA specifically impacts on beta-cleavage of APP and may be a potential therapeutic approach for treating AD.  相似文献   

15.
The synapse loss and neuronal cell death characteristic of Alzheimer's disease (AD) are believed to result in large part from the neurotoxic effects of beta-amyloid peptide (Abeta), a 40-42 amino acid peptide(s) derived proteolytically from beta-amyloid precursor protein (APP). However, APP is also cleaved intracellularly to generate a second cytotoxic peptide, C31, and this cleavage event occurs in vivo as well as in vitro and preferentially in the brains of AD patients (Lu et al. 2000). Here we show that APPC31 is toxic to neurons in primary culture, and that like APP, the APP family members APLP1 and possibly APLP2 are cleaved by caspases at their C-termini. The carboxy-terminal peptide derived from caspase cleavage of APLP1 shows a degree of neurotoxicity comparable to APPC31. Our results suggest that even though APLP1 and APLP2 cannot generate Abeta, they may potentially contribute to the pathology of AD by generating peptide fragments whose toxicity is comparable to that of APPC31.  相似文献   

16.
Neuronal and glial calcium signaling in Alzheimer's disease   总被引:25,自引:0,他引:25  
Mattson MP  Chan SL 《Cell calcium》2003,34(4-5):385-397
Cognitive impairment and emotional disturbances in Alzheimer's disease (AD) result from the degeneration of synapses and death of neurons in the limbic system and associated regions of the cerebral cortex. An alteration in the proteolytic processing of the amyloid precursor protein (APP) results in increased production and accumulation of amyloid beta-peptide (Abeta) in the brain. Abeta has been shown to cause synaptic dysfunction and can render neurons vulnerable to excitotoxicity and apoptosis by a mechanism involving disruption of cellular calcium homeostasis. By inducing membrane lipid peroxidation and generation of the aldehyde 4-hydroxynonenal, Abeta impairs the function of membrane ion-motive ATPases and glucose and glutamate transporters, and can enhance calcium influx through voltage-dependent and ligand-gated calcium channels. Reduced levels of a secreted form of APP which normally regulates synaptic plasticity and cell survival may also promote disruption of synaptic calcium homeostasis in AD. Some cases of inherited AD are caused by mutations in presenilins 1 and 2 which perturb endoplasmic reticulum (ER) calcium homeostasis such that greater amounts of calcium are released upon stimulation, possibly as the result of alterations in IP(3) and ryanodine receptor channels, Ca(2+)-ATPases and the ER stress protein Herp. Abnormalities in calcium regulation in astrocytes, oligodendrocytes, and microglia have also been documented in studies of experimental models of AD, suggesting contributions of these alterations to neuronal dysfunction and cell death in AD. Collectively, the available data show that perturbed cellular calcium homeostasis plays a prominent role in the pathogenesis of AD, suggesting potential benefits of preventative and therapeutic strategies that stabilize cellular calcium homeostasis.  相似文献   

17.
Accumulation of senile plaques composed of amyloid beta-peptide (Abeta) is a pathological hallmark of Alzheimer disease (AD), and Abeta is generated through the sequential cleavage of amyloid precursor protein (APP) by beta- and gamma-secretase. Although oxidative stress has been implicated in the AD pathogenesis by inducing Abeta production, the underlying mechanism remains elusive. Here we show that the pro-oxidant H(2)O(2) promotes Abeta production through c-Jun N-terminal kinase (JNK)-dependent activation of gamma-secretase. Treatment with H(2)O(2) induced significant increase in the levels of intracellular and secreted Abeta in human neuroblastoma SH-SY5Y cells. Although gamma-secretase-mediated cleavage of APP or C99 was enhanced upon H(2)O(2) treatment, expression of APP or its alpha/beta-secretase-mediated cleavage was not affected. Silencing of the stress-activated JNK by small interfering RNA or the specific JNK inhibitor SP600125 reduced H(2)O(2)-induced gamma-secretase-mediated cleavage of APP. JNK activity was augmented in human brain tissues from AD patients and active JNK located surrounding the senile plaques in the brain of AD model mouse. Our data suggest that oxidative stress-activated JNK may contribute to senile plaque expansion through the promotion of gamma-secretase-mediated APP cleavage and Abeta production.  相似文献   

18.
Berberine is an isoquinoline alkaloid isolated from Coptidis rhizoma, a major herb widely used in Chinese herbal medicine. Berberine's biological activity includes antidiarrheal, antimicrobial, and anti-inflammatory effects. Recent findings show that berberine prevents neuronal damage due to ischemia or oxidative stress and that it might act as a novel cholesterol-lowering compound. The accumulation of amyloid-beta peptide (Abeta) derived from amyloid precursor protein (APP) is a triggering event leading to the pathological cascade of Alzheimer's disease (AD); therefore the inhibition of Abeta production should be a rational therapeutic strategy in the prevention and treatment of AD. Here, we report that berberine reduces Abeta levels by modulating APP processing in human neuroglioma H4 cells stably expressing Swedish-type of APP at the range of berberine concentration without cellular toxicity. Our results indicate that berberine would be a promising candidate for the treatment of AD.  相似文献   

19.
The proteinase-activated receptors (PARs) are a novel family of G protein-coupled receptors, and their effects in neurodegenerative diseases remain uncertain. Alzheimer's disease (AD) is a neurodegenerative disorder defined by misfolded protein accumulation with concurrent neuroinflammation and neuronal death. We report suppression of proteinase-activated receptor-2 (PAR2) expression in neurons of brains from AD patients, whereas PAR2 expression was increased in proximate glial cells, together with up-regulation of proinflammatory cytokines and chemokines and reduced IL-4 expression (p < 0.05). Glial PAR2 activation increased expression of formyl peptide receptor-2 (p < 0.01), a cognate receptor for a fibrillar 42-aa form of beta-amyloid (Abeta(1-42)), enhanced microglia-mediated proinflammatory responses, and suppressed astrocytic IL-4 expression, resulting in neuronal death (p < 0.05). Conversely, neuronal PAR2 activation protected human neurons against the toxic effects of Abeta(1-42) (p < 0.05), a key component of AD neuropathogenesis. Amyloid precursor protein-transgenic mice, displayed glial fibrillary acidic protein and IL-4 induction (p < 0.05) in the absence of proinflammatory gene up-regulation and neuronal injury, whereas PAR2 was up-regulated at this early stage of disease progression. PAR2-deficient mice, after hippocampal Abeta(1-42) implantation, exhibited enhanced IL-4 induction and less neuroinflammation (p < 0.05), together with improved neurobehavioral outcomes (p < 0.05). Thus, PAR2 exerted protective properties in neurons, but its activation in glia was pathogenic with secretion of neurotoxic factors and suppression of astrocytic anti-inflammatory mechanisms contributing to Abeta(1-42)-mediated neurodegeneration.  相似文献   

20.
Maintenance of an adequate supply of cholesterol is important for neuronal function, whereas excess cholesterol promotes amyloid precursor protein (APP) cleavage generating toxic amyloid-beta (Abeta) peptides. To gain insights into the pathways that regulate neuronal cholesterol level, we investigated the potential for reconstituted apolipoprotein E (apoE) discs, resembling nascent lipoprotein complexes in the central nervous system, to stimulate neuronal [3H]cholesterol efflux. ApoE discs potently accelerated cholesterol efflux from primary human neurons and cell lines. The process was saturable (17.5 microg of apoE/ml) and was not influenced by APOE genotype. High performance liquid chromatography analysis of cholesterol and cholesterol metabolites effluxed from neurons indicated that <25% of the released cholesterol was modified to polar products (e.g. 24-hydroxycholesterol) that diffuse from neuronal membranes. Thus, most cholesterol (approximately 75%) appeared to be effluxed from neurons in a native state via a transporter pathway. ATP-binding cassette transporters ABCA1, ABCA2, and ABCG1 were detected in neurons and neuroblastoma cell lines and expression of these cDNAs revealed that ABCA1 and ABCG1 stimulated cholesterol efflux to apoE discs. In addition, ABCA1 and ABCG1 expression in Chinese hamster ovary cells that stably express human APP significantly reduced Abeta generation, whereas ABCA2 did not modulate either cholesterol efflux or Abeta generation. These data indicate that ABCA1 and ABCG1 play a significant role in the regulation of neuronal cholesterol efflux to apoE discs and in suppression of APP processing to generate Abeta peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号