首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
5 S DNAs of Xenopus laevis and Xenopus mulleri: evolution of a gene family   总被引:15,自引:0,他引:15  
The 5 S DNA which contains the genes for 5 S RNA has been purified from the frog Xenopus mulleri and compared with the 5 S DNA of Xenopus laevis. Both DNAs contain highly repetitive sequences in which the gene sequence that codes for 5 S RNA alternates with a spacer sequence. The 5 S DNAs of X. laevis and X. mulleri comprise about 0.7% of the total DNA or about 24,000 and 9000 repeating sequences, respectively. The average repeat length within native X. laevis and X. mulleri 5 S DNA is about 0.5 to 0.6 and 1.2 to 1.5 × 106 daltons, respectively, each repeat of which contains a single gene sequence for 5 S RNA (0.08 × 106 daltons). The two DNAs differ in the average length of their spacers and no cross homology can be detected by heterologous hybridization of the two DNAs, except within the 5 S RNA gene regions. Despite their differences, the spacer sequences of X. laevis and X. mulleri 5 S DNA resemble each other enough to conclude that they have diverged from a common ancestral sequence.The multiple repeating sequences of 5 S DNA in each species have evolved as a family of similar, but not identical sequences. It is known that 5 S DNA is located at the ends (telomeres) of the long arms of most, if not all, X. laevis chromosomes. It is proposed that multiple gene sequences located on the ends of many chromosomes can evolve together as a family if there is extensive and unequal exchange of DNA sequences between homologous and non-homologous chromosomes at their ends.  相似文献   

2.
3.
The arrangement of the DNA sequences coding for the ribosomal 5.8 S RNA in the genome of Xenopus laevis has been studied. In Xenopus the 5.8 S cistrons, like the ribosomal 28 S and 18 S cistrons, are reiterated some 600-fold (Clarkson et al., 1973a). When banded in caesium chloride, the 5.8 S cistrons separate from somatic DNA of high molecular weight and band as a distinct satellite, indicating a clustered arrangement in the genome. The buoyant density of this satellite (1.723 g cm?3) corresponds to that of the ribosomal DNA satellite.It has previously been shown that the ribosomal DNA sequences have been deleted from the genome of the anucleotide Xenopus mutant. Our findings, first that the anucleolate mutant does not synthesize 5.8 S RNA and second that somatic DNA from this mutant does not detectably hybridize with 5.8 S RNA, demonstrate that the 5.8 S cistronic complement has been similarly deleted. This finding supports our contention that 5.8 S sequences are clustered on chromosomal DNA and further suggests that they are located close to or within the rDNA complements in the nucleolus organizer region.Pre-hybridization to saturation with unlabelled 5.8 S RNA results in only a slight increase in the buoyant density of denatured 5.8 S coding sequences from low molecular weight DNA. Since a contiguous arrangement of the 5.8 S sequences would give rise to a much larger increase in density, it follows that, although clustered, the sequences must be intercalated within stretches of other DNA. By contrast, pre-hybridization of the somatic DNA with unlabelled 28 S or 18 S ribosomal RNAs results in large shifts in the buoyant density of the 5.8 S sequences. These shifts indicate that the 5.8 S sequences are closely linked to both 28 S and 18 S coding sequences.It is concluded that the 5.8 S cistrons are interspersed along the ribosomal DNA sense strand and that each is located together with a 28 S and an 18 S cistron in a ribosomal repeat unit. Estimates, obtained from the pre-hybridization experiments, of the separations between the 5.8 S and the 28 S and 18 S sequences, are combined in a model of the ribosomal repeat unit. In this model the 5.8 S cistron is located within the transcribed spacer which links the 28 S and 18 S coding sequences.  相似文献   

4.
The sequences present on the DNA of the transducing phage, φ80d3ilv+su+7 have been mapped by electron microscope heteroduplex methods. In addition to some φ80 sequences, the phage DNA contains sequences from the extreme counterclockwise region and from the extreme clockwise region of the bacterial chromosomal part of F14. The former includes ilv, the latter a 16 S and a 23 S ribosomal RNA gene. These two regions are joined on the transducing phage DNA by the 2.8 to 8.5F sequence.By direct observation of the structure of the rRNA/DNA hybrids, the 16 S and 23 S genes have lengths of 1.38 ± 0.14 and 2.66 ± 0.17 kilobases. They are separated by a spacer of length 0.57 ± 0.13 kilobases.The rRNA genes (rrn) of φ80d3ilv+su+7 are derived from and are identical with the rrnB gene set of F14. In heteroduplexes between the rrnB gene set of φ80d3ilv+su+7, and the rrnA gene set of F14 we observe that there is a region of non-homology of length 0.25 ± 0.06 kilobases within the spacer sequence. This confirms observations in the preceding paper on the structure of out-of-register duplexes of the two rRNA gene sets of F14.A model for the integration and excision events involved in the formation of φ80d3ilv+su+ 7 from φ80dmet(K) is proposed.  相似文献   

5.
The arrangement of the reiterated DNA sequences complementary to transfer RNA has been studied in Xenopus laevis. Prehybridization of denatured DNA with an excess of unfractionated tRNA results in a small but well-defined increase in the buoyant density of fragments which contain sequences homologous to tRNA. The density increase is smaller than that found for 5 S DNA, but is the same or nearly so for all tRNA coding sequences examined. These results indicate that the majority of tRNA genes are clustered together with spacer DNA, the average size of which is estimated to be approximately 0.5 × 106 daltons (native) DNA.In high molecular weight native DNA preparations, the sequences homologous to unfractionated tRNA, tRNAVal, tRNA1Met and tRNA2Met band in CsCl at 1.707, 1.702, 1.708 and 1.711 g cm?3, respectively. The mean buoyant densities are constant at all molecular weights examined but they do not correspond to the base compositions of the complementary tRNA species. These results indicate that isocoding genes are linked to spacer DNA in separate and extensive gene clusters, and that the different clusters contain different spacer DNA sequences. These clusters form well-defined cryptic DNA satellites which are potentially separable from each other as well as from other chromosomal DNA.  相似文献   

6.
The ribosomal DNA repeat unit of Aspergillus nidulans has been cloned in pBR322 and a restriction map constructed. The genes coding for the 17S, 5.8S and 25S rRNAs are found in blocks separated by a 1.7 kb spacer region, with the 5.8S RNA gene lying between the genes for the two larger RNAs. The total length of the repeat unit is 7.7 kb. The 5S rRNA is not present in the repeat unit.  相似文献   

7.
The arrangement of the coding sequences for the 5 S, 5.8 S, 18 S and 25 S ribosomal RNA from Saccharomyces cerevisiae was analyzed in λ-yeast hybrids containing repeating units of the ribosomal DNA. After mapping of restriction sites, the positions of the coding sequences were determined by hybridization of purified rRNAs to restriction fragments, by R-loop analysis in the electron microscope, and by electrophoresis of S1 nuclease-treated rRNA/rDNA hybrids in alkaline agarose gels. The R-loop method was improved with respect to the length calibration of RNA/DNA duplexes and to the spreading conditions resulting in fully extended 18 S and 25 S rRNA R-loops. The qualitative results are: (1) the 5 S rRNA genes, unlike those in higher eukaryotes, alternate with the genes of the precursor for the 5.8 S, 18 S and 25 S rRNA; (2) the coding sequence for 5.8 S rRNA maps, as in higher eukaryotes, between the 18 S and 25 S rRNA coding sequences. The quantitative results are: (1) the tandemly repeating rDNA units have a constant length of 9060 ± 100 nucleotide pairs with one SstI, two HindIII and, dependent on the strain, six or seven EcoRI sites; (2) the 18 S and 25 S rRNA coding regions consist of 1710 ± 80 and 3360 ± 80 nucleotide pairs, respectively; (3) an 18 S rRNA coding region is separated by a 780 ± 70 nucleotide pairs transcribed spacer from a 25 S rRNA coding region. This is then followed by a 3210 ± 100 nucleotide pairs mainly non-transcribed spacer which contains a 5 S rRNA gene.  相似文献   

8.
A fine mapping study of the ribosomal RNA region of HeLa cell mitochondrial DNA has been carried out by using as an approach the protection by hybridized 12 S and 16 S rRNA of the complementary sequences in DNA against digestion with the single strand-specific Aspergillus nuclease S1 or Escherichia coli exonuclease VII. No inserts have been detected in the main body of the 12 S and 16 S rRNA cistrons, in contrast to the situation described in the large mitochondrial ribosomal RNA gene of some strains of yeast and of Neurospora crassa. Furthermore, it has been possible to assign more precisely than previously the positions of the 5′ and 3′-ends of the 12 S rRNA and 16 S rRNA genes in the HpaII restriction map of HeLa cell mitochondrial DNA.  相似文献   

9.
10.
11.
Ribosomal RNA and precursor ribosomal RNA from at least one representative of each vertebrate class have been analyzed by electron microscopic secondary structure mapping. Reproducible patterns of hairpin loops were found in both 28 S ribosomal and precursor ribosomal RNA, whereas almost all the 18 S ribosomal RNA molecules lack secondary structure under the spreading conditions used. The precursor ribosomal RNA of all species analyzed have a common design. The 28 S ribosomal RNA is located at or near the presumed 5′-end and is separated from the 18 S ribosomal RNA region by the internal spacer region. In addition there is an external spacer region at the 3′-end of all precursor ribosomal RNA molecules. Changes in the length of these spacer regions are mainly responsible for the increase in size of the precursor ribosomal RNA during vertebrate evolution. In cold blooded vertebrates the precursor contains two short spacer regions; in birds the precursor bears a long internal and a short external spacer region, and in mammals it has two long spacer regions. The molecular weights, as determined from the electron micrographs, are 2·6 to 2·8 × 106 for the precursor ribosomal RNA of cold blooded vertebrates, 3·7 to 3·9 × 106 for the precursor of birds, and 4·2 to 4·7 × 106 for the mammalian precursor. Ribosomal RNA and precursor ribosomal RNA of mammals have a higher proportion of secondary structure loops when compared to lower vertebrates. This observation was confirmed by digesting ribosomal RNAs and precursor ribosomal RNAs with single-strandspecific S1 nuclease in aqueous solution. Analysis of the double-stranded, S1-resistant fragments indicates that there is a direct relationship between the hairpin loops seen in the electron microscope and secondary structure in aqueous solution.  相似文献   

12.
13.
The primary sequence of the principal spacer region in X. laevis oocyte 5S DNA has been determined. The spacer is AT-rich and comprises half or more of each repeating unit. The sequence is internally repetitious; most of it can be represented by the following set of oligonucleotides:
CAACAGTTTTCAAAAGGTTTGCAAGTTTTT(T)
The spacer, which varies in length from about 360 to 570 or more nucleotides, can be subdivided into a region (A2) which is variable in length in different repeating units, flanked by regions (A1, A3, B1) which are relatively constant in length. The A2 region consists, on the average, of 5–6 tandem copies of the oligonucleotide CAAAGTTT-GAGTTTT; variation in the redundancy of this oligonucleotide accounts for much of the repeat length variation in the genomic 5S DNA. Most copies of this oligonucleotide are identical, although several differing by 1 or 2 nucleotides have been detected in plasmid-cloned 5S DNA fragments. Regions A1 and A3 comprise a linear array of similar, but not identical, oligonucleotides; most repeating units contain very similar A1 and A3 sequences. Region B1 is a sequence of 49 nucleotides immediately adjacent to the 5′ terminus of the 5S rRNA sequence. It is GC-rich, much less repetitive than the remainder of the spacer and contains several palindromes, but no regions of dyad symmetry. This sequence is identical in all six of the single cloned repeating units of 5S DNA analyzed.  相似文献   

14.
15.
Fragments of rDNA3 from Drosophila melanogaster produced by the restriction endonuclease EcoRI were cloned in the form of recombinant plasmids in Escheriehia coli. Maps were prepared showing the location of the coding regions and of several restriction endonuclease sites. Most rDNA repeats have a single EcoRI site in the 18 S gene region. Thus, 19 of 24 recombinant clones contained a full repeat of rDNA. Ten repeats with continuous 28 S genes and repeats containing insertions in the 28 S gene of 0.5, 1 and 5 kb were isolated. The 0.5 and 1 kb insertion sequences are homologous to segments of the 5 kb insertions; because of this homology they are grouped together and identified as type 1 insertions. Four recombinant clones contain an rDNA fragment that corresponds to only a portion of a repeating unit. In these fragments the 28 S gene is interrupted by a sequence which had been cleaved by EcoRI. The interrupting sequences in these clones are not homologous to any portion of type 1 insertions and are therefore classified as type 2. In one of the above clones the 28 S gene is interrupted at an unusual position; such a structure is rare or absent in genomic rDNA from the fly. Another unusual rDNA fragment was isolated as a recombinant molecule. In this fragment the entire 18 S gene and portions of the spacer regions surrounding it are missing from one repeat. A molecule with the same structure has been found in uncloned genomic rDNA by electron microscopic examination of RNA/DNA hybrids.  相似文献   

16.
Precursor and mature ribosomal RNA molecules from Xenopus laevis were examined by electron microscopy. A reproducible arrangement of hairpin loops was observed in these molecules. Maps based on this secondary structure were used to determine the arrangement of sequences in precursor RNA molecules and to identify the position of mature rRNAs within the precursors. A processing scheme was derived in which the 40 S rRNA is cleaved to 38 S RNA, which then yields 34 S plus 18 S RNA. The 34 S RNA is processed to 30 S, and finally to 28 S rRNA. The pathway is analogous to that of L-cell rRNA but differs from HeLa rRNA in that no 20 S rRNA intermediate was found. X. laevis 40 S rRNA (Mr = 2.7 × 106) is much smaller than HeLa or L-cell 45 8 rRNA (Mr = 4.7 × 106), but the arrangement of mature rRNA sequences in all precursors is very similar. Experiments with ascites cell 3′-exonuclease show that the 28 S region is located at or close to the 5′-end of the 40 S rRNA.Secondary structure maps were obtained also for single-stranded molecules of ribosomal DNA. The region in the DNA coding for the 40 S rRNA could be identified by its regular structure, which closely resembles that of the RNA. Regions corresponding to the 40 S RNA gene alternate with non-transcribed spacer regions along strands of rDNA. The latter have a large amount of irregular secondary structure and vary in length between different repeating units. A detailed map of the rDNA repeating unit was derived from these experiments.Optical melting studies are presented, showing that rRNAs with a high (G + C) content exhibit significant hypochromicity in the formamide/urea-containing solution that was used for spreading.  相似文献   

17.
The arrangement of the genes and spacers has been analyzed in ribosomal DNA of Xenopus laevis and Xenopus mulleri by heteroduplex mapping and visualization of ribosomal RNA-DNA hybrids. Heterologous reassoeiated molecules show a characteristic pattern in which two perfectly duplexed regions, whose lengths are those predicted by the known lengths of the 18 S and 28 S genes, are separated by a small substitution loop of about 0.23 × 106 daltons and a large region of partial homology which averages 3.24 × 106 daltons. These mismatched regions are entirely consistent with the known sequence divergence previously described (Brown et al., 1972) for the transcribed and non-transcribed spacer regions of the two rDNAs, respectively. Hybrids of X. laevis rDNA with 18 S and 28 S rRNA contain two duplex regions of the expected lengths for the 18 S and 28 S genes separated by 0.49 × 106 daltons of single-strand DNA. This latter value is the length of the transcribed spacer region between the 18 S and 28 S RNAs that has been measured within the 40 S RNA precursor molecule by secondary structure mapping (Wellauer &; Dawid, personal communication). There is also a longer single-strand region separating one 18 S + 28 S gene set from the next; this is considered to be mainly non-transcribed spacer.We conclude that the 18 S and 28 S genes are separated by about 0.5 × 106 daltons of DNA of which about half is homologous in the two Xenopus species. This region is part of the transcribed spacer. In addition, the longer non-transcribed spacer can be seen to have some homology between the two species; the location of this homology is fairly reproducible between molecules and has been carefully documented by contour length measurements.  相似文献   

18.
Secondary structure maps of long single strands of amplified ribosomal DNA from two closely related species of frogs, Xenopus laevis and X. mulleri, have been compared. The secondary structure pattern of the gene region is identical in both ribosomal DNAs while the patterns in the non-transcribed spacers2 differ. In X. mulleri, the spacer shows an extended region without any secondary structure adjacent to the 28 S ribosomal RNA sequence. In contrast, the same region in the X. laevis spacer has extensive secondary structure. A comparison of secondary structure maps and denaturation maps of these two ribosomal DNAs (Brown et al., 1972) reveals that the portion without secondary structure in the X. mulleri spacer corresponds to an early melting A + T-rich region. As in X. laevis ribosomal DNA, Escherichia coli restriction endonuclease (EcoRI) makes two cuts in each repeating unit of amplified ribosomal DNA from X. mulleri. The position of the cleavage sites is identical in the two species as judged from secondary structure mapping of the two classes of EcoRI fragments generated. The small fragments of X. mulleri ribosomal DNA are homogeneous in size with a duplex molecular weight of 3.0 × 106, and contain about 85% of the 28 S ribosomal RNA gene and about 17% of the 18 S ribosomal RNA gene. The large fragments are heterogeneous in size with molecular weights ranging from 4.2 to 4.9 × 106, and contain the remaining portions of the gene regions and the nontranscribed spacer. Heteroduplexes made between large fragments of different lengths show only deletion loops. The position of these loops indicates that the length heterogeneity resides in the non-transcribed spacer region. Electrophoretic analysis of EcoRI digests of chromosomal ribosomal DNA from X. mulleri demonstrates that this DNA is heterogeneous in length as well.  相似文献   

19.
We have analyzed the sequence organization of the central spacer region of the extrachromosomal ribosomal DNA from two strains of the acellular slime mold Physarum polycephalum. It had been inferred previously from electron microscopy that this region, which comprises about one third of the 60 kb3 palindromic rDNA, contains a complex series of inverted repetitious sequences. By partial digestion of end-labeled fragments isolated from purified rDNA and from rDNA fragments cloned in Escherichia coli, we have constructed a detailed restriction map of this region. The 11 kb of spacer DNA of each half molecule of rDNA contains the following elements: (a) two separate regions, one of 1.1 kb and one of 2.1 kb, composed of many direct repeats of the same 30 base-pair unit; (b) a region of 4.4 kb composed of a complex series of inverted repeats of a 310 base-pair unit; (c) another region of 1.6 kb composed of inverted repeats of the same 310 base-pair unit located directly adjacent to the center of the rDNA; (d) two copies of a unique sequence of 0.85 kb, which probably contains a replication origin. Some of the CpG sequences in the spacer resist cleavage by certain restriction endonucleases and thus appear to be methylated. The lack of perfect symmetry about the central axis and the arrangement of inverted repeated sequences explain the complex pattern of branches and forks of the fold-back molecules previously observed by electron microscopy. Comparison of the rDNA restriction maps from the two strains of Physarum suggests that the repeat units in the spacer are undergoing concerted evolution. We propose a model to explain the evolutionary origin of the several palindromic axes in the Physarum rDNA spacer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号