首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper various aspects of codon usage and k-tuple correlations in the DNA are compared. It is shown that the correlation structures of the coding and the non-coding regions are very similar and that codon usage is reasonably specific for large groups of organisms. These results suggest that the origin of codon usage is related to the origin and structure of the DNA.  相似文献   

2.
Fusion proteins of the extracellular parts of cytokine receptors, also known as cytokine traps, turned out to be promising cytokine inhibitors useful in anti-cytokine therapies. Here we present newly designed cytokine traps for murine and human leukemia inhibitory factor (LIF) as prototypes for inhibitors targeting cytokines that signal through a heterodimer of two signaling receptors of the glycoprotein 130 (gp130) family. LIF signals through a receptor heterodimer of LIF receptor (LIFR) and gp130 and induces the tyrosine phosphorylation of STAT3 leading to target gene expression. The analysis of various receptor fusion and deletion constructs revealed that a truncated form of the murine LIF receptor consisting of the first five extracellular domains was a potent inhibitor for human LIF. For the efficient inhibition of murine LIF, the cytokine-binding module of murine gp130 had to be fused to the first five domains of murine LIFR generating mLIF-RFP (murine LIFR fusion protein). The tyrosine phosphorylation of STAT3 and subsequent gene induction induced by human or murine LIF are completely blocked by the respective inhibitor. Furthermore, both inhibitors are specific and do not alter the bioactivities of the closely related cytokines interleukin (IL)-6 and oncostatin M. The gained knowledge on the construction of LIF inhibitors can be transferred to the design of inhibitors for related cytokines such as IL-31, IL-27, and oncostatin M for the treatment of inflammatory and malignant diseases.  相似文献   

3.
Crystalline fraction 1 protein, obtained from four species of Nicotiana, have identical polypeptide compositions and isoelectric points. However, the tryptic peptide map of the large subunit of this protein from N. knightiana and N. paniculata differs from that of N. tomentosa and N. tomentosiformis. Since the large subunits of fraction 1 protein are coded by chloroplast DNA, the difference in their primary structure reflects the structural changes of the chloroplast genes containing the coding information. This indicates that the rate of mutation of chloroplast DNA seems to be higher than predicated from the analysis of isoelectric points of this protein.  相似文献   

4.
Mouse serum amyloid A (SAA) gene family comprises four members that are closely linked in the chromosome 7. Two of these genes encoding major mouse SAA isotypes (SAA1 and SAA2) are highly homologous not only in exons but also in introns and flanking regions; this sequence homology extends 280 base pairs upstream of major cap sites and 430 base pairs downstream of polyadenylation sites, and the 5' boundary of this homology unit is marked by the CA/GT repeat. Sequence comparison also shows that one (SAA4) of the other two genes is related to the SAA1/2 gene, whereas the other gene (SAA3) evolved independently. Based on these results and the SAA gene arrangement, we discussed mouse SAA gene evolution.  相似文献   

5.
6.
We have analyzed a sequence of approximately 70 base pairs (bp) that shows a high degree of similarity to sequences present in the non-coding regions of a number of human and other mammalian genes. The sequence was discovered in a fragment of human genomic DNA adjacent to an integrated hepatitis B virus genome in cells derived from human hepatocellular carcinoma tissue. When one of the viral flanking sequences was compared to nucleotide sequences in GenBank, more than thirty human genes were identified that contained a similar sequence in their non-coding regions. The sequence element was usually found once or twice in a gene, either in an intron or in the 5' or 3' flanking regions. It did not share any similarities with known short interspersed nucleotide elements (SINEs) or presently known gene regulatory elements. This element was highly conserved at the same position within the corresponding human and mouse genes for myoglobin and N-myc, indicating evolutionary conservation and possible functional importance. Preliminary DNase I footprinting data suggested that the element or its adjacent sequences may bind nuclear factors to generate specific DNase I hypersensitive sites. The size, structure, and evolutionary conservation of this sequence indicates that it is distinct from other types of short interspersed repetitive elements. It is possible that the element may have a cis-acting functional role in the genome.  相似文献   

7.
Human macrophage differentiation inducing factor (DIF) can induce differentiation of human myeloid leukemic cells into macrophage-like cells in vitro. A procedure is described for purification of DIF from serum-free human monocytic leukemia THP-1 cell-conditioned medium. The procedure included concentration of a conditioned medium by ultrafiltration, lentil lectin-Sepharose affinity chromatography, and fast protein liquid chromatography using Mono S and Mono Q. DIF-A of pI 9.0 and DIF-B of pI 8.8 were obtained after a final purification with a Mono Q column, and both DIF gave a single peak with a molecular weight of approximately 51,000 determined by gel chromatography. NH2-terminal amino acid analysis of DIF-A showed a noticeable homology with murine leukemia inhibitory factor. Human DIF-A was found to induce maturation of human and murine leukemic cells into both macrophage-like cells with nitro blue tetrazolium reducing activity and phagocytic cells, but was found to suppress proliferation of these leukemic cells.  相似文献   

8.
Pseudomonas putida MT53 contains a TOL plasmid, pWW53, that encodes toluene-xylene catabolism. pWW53 is nonconjugative, is about 105 to 110 kilobase pairs (kbp) in size, and differs significantly in its restriction endonuclease digestion pattern and incompatibility group from the archetypal TOL plasmid pWW0. An RP4::pWW53 cointegrate plasmid, pWW53-4, containing about 35 kbp of pWW53 DNA, including the entire catabolic pathway genes, was formed, and a restriction map for KpnI, HindIII, and BamHI was derived. The entire regulated meta pathway genes for the catabolism of m-toluate were cloned into pKT230 from pWW53 on a 17.5-kbp HindIII fragment. The recombinant plasmid supported growth on m-toluate when mobilized into plasmid-free P. putida PaW130. A restriction map of the insert for 10 restriction enzymes was derived, and the locations of xylD, xylL, xylE, xylG, and xylF were determined by subcloning and assaying for their gene products in both Escherichia coli and P. putida hosts. Good induction of the enzymes by m-toluate and m-methylbenzyl alcohol but not by m-xylene was measured in P. putida, but little or no regulation was found in E. coli. The restriction map and the gene order showed strong similarities with published maps of the DNA encoding both the entire meta pathway operon (xylDLEGFJIH) and the regulatory genes xylS and xylR on the archetype TOL plasmid pWW0, suggesting a high degree of conservation in DNA structure for the catabolic operon on the two different plasmids.  相似文献   

9.
10.
This paper describes the structure of a 70-kb porcine gene for nuclear factor I, including its promoter region, comprising a total of 11 exons. Different mRNAs that we have isolated as cDNAs from both porcine liver and human HeLa cells presumably are generated from this gene by differential splicing events. One cDNA species from porcine liver that lacks exon 9 carries coding information for a protein of 439 amino acids. The in vitro translated protein displays all the properties of an NFI-like protein with high affinity toward the sequence element TGG(N)6GCCAA, as shown by gel shift analysis, and no or little affinity toward CCAAT box containing sequences. Cotranslation experiments with full-length and truncated variants of the protein demonstrate that it binds as a dimer to its cognate DNA recognition sequence. Its DNA-binding domain which is retained in all cDNA clones was mapped by deletion analysis to the 250 N-terminal amino acids of the protein. No structural homologies are observed between this protein and other known DNA-binding proteins; instead, the protein contains a novel alpha-helical sequence motif consisting of several lysine residues spaced at intervals of seven amino acids which we have termed the "lysine helix". The C-terminal portion of the protein derived from full-length cDNAs encodes a short amino acid sequence which is identical with the heptapeptide repeat CT7 observed in the C-terminal domain of the largest subunits of yeast and mouse RNA polymerase II. This region is removed by differential splicing in some of the NFI/CTF cDNAs and thus may be of functional significance.  相似文献   

11.
Structural characterization of a murine myeloid leukaemia inhibitory factor   总被引:1,自引:0,他引:1  
A leukaemia inhibitory factor (LIF) which induces macrophage differentiation in M1 murine myeloid leukaemia cells and suppresses their proliferation in vitro has been isolated in sufficient quantities (30 micrograms) from Krebs ascites tumour cell conditioned medium to permit its partial characterization by amino acid sequence analysis. The combination of sensitive microbore column (1.0 and 2.1 mm internal diameter) HPLC technology and microsequence analysis has enabled the positive identification of 125 of the total 179 amino acid residues (70%) in the molecule. The amino acid sequence data reported here permitted the isolation of a partial cDNA clone encoding LIF [Gearing et al. (1987) EMBO J. 6, 3995-4002]. A candidate C-terminus of the LIF molecule predicted from the amino acid sequence was confirmed by subsequent isolation of a cDNA clone corresponding to the C-terminus of the protein. No strong similarity was revealed when the amino acid sequence of LIF was compared with other haemopoietic growth factors, in particular granulocyte-macrophage colony-stimulating factor, granulocyte colony-stimulating factor and tumour necrosis factor-alpha or interleukins. The protein sequence data reported here indicate three sites of post-translational modification (N-linked glycosylation).  相似文献   

12.
Pizzi E  Frontali C 《Parassitologia》1999,41(1-3):89-91
Recurrence analysis provides a useful tool for the characterisation of oligonucleotide usage along genomic tracts. While coding regions are characterised by a low-recurrence regimen (except in the case of intragenic repeats) introns and intergenic regions exhibit a high density of recurring oligos, and appear to be correlated from the point of view of oligonucleotide preference. By comparing homologous loci in Plasmodium falciparum and P. berghei, it can be seen that introns and intergenic regions, though exhibiting very low sequence similarity, do not drift without constraints, but maintain a consistent use of the same oligos in the two species.  相似文献   

13.
Sen K  Ghosh TC 《Gene》2012,501(2):164-170
Pseudogenes, the 'genomic fossils' present portrayal of evolutionary history of human genome. The human genes configuring pseudogenes are also now coming forth as important resources in the study of human protein evolution. In this communication, we explored evolutionary conservation of the genes forming pseudogenes over the genes lacking any pseudogene and delving deeper, we probed an evolutionary rate difference between the disease genes in the two groups. We illustrated this differential evolutionary pattern by gene expressivity, number of regulatory miRNA targeting per gene, abundance of protein complex forming genes and lesser percentage of protein intrinsic disorderness. Furthermore, pseudogenes are observed to harbor sequence variations, over their entirety, those become degenerative disease-causing mutations though the disease involvement of their progenitors is still unexplored. Here, we unveiled an immense association of disease genes in the genes casting pseudogenes in human. We interpreted the issue by disease associated miRNA targeting, genes containing polymorphisms in miRNA target sites, abundance of genes having disease causing non-synonymous mutations, disease gene specific network properties, presence of genes having repeat regions, affluence of dosage sensitive genes and the presence of intrinsically unstructured protein regions.  相似文献   

14.
A van Ooyen  V Kwee    R Nusse 《The EMBO journal》1985,4(11):2905-2909
The mouse mammary tumor virus can induce mammary tumors in mice by proviral activation of an evolutionarily conserved cellular oncogene called int-1. Here we present the nucleotide sequence of the human homologue of int-1, and compare it with the mouse gene. Like the mouse gene, the human homologue contains a reading frame of 370 amino acids, with only four substitutions. The amino acid changes are all in the hydrophobic leader domain of the int-1 encoded protein, and do not significantly alter its hydropathic index. The conservation between the mouse and the human int-1 genes is not restricted to exons; extensive parts of the introns are also homologous. Thus, int-1 ranks among the most conserved genes known, a property shared with other oncogenes.  相似文献   

15.
Mouse models are often used to study human genes because it is believed that the expression and function are similar for the majority of orthologous genes between the two species. However, recent comparisons of microarray data from thousands of orthologous human and mouse genes suggested rapid evolution of gene expression profiles under minimal or no selective constraint. These findings appear to contradict non-array-based observations from many individual genes and imply the uselessness of mouse models for studying human genes. Because absolute levels of gene expression are not comparable between species when the data are generated by species-specific microarrays, use of relative mRNA abundance among tissues (RA) is preferred to that of absolute expression signals. We thus reanalyze human and mouse genome-wide gene expression data generated by oligonucleotide microarrays. We show that the mean correlation coefficient among expression profiles detected by different probe sets of the same gene is only 0.38 for humans and 0.28 for mice, indicating that current measures of expression divergence are flawed because the large estimation error (discrepancy in expression signal detected by different probe sets of the same gene) is mistakenly included in the between-species divergence. When this error is subtracted, 84% of human-mouse orthologous gene pairs show significantly lower expression divergence than that of random gene pairs. In contrast to a previous finding, but consistent with the common sense, expression profiles of orthologous tissues between species are more similar to each other than to those of nonorthologous tissues. Furthermore, the evolutionary rate of expression divergence and that of coding sequence divergence are found to be weakly, but significantly positively correlated, when RA and the Euclidean distance are used to measure expression-profile divergence. These results highlight the importance of proper consideration of various estimation errors in comparing the microarray data between species.  相似文献   

16.
17.
The impact of gene silencing on cellular phenotypes is difficult to establish due to the complexity of interactions in the associated biological processes and pathways. A recent genome-wide RNA knock-down study both identified and phenotypically characterized a set of important genes for the cell cycle in HeLa cells. Here, we combine a molecular interaction network analysis, based on physical and functional protein interactions, in conjunction with evolutionary information, to elucidate the common biological and topological properties of these key genes. Our results show that these genes tend to be conserved with their corresponding protein interactions across several species and are key constituents of the evolutionary conserved molecular interaction network. Moreover, a group of bistable network motifs is found to be conserved within this network, which are likely to influence the network stability and therefore the robustness of cellular functioning. They form a cluster, which displays functional homogeneity and is significantly enriched in genes phenotypically relevant for mitosis. Additional results reveal a relationship between specific cellular processes and the phenotypic outcomes induced by gene silencing. This study introduces new ideas regarding the relationship between genotype and phenotype in the context of the cell cycle. We show that the analysis of molecular interaction networks can result in the identification of genes relevant to cellular processes, which is a promising avenue for future research.  相似文献   

18.
19.
Purification of a murine leukemia inhibitory factor from Krebs ascites cells   总被引:10,自引:0,他引:10  
A factor capable of inducing terminal differentiation in the murine myeloid leukemia cell line M1 has been purified to apparent homogeneity from the medium conditioned by Krebs II ascites tumor cells. The factor, termed leukemia inhibitory factor (LIF) is a single chain glycoprotein of apparent Mr 58,000 which induces differentiation and inhibits proliferation of the M1 cell line but not the WEHI-3B D+ murine myeloid leukemic cell line and has no detectable proliferative activity on normal myeloid progenitor cells. It was purified using four successive high-efficiency purification steps--anion-exchange chromatography on DEAE-Sepharose; cation-exchange chromatography on CM-Sepharose; affinity chromatography on lentil lectin-Sepharose; and reverse-phase high-performance liquid chromatography on a phenyl-silica matrix--to a specific biological activity of approximately 1.25 X 10(8) units/mg with an overall purification of 12,000-fold and a yield of 73% for the activity failing to bind to DEAE-Sepharose. Sufficient quantities of the factor (12 micrograms, 200 pmol) have been purified to allow structural and functional analysis of the molecule and comparison with other know differentiation inducers.  相似文献   

20.
With the quick progress of the Human Genome Project, a great amount of uncharacterized DNA sequences needs to be annotated copiously by better algorithms. Recognizing shorter coding sequences of human genes is one of the most important problems in gene recognition, which is not yet completely solved. This paper is devoted to solving the issue using a new method. The distributions of the three stop codons, i.e., TAA, TAG and TGA, in three phases along coding, noncoding, and intergenic sequences are studied in detail. Using the obtained distributions and other coding measures, a new algorithm for the recognition of shorter coding sequences of human genes is developed. The accuracy of the algorithm is tested based on a larger database of human genes. It is found that the average accuracy achieved is as high as 92.1% for the sequences with length of 192 base pairs, which is confirmed by sixfold cross-validation tests. It is hoped that by incorporating the present method with some existing algorithms, the accuracy for identifying human genes from unannotated sequences would be increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号