首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Upon interaction of the three anthracycline antibiotics daunomycin, adriamycin, and aclacinomycin A with calf thymus DNA the relative changes of both DNA contour length, delta L/Lo, and persistence length, delta a/ao, have been determined as a function of r, the ratio of bound ligand molecules per DNA mononucleotide. From the r dependence of delta a/ao a measure for the stiffening effect and also the angle gamma of ligand-induced DNA bending could be derived. Experimental basis are titration viscometric measurements upon both low and high molecular weight DNA. It was found that the DNA contour length increases linearly with r by approximately 0.34 nm per bound drug molecule. The comparatively very high DNA stiffening effect measured in solution is understandable as a result of helix clamping by at least two anthracycline groups of sufficient long distance. The variation of gamma on DNA interaction with different anthracycline derivatives find their explanation in terms of different values of the mismatch to in-register binding prior to complex formation. From an analogous interpretation of viscosity measurements by Arcamone and coworkers upon high molecular weight DNA with many anthracycline derivatives it can be concluded that DNA interaction by both amino sugar and 9-acetyl group are responsible for the generation of strong anthracycline binding mediated DNA stiffening effects in solution. (A combined analysis of the viscosity measurements by Cohen & Eisenberg and Armstrong et al. upon DNA interaction with proflavine indicates a very small DNA stiffening effect, gamma = 6.7 sigma and a helix elongation by 0.35 nm per bound ligand molecule.)  相似文献   

2.
The antitrypanosomal drugs berenil (Ber) and pentamidine (Pm) preferentially bind to DNA in the minor groove of A.T-rich domains. The properties of A.T clusters are essential for sequence-mediated helix bending. Groove binding drugs locally stiffen the DNA helix but may also change intrinsic helix bends or may bend straight DNA. Ligand binding to randomly distributed sites alters the apparent DNA persistence length, a. Criteria permit the distinction of the underlying mechanism(s). Helix bends, if phased with the helix screw, however, generate solenoidal superhelix components mediating an apparent change of the hydrodynamically effective DNA contour length, L. The measurement of relative changes of both, a and L, as induced by Ber or Pm is performed by titration rotational viscometry. The determination of the two quantities requires two independent measurements: the relative change of DNA intrinsic viscosity, deltay, for short (tending to rod-like) DNA molecules and for comparably long (almost coil-like) ones as a function of r, the bound drug molecules per DNA-P, and this under conditions effectively excluding intramolecular DNA-DNA crosslinking effects. At least at r< or =0.05 and < or =0.03, respectively, the two drugs virtually bind completely to a eukaryotic DNA. r ranges of different drug binding strength and, concomitantly, of different specific conformational response, could be resolved. They represent (sub)modes of different DNA sequences... Whereas the mode-specific elongation effects are fairly similar for both systems, there are pronounced quantitative differences in the relative change of DNA persistence length. The sites of highest Ber-binding strength are correlated to unbent alternating helical A.T segments followed by bent and by less bent or unbent dAn.dTn tracts straightened on Ber-binding. For Pm-DNA interaction the ligand bends the sites of highest Pm affinity. Generally, ligand induced and sequence mediated local DNA-bend removal or DNA bending, as observed for several modes of interaction with A.T rich DNA, are considered to be of gene regulatory relevance.  相似文献   

3.
4.
The binding of phenosafranine (PS) to DNA was studied by a combination of spectroscopic methods (absorption and fluorescence) together with hydrodynamic measurements (sedimentation and viscosity), Analysis of spectroscopic binding curves revealed that the strength of binding of PS to DNA is generally lower than that of proflavine. These measurements enabled recognition of several modes of interaction between PS and native DNA: strong monomer binding prevailing at high DNA phosphate/dye ratios (p) comprising binding outside the DNA helix as well as intercalation; two modes of dimer binding at lower values of p; and probably also weak surface-binding of monomers as p approaches unity. Longer surface-bound aggregates of PS were not detected because of the low tendency of the dye to form aggregates, though the presence of dimeric species distinct frorn pure surface-stacked PS dimer was indicated by various observations. It occurs over a broad range of p values Starting at p ≈110 for ionic strengths 10?3–10?1. Thermal denaturation data indicate that this species is bound more strongly than pure surface-bound stacked dimer. Its dimeric character may be explained in terms of interaction of an intercalated dye molecule with an adjacent outside-bound one as suggested for acridines by Armstrong et al. Various properties of this species are discussed. Both strong and weak modes or binding of PS to DNA are sensitive to the presence of organic solvents. The effectiveness of solvents to destabilise the complexes substantially coincides with their capacity to alter the water activity. Viscometric investigations reveal that in the region of strongest bindins (p ? 15) the elongation of the DNA helix by approximately 0.18 nm per bound PS molecule is accompanied by a strong negative change in persistence length, i.e. bending. Similar bending is also found at higher levels of binding (p ? 15) induced by less lightly bound PS molecules, in which region, however, the unusually high elongation of approximately 0.34 nm per bound PS molecule is observed.  相似文献   

5.
Abstract

The interaction of the minor groove binding ligand Hoechst 33258 (Hoe) with natural DNA was investigated by high resolution titration rotational viscometry. Analysis of the concomitant DNA conformational changes was performed with two DNA samples of sufficiently different molar mass M, at 4°C, 22°C and 40°C, for Hoe/DNA-P ratios below r = 0.02. In this narrow r range several interaction modes could be resolved. The measured conformational changes were quantified in terms of relative changes of both apparent DNA persistence length, Δa/a, and hydrodynamically operative DNA contour length, ΔL/L. Δa/a(r) primarily is a measure of ligand-induced DNA helix stiffening, but both, Δa/a(r) and ΔL/L(r), generally depend also on ligand binding induced DNA bending or DNA unbending. The essential difference obviously is that Δa/a(r) is influenced by the randomly distributed helix bends and ΔL/L(r) by phased ones. The measurements performed at different temperatures deliver informations about existence and temperature dependent abolition of intrinsic helix curvature.

Both Hoe and netropsin (Nt) prefer binding to AT rich DNA segments, which are candidates for intrinsic DNA helix bends. But our data for Hoe interaction with calf thymus DNA (ctDNA) show characteristic differences to those for Nt-ctDNA interaction. Especially for Hoe, the mode of highest affinity is saturated already at a ligand concentration of roughly 1 nM (r = 0.0015 Hoe/DNA-P). It exhibits an unusually strong temperature dependence of the conformational DNA response. A Hoe-Nt competition experiment shows that Hoe binding to the sites of the very first Hoe mode is almost unaffected by bound Nt. But Hoe binding to the sites of the following Hoe modes does not occur due to the competition with Nt. Thus this mode of strongest Hoe-DNA interaction reflects a unique mechanism, possibly of high relevance for gene regulatory systems.  相似文献   

6.
7.
DNA intercalators bind nucleic acids by stacking between adjacent basepairs. This causes a considerable elongation of the DNA backbone as well as untwisting of the double helix. In the past few years, single-molecule mechanical experiments have become a common tool to characterize these deformations and to quantify important parameters of the intercalation process. Parameter extraction typically relies on the neighbor-exclusion model, in which a bound intercalator prevents intercalation into adjacent sites. Here, we challenge the neighbor-exclusion model by carefully quantifying and modeling the force-extension and twisting behavior of single ethidium-complexed DNA molecules. We show that only an anticooperative ethidium binding that allows for a disfavored but nonetheless possible intercalation into nearest-neighbor sites can consistently describe the mechanical behavior of intercalator-bound DNA. At high ethidium concentrations and elevated mechanical stress, this causes an almost complete occupation of nearest-neighbor sites and almost a doubling of the DNA contour length. We furthermore show that intercalation into nearest-neighbor sites needs to be considered when estimating intercalator parameters from zero-stress elongation and twisting data. We think that the proposed anticooperative binding mechanism may also be applicable to other intercalating molecules.  相似文献   

8.
We report dichroism and equilibrium binding studies of netropsin (Net) and distamycin A3 (Dist) binding to deoxyribonucleic acid (DNA). We show that at low degrees of binding (r) to calf thymus DNA, Net induces a considerable increase in the apparent DNA length (14 A/drug molecule bound), closely analogous to the results reported earlier for Dist. In addition, we show that chicken erythrocyte DNA shows length changes similar to those of calf thymus DNA upon distamycin binding. DNA length reaches a maximum at 1 bound drug/20-30 base pairs and then decreases to its initial value by r = 0.1. This effect is not seen for two other DNAs with nearly identical A + T base pair content and may therefore arise from the details of base sequence or base modification in eukaryotic DNA. We also show that Dist binding to calf thymus DNA at low r values is positively cooperative and shows a DNA affinity which is primarily nonionic. We demonstrate that independent of the DNA to which they are bound, the Net and Dist transition moments are inclined by 43 +/- 3 degrees from the helix axis, consistent with the idea that both drugs bind inside and parallel to the DNA small groove. From dichroism measurements, we show that the conformational change induced in calf thymus DNA by Dist does not kink or bend the helix and does not substantially alter the average inclination of the bases. Finally, we outline a statistical mechanical theory for calculation of binding isotherms when binding is coupled to a DNA structural change.  相似文献   

9.
Abstract

It is argued that the enhancement of the apparent DNA contour length by the specifically binding non-intercalating drug netropsin (Nt) (Reinert et al., NAR 9,2335, 1981) at very low Nt/DNA-phosphate ratios essentially is the result of an abolition of periodically arranged intrinsic helix bends in A · T rich tracts of base pairs.

In the preceding paper the existence of pronounced DNA tertiary structure components has been postulated for (two species of) natural eukaryotic DNA. The resulting model suggests local apparent solenoid-related DNA tertiary structure components at high sodium ion concentration cs, partly/totally molten out at 45/60 C. With decreasing cs the tertiary structure components have been found to be gradually reduced, at least below cs = 0.010 M, as titration viscometrically revealed by a gradual rise of the apparent DNA contour length (Reinert et al., JBSD 9, 537, 1991).

Hence, we performed titration viscometric analyses about Nt interaction with calf thymus DNA (ctDNA) at cs = 0.075 M, 0.010 M and 0.004 M Na+. The concomitant DNA conformational changes are quantitatively described in terms of the relative changes of both DNA persistence length and hydrodynamically operative apparent DNA contour length for the three first resolved interaction modes below a Nt/DNA-P ratio of 0.03.

These experiments, together with previous respective analyses at cs = 0.20 M Na+ and different temperatures (I.e.), suggest that those DNA sites binding Nt most strongly predominantly are responsible for the formation of solenoid-related DNA tertiary structure components. Most probably these are A tract-containing sequences. As the essential factor for their apparent elongation effect at low Na+ concentrations, a gradual alteration of the number of base pairs per helix turn seems to occur below cs = 0.010 M Na+ and, concomitantly, a change in phasing between intrinsic helix bends and helix screw.  相似文献   

10.
11.
Winding of the DNA helix by divalent metal ions.   总被引:1,自引:0,他引:1       下载免费PDF全文
Y C Xu  H Bremer 《Nucleic acids research》1997,25(20):4067-4071
When supercoiled pBR322 DNA was relaxed at 0 or 22 degrees C by topoisomerase I in the presence of the divalent cations Ca2+, Mn2+ or Co2+, the resulting distributions of topoisomers observed at 22 degrees C had positive supercoils, up to an average delta Lk value of +8.6 (for Ca2+at 0 degrees C), corresponding to an overwinding of the helix by 0.7 degrees/bp. An increase of the divalent cation concentration in the reaction mixture above 50 mM completely reversed the effect. When such ions were present in agarose electrophoresis gels, they caused a relaxation of positively supercoiled DNA molecules, and thus allowed a separation of strongly positively supercoiled topoisomers. The effect of divalent cations on DNA adds a useful tool for the study of DNA topoisomers, for the generation as well as separation of positively supercoiled DNA molecules.  相似文献   

12.
The ubiquitous, eukaryotic, high-mobility group box (HMGB) chromosomal proteins promote many chromatin-mediated cellular activities through their non-sequence-specific binding and bending of DNA. Minor-groove DNA binding by the HMG box results in substantial DNA bending toward the major groove owing to electrostatic interactions, shape complementarity, and DNA intercalation that occurs at two sites. Here, the structures of the complexes formed with DNA by a partially DNA intercalation-deficient mutant of Drosophila melanogaster HMGD have been determined by X-ray crystallography at a resolution of 2.85 Å. The six proteins and 50 bp of DNA in the crystal structure revealed a variety of bound conformations. All of the proteins bound in the minor groove, bridging DNA molecules, presumably because these DNA regions are easily deformed. The loss of the primary site of DNA intercalation decreased overall DNA bending and shape complementarity. However, DNA bending at the secondary site of intercalation was retained and most protein-DNA contacts were preserved. The mode of binding resembles the HMGB1 box A-cisplatin-DNA complex, which also lacks a primary intercalating residue. This study provides new insights into the binding mechanisms used by HMG boxes to recognize varied DNA structures and sequences as well as modulate DNA structure and DNA bending.  相似文献   

13.
For natural eukaryotic DNA in solution, we suggest the existence of secondary-helix components superponed to parts of the DNA double helices. In a previous report we found, for calf thymus DNA in solution and of different mean molar mass Mr, an electrostatically driven rise of the hydrodynamically operative contour length of the double helix. This result was derived from Mr-dependent systematic deviations from the almost but not exactly linear plots of intrinsic viscosity [eta] as a function of 1/cs1/2 (cs = Na+ concentration) accurately determined by a titration technique [K.G. and K.E.R., Nucl. Acids Res. 8, 2807 (1980)]. In order to discriminate between DNA elongation contributions caused by secondary or by tertiary structure effects, respective measurements have now been extended to different temperatures for two eukaryotic and two prokaryotic DNA species. The slope of the curves obtained for the (apparent) gradual elongation effect as a function of temperature is negative for the eukaryotic DNAs investigated and is smaller and positive for the prokaryotic species, thus revealing different underlying main elongation mechanisms. We propose that, for the eukaryotic DNA samples, an electrostatically driven partial abolition of tertiary structure components is responsible for the prevailing part of the DNA elongation effect measured. (A helix elongation of this type may be the result of an abolition of an apparent helix shortening as realized in a very high degree on formation of nucleosome chains or in a less degree by DNA molecules with a respective evolutionarily fitted tertiary structure). For the smaller effects of prokaryotic DNA species something like a base breathing seems to dominate. Recent literature results support such an interpretation.  相似文献   

14.
The mode of binding of 5,6-dihydroflavopereirine and sempervirine to DNA has been investigated by absorption spectrophotometry, circular and electric linear dichroism, fluorescence and fluorescence polarization, viscosity increase of sonicated linear DNA and circular DNA unwinding. Although the spectroscopic properties of both compounds bound to DNA resembled those reported in our previous study of DNA complexes with two other alkaloids, and observed with planar intercalating compounds, only sempervirine was able to unwind circular DNA. The latter drug however showed signs characteristic of aggregation at the surface of the polyion. The differences between the behaviours of the four alkaloids so far investigated by us are interpreted on the basis of different extent of penetration of the chromophore ring into the DNA helix.  相似文献   

15.
Equilibrium binding studies and viscosity experiments are described that characterize the interaction of delta- and lambda-[Ru(o-phen)3]2+ with calf thymus DNA. The mode of binding of these compounds to DNA is a matter of controversy. Both isomers of [Ru(o-phen)3]2+ were found to bind but weakly to DNA, with binding constants of 4.9 (+/- 0.3) x 10(4) M-1 and 2.8 (+/- 0.2) x 10(4) M-1 determined for the delta and lambda isomers, respectively, at 20 degrees C in a solution containing 5 mM Tris-HCl (pH 7.1) and 10 mM NaCl. We determined that the quantity delta log K/delta log [Na+] equals 1.37 and 1.24 for the delta and lambda isomers, respectively. Application of polyelectrolyte theory allows us to use these values to show quantitatively that both the delta and lambda isomers are essentially electrostatically bound to DNA. Viscosity experiments show that binding the lambda isomer does not alter the relative viscosity of DNA to any appreciable extent, while binding of the delta isomer decreases the relative viscosity of DNA. From these viscosity results, we conclude that neither isomer of [Ru(o-phen)3]2+ binds to DNA by classical intercalation.  相似文献   

16.
The polyion chain expansion of DNA was studied by viscometry within the Na+ concentration range c5 = 0.002 M to 0.4 M. The DNA molecular weights M were between 0.5 x 10(6) and 13 x 10(6). The relative change of intrinsic viscosity [eta] is linearly correlated to c5(-1/2) with a slope that increases with increasing M. This behaviour reflects the predominance of helix stiffening in chain expansion. At c5(112) > 0.01(-1/2 M-1/2 (Debye-Hückel screening radius 1/chi > (1/chi)*=3nm) the relative change of [eta] rises with a steeper slope. This effect increases with decreasing M suggesting that helix lengthening contributes to the chain expansion. Our model enables us to interpret other ionic-strength dependent effects known from literature. The start of the significant duplex elongation at (1/chi)* can be correlated to the polyion-charge arrangement. In accordance with our interpretation (1/chi)* is found to be greater for DNA-intercalator complexes.  相似文献   

17.
Phased psoralen cross-links do not bend the DNA double helix   总被引:1,自引:0,他引:1  
T E Haran  D M Crothers 《Biochemistry》1988,27(18):6967-6971
Although the chemical reaction of psoralens with nucleic acids is well understood, the structure of psoralen-DNA cross-linked products is still not clear. Model building studies base on the crystal structure of the psoralen-thymine monoadduct suggest that each cross-link bends the DNA double helix by 46.5 degrees [Pearlman, D. A., Holbrook, S. R., Pirkle, D. H., & Kim, S.-H. (1985) Science (Washington, D.C.) 227, 1304-1308]. On the other hand, Sinden and Hagerman [Sinden, R. R., & Hagerman, P. J. (1984) Biochemistry 23, 6299-6303] find that, in solution, psoralen cross-linked DNA is not bent. Here we use gel electrophoresis to test the validity of the current models. We have synthesized a series of DNA fragments (21-24 base pairs in length), each containing one unique T-A site for 4'-(hydroxymethyl)-4,5',8-trimethylpsoralen (HMT) cross-linking. Because of an estimated 28 degrees unwinding of the helix by HMT [Wiesehahn, G., & Hearst, J. E. (1978) Proc. Natl. Acad. Sci. U.S.A. 75, 2703-2707], one expects that the 22-bp cross-linked fragment will be repeated nearly in phase with the average helical screw when multimerized. In that sequence ligation will maximally amplify any deformation to the double helix. We find that the ligated multimers of cross-linked DNA migrate close to the multimers of non-cross-linked DNA on polyacrylamide gels. Our observations place an upper limit of 10 degrees on DNA bending induced by psoralen cross-linking and indicate unwinding by about 1 bp, as well as stiffening of the double helix. These properties are not unexpected for classical intercalators.  相似文献   

18.
The bending flexibility of six tetramers was studied in an assumption that they were extended in the both directions by regular double helices. The bends of B-DNA in different directions were considered. The stiffness of the B-DNA double helix when bent into the both grooves proved to be less pronounced than in the perpendicular direction by the order of magnitude. Such an anisotropy is a feature of the sugar-phosphate backbone structure. The calculated fluctuations of the DNA bending along the dyad axis, 5-7 degrees, are in agreement with the experimental value of DNA persistence length. Anisotropy of the double helix is sequence-dependent: most easily bent into the minor groove are the tetramers with purine-pyrimidine dimer (RY) in the middle. In contrast, YR dinucleotides prefer bending into the major groove, moreover, they have an equilibrium bend of 6-12 degrees into this groove. The above inequality is caused by the stacking interaction of the bases. The bend in the central dimers is distributed to some extent between the adjacent links, though the main fraction of the bend remains within the central link. Variation of the sugar-phosphate geometry in the bent helix is unessential, so that DNA remains within the limits of the B-family of forms: namely, when the helical axis is bent by 20 degrees the backbone dihedral angles vary by no more than 15 degrees. The obtained results are in accord with the X-ray structure of B-DNA dodecamer; they further substantiate our earlier model of DNA wrapping in the nucleosome by means of "mini-kinks" separated by a half-pitch of the double helix, i.e. by 5-6 b. p. Sequence-dependent anisotropy of DNA presumably dictates the three-dimensional structure of DNA in solution as well. We have found that nonrandom allocation of YR dimers leads to the systematic bends in the equilibrium structure of certain DNA fragments. To the four "Calladine rules" two more can be added: the minor-groove steric clash of purines in the YR sequences are avoided by: (1) bending of the helix into the major groove; (2) increasing the distance between the base pairs (stretching the double helix).  相似文献   

19.
The human centromere protein B (CENP-B), one of the centromere components, specifically binds a 17 bp sequence (the CENP-B box), which appears in every other alpha-satellite repeat. In the present study, the crystal structure of the complex of the DNA-binding region (129 residues) of CENP-B and the CENP-B box DNA has been determined at 2.5 A resolution. The DNA-binding region forms two helix-turn-helix domains, which are bound to adjacent major grooves of the DNA. The DNA is kinked at the two recognition helix contact sites, and the DNA region between the kinks is straight. Among the major groove protein-bound DNAs, this 'kink-straight-kink' bend contrasts with ordinary 'round bends' (gradual bending between two protein contact sites). The larger kink (43 degrees ) is induced by a novel mechanism, 'phosphate bridging by an arginine-rich helix': the recognition helix with an arginine cluster is inserted perpendicularly into the major groove and bridges the groove through direct interactions with the phosphate groups. The overall bending angle is 59 degrees, which may be important for the centromere-specific chromatin structure.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号