首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Barbash DA 《Genetics》2007,176(1):543-552
The cross of Drosophila melanogaster females to D. simulans males typically produces lethal F(1) hybrid males. F(1) male lethality is suppressed when the D. simulans Lhr(1) hybrid rescue strain is used. Viability of these F(1) males carrying Lhr(1) is in turn substantially reduced when the hybrids are heterozygous for some mutant alleles of the D. melanogaster Nup96 gene. I show here that similar patterns of Nup96-dependent lethality occur when other hybrid rescue mutations are used to create F(1) males, demonstrating that Nup96 does not reduce hybrid viability by suppressing the Lhr(1) rescue effect. The penetrance of this Nup96-dependent lethality does not correlate with the penetrance of the F(1) hybrid rescue, arguing that these two phenomena reflect genetically independent processes. D. simulans, together with two additional sister species, forms a clade that speciated after the divergence of their common ancestor from D. melanogaster. I report here that Nup96(-) reduces F(1) viability in D. melanogaster hybrids with one of these sister species, D. sechellia, but not with the other, D. mauritiana. These results suggest that Nup96-dependent lethality evolved after the speciation of D. melanogaster from the common ancestor of the simulans clade and is caused by an interaction among Nup96, unknown gene(s) on the D. melanogaster X chromosome, and unknown autosomal gene(s), at least some of which have diverged in D. simulans and D. sechellia but not in D. mauritiana. The genetic properties of Nup96 are also discussed relative to other hybrid lethal genes.  相似文献   

3.
Neutral and Non-Neutral Evolution of Drosophila Mitochondrial DNA   总被引:8,自引:4,他引:4  
D. M. Rand  M. Dorfsman    L. M. Kann 《Genetics》1994,138(3):741-756
To test hypotheses of neutral evolution of mitochondrial DNA (mtDNA), nucleotide sequences were determined for 1515 base pairs of the NADH dehydrogenase subunit 5 (ND5) gene in the mitochondrial DNA of 29 lines of Drosophila melanogaster and 9 lines of its sibling species Drosophila simulans. In contrast to the patterns for nuclear genes, where D. melanogaster generally exhibits much less nucleotide polymorphism, the number of segregating sites was slightly higher in a global sample of nine ND5 sequences in D. melanogaster (s = 8) than in the nine lines of D. simulans (s = 6). When compared to variation at nuclear loci, the mtDNA variation in D. melanogaster does not depart from neutral expectations. The ND5 sequences in D. simulans, however, show fewer than half the number of variable sites expected under neutrality when compared to sequences from the period locus. While this reduction in variation is not significant at the 5% level, HKA tests with published restriction data for mtDNA in D. simulans do show a significant reduction of variation suggesting a selective sweep of variation in the mtDNA in this species. Tests of neutral evolution based on the ratios of synonymous and replacement polymorphism and divergence are generally consistent with neutral expectations, although a significant excess of amino acid polymorphism within both species is localized in one region of the protein. The rate of mtDNA evolution has been faster in D. melanogaster than in D. simulans and the population structure of mtDNA is distinct in these species. The data reveal how different rates of mtDNA evolution between species and different histories of neutral and adaptive evolution within species can compromise historical inferences in population and evolutionary biology.  相似文献   

4.
Wagstaff BJ  Begun DJ 《Genetics》2007,177(2):1023-1030
The relationship between animal mating system variation and patterns of protein polymorphism and divergence is poorly understood. Drosophila provides an excellent system for addressing this issue, as there is abundant interspecific mating system variation. For example, compared to D. melanogaster subgroup species, repleta group species have higher remating rates, delayed sexual maturity, and several other interesting differences. We previously showed that accessory gland protein genes (Acp's) of Drosophila mojavensis and D. arizonae evolve more rapidly than Acp's in the D. melanogaster subgroup and that adaptive Acp protein evolution is likely more common in D. mojavensis/D. arizonae than in D. melanogaster/D. simulans. These findings are consistent with the idea that greater postcopulatory selection results in more adaptive evolution of seminal fluid proteins in the repleta group flies. Here we report another interesting evolutionary difference between the repleta group and the D. melanogaster subgroup Acp's. Acp gene duplications are present in D. melanogaster, but their high sequence divergence indicates that the fixation rate of duplicated Acp's has been low in this lineage. Here we report that D. mojavensis and D. arizonae genomes contain several very young duplicated Acp's and that these Acp's have experienced very rapid, adaptive protein divergence. We propose that rapid remating of female desert Drosophila generates selection for continuous diversification of the male Acp complement to improve male fertilization potential. Thus, mating system variation may be associated with adaptive protein divergence as well as with duplication of Acp's in Drosophila.  相似文献   

5.
The interaction between rapidly evolving centromere sequences and conserved kinetochore machinery appears to be mediated by centromere-binding proteins. A recent theory proposes that the independent evolution of centromere-binding proteins in isolated populations may be a universal cause of speciation among eukaryotes. In Drosophila the centromere-specific histone, Cid (centromere identifier), shows extensive sequence divergence between D. melanogaster and the D. simulans clade, indicating that centromere machinery incompatibilities may indeed be involved in reproductive isolation and speciation. However, it is presently unclear whether the adaptive evolution of Cid was a cause of the divergence between these species, or merely a product of postspeciation adaptation in the separate lineages. Furthermore, the extent to which divergent centromere identifier proteins provide a barrier to reproduction remains unknown. Interestingly, a small number of rescue lines from both D. melanogaster and D. simulans can restore hybrid fitness. Through comparisons of cid sequence between nonrescue and rescue strains, we show that cid is not involved in restoring hybrid viability or female fertility. Further, we demonstrate that divergent cid alleles are not sufficient to cause inviability or female sterility in hybrid crosses. Our data do not dispute the rapid divergence of cid or the coevolution of centromeric components in Drosophila; however, they do suggest that cid underwent adaptive evolution after D. melanogaster and D. simulans diverged and, consequently, is not a speciation gene.  相似文献   

6.
The Dobzhansky and Muller (D-M) model explains the evolution of hybrid incompatibility (HI) through the interaction between lineage-specific derived alleles at two or more loci. In agreement with the expectation that HI results from functional divergence, many protein-coding genes that contribute to incompatibilities between species show signatures of adaptive evolution, including Lhr, which encodes a heterochromatin protein whose amino acid sequence has diverged extensively between Drosophila melanogaster and D. simulans by natural selection. The lethality of D. melanogaster/D. simulans F1 hybrid sons is rescued by removing D. simulans Lhr, but not D. melanogaster Lhr, suggesting that the lethal effect results from adaptive evolution in the D. simulans lineage. It has been proposed that adaptive protein divergence in Lhr reflects antagonistic coevolution with species-specific heterochromatin sequences and that defects in LHR protein localization cause hybrid lethality. Here we present surprising results that are inconsistent with this coding-sequence-based model. Using Lhr transgenes expressed under native conditions, we find no evidence that LHR localization differs between D. melanogaster and D. simulans, nor do we find evidence that it mislocalizes in their interspecific hybrids. Rather, we demonstrate that Lhr orthologs are differentially expressed in the hybrid background, with the levels of D. simulans Lhr double that of D. melanogaster Lhr. We further show that this asymmetric expression is caused by cis-by-trans regulatory divergence of Lhr. Therefore, the non-equivalent hybrid lethal effects of Lhr orthologs can be explained by asymmetric expression of a molecular function that is shared by both orthologs and thus was presumably inherited from the ancestral allele of Lhr. We present a model whereby hybrid lethality occurs by the interaction between evolutionarily ancestral and derived alleles.  相似文献   

7.
Kern AD  Jones CD  Begun DJ 《Genetics》2004,167(2):725-735
Accessory gland proteins are a major component of Drosophila seminal fluid. These proteins have a variety of functions and may be subject to sexual selection and/or antagonistic evolution between the sexes. Most population genetic data from these proteins are from D. melanogaster and D. simulans. Here, we extend the population genetic analysis of Acp genes to the other simulans complex species, D. mauritiana and D. sechellia. We sequenced population samples of seven Acp's from D. mauritiana, D. sechellia, and D. simulans. We investigated the population genetics of these genes on individual simulans complex lineages and compared Acp polymorphism and divergence to polymorphism and divergence from a set of non-Acp loci in the same species. Polymorphism and divergence data from the simulans complex revealed little evidence for adaptive protein evolution at individual loci. However, we observed a dramatically inflated index of dispersion for amino acid substitutions in the simulans complex at Acp genes, but not at non-Acp genes. This pattern of episodic bursts of protein evolution in Acp's provides the strongest evidence to date that the population genetic mechanisms driving Acp divergence are different from the mechanisms driving evolution at most Drosophila genes.  相似文献   

8.
Pröschel M  Zhang Z  Parsch J 《Genetics》2006,174(2):893-900
Many genes in higher eukaryotes show sexually dimorphic expression, and these genes tend to be among the most divergent between species. In most cases, however, it is not known whether this rapid divergence is caused by positive selection or if it is due to a relaxation of selective constraint. To distinguish between these two possibilities, we surveyed DNA sequence polymorphism in 91 Drosophila melanogaster genes with male-, female-, or nonsex-biased expression and determined their divergence from the sister species D. simulans. Using several single- and multilocus statistical tests, we estimated the type and strength of selection influencing the evolution of the proteins encoded by genes of each expression class. Adaptive evolution, as indicated by a relative excess of nonsynonymous divergence between species, was common among the sex-biased genes (both male and female). Male-biased genes, in particular, showed a strong and consistent signal of positive selection, while female-biased genes showed more variation in the type of selection they experience. Genes expressed equally in the two sexes, in contrast, showed no evidence for adaptive evolution between D. melanogaster and D. simulans. This suggests that sexual selection and intersexual coevolution are the major forces driving genetic differentiation between species.  相似文献   

9.
Patterns of sex chromosome and autosome evolution can be used to elucidate the underlying genetic basis of adaptative change. Evolutionary theory predicts that X-linked genes will adapt more rapidly than autosomes if adaptation is limited by the availability of beneficial mutations and if such mutations are recessive. In Drosophila, rates of molecular divergence between species appear to be equivalent between autosomes and the X chromosome. However, molecular divergence contrasts are difficult to interpret because they reflect a composite of adaptive and nonadaptive substitutions between species. Predictions based on faster-X theory also assume that selection is equally effective on the X and autosomes; this might not be true because the effective population sizes of X-linked and autosomal genes systematically differ. Here, population genetic and divergence data from Drosophila melanogaster, Drosophila simulans, and Drosophila yakuba are used to estimate the proportion of adaptive amino acid substitutions occurring in the D. melanogaster lineage. After gene composition and effective population size differences between chromosomes are controlled, X-linked and autosomal genes are shown to have equivalent rates of adaptive divergence with approximately 30% of amino acid substitutions driven by positive selection. The results suggest that adaptation is either unconstrained by a lack of beneficial genetic variation or that beneficial mutations are not recessive and are thus highly visible to natural selection whether on sex chromosomes or on autosomes.  相似文献   

10.
Identical satellite DNA sequences in sibling species of Drosophila   总被引:4,自引:0,他引:4  
The evolution of simple satellite DNAs was examined by DNA-DNA hybridization of ten Drosophila melanogaster satellite sequences to DNAs of the sibling species, Drosophila simulans and Drosophila erecta. Seven of these repeat types are present in tandem arrays in D. simulans and each of the ten sequences is repeated in D. erecta. In thermal melts, six of the seven satellite sequences in D. simulans and seven of the ten sequences in D. erecta melted within 1 deg.C of the corresponding values in D. melanogaster. The remaining sequences melted within 3 deg.C of the homologous hybrids. Therefore, there is little or no alteration in those satellite sequences held in common, despite a period of about ten million years since the divergence of D. melanogaster and D. simulans from a common ancestor. Simple satellite sequences appear to be more highly conserved than coding regions of the genome, on a per nucleotide basis. Since multiple copies of three satellite sequences could not be detected in D. simulans yet are present in D. erecta, a species more distantly related to D. melanogaster than is D. simulans, these sequences show discontinuities in evolution. There were major quantitative variations between species, showing that satellite DNAs are prone to massive amplification or diminution events over timespans as short as those separating sibling species. In D. melanogaster, these sequences amount to 21% of the genome but only 5% in D. simulans and 0.4% in D. erecta. There was a general trend of lower abundance with evolutionary distance for most satellites, suggesting that the amounts of different satellite sequences do not vary independently during evolution.  相似文献   

11.
The Lethal hybrid rescue (Lhr) gene causes hybrid male lethality in crosses between Drosophila simulans and D. melanogaster. Lhr(2) is a D. simulans allele, which rescues hybrid males. It has been recently proposed that a 16 codon insertion, which distinguishes the D. melanogaster and the canonical D. simulans allele, and is lacking in Lhr(2), may be responsible for the functional divergence of D. melanogaster and D. simulans Lhr alleles. Here, we show that the Lhr(2) allele lacking the insertion represents an ancestral polymorphism segregating at a moderate frequency in D. simulans. Crosses of D. melanogaster females to males from two D. simulans strains carrying this deletion showed a severe deficiency of viable hybrid males. Our results suggest that the absence of this insertion alone is not sufficient to explain functional differences between D. melanogaster and D. simulans Lhr alleles.  相似文献   

12.
I present data on the evolution of intron lengths among 3 closely related Drosophila species, D. melanogaster, Drosophila simulans, and Drosophila yakuba. Using D. yakuba as an outgroup, I mapped insertion and deletion mutations in 148 introns (spanning approximately 30 kb) to the D. melanogaster and D. simulans lineages. Intron length evolution in the 2 sister species has been different: in D. melanogaster, X-linked introns have increased slightly in size, whereas autosomal ones have decreased slightly in size; in D. simulans, both X-linked and autosomal introns have decreased in size. To understand the possible evolutionary causes of these lineage- and chromosome-specific patterns of intron evolution, I studied insertion-deletion (indel) polymorphism and divergence in D. melanogaster. Small insertion mutations segregate at elevated frequencies and enjoy elevated probabilities of fixation, particularly on the X chromosome. In contrast, there is no detectable X chromosome effect on fixations in D. simulans. These findings suggest X chromosome-specific selection or biased gene conversion-gap repair favoring insertions in D. melanogaster but not in D. simulans. These chromosome- and lineage-specific patterns of indel substitution are not easily explained by existing general population genetic models of intron length evolution. Genomic data from D. melanogaster further suggest that the forces described here affect introns and intergenic regions similarly.  相似文献   

13.
Hybrid males resulting from crosses between closely related species of Drosophila are sterile. The F1 hybrid sterility phenotype is mainly due to defects occurring during late stages of development that relate to sperm individualization, and so genes controlling sperm development may have been subjected to selective diversification between species. It is also possible that genes of spermatogenesis experience selective constraints given their role in a developmental pathway. We analyzed the molecular evolution of three genes playing a role during the sperm developmental pathway in Drosophila at an early (bam), a mid (aly), and a late (dj) stage. The complete coding region of these genes was sequenced in different strains of Drosophila melanogaster and Drosophila simulans. All three genes showed rapid divergence between species, with larger numbers of nonsynonymous to synonymous differences between species than polymorphisms. Although this could be interpreted as evidence for positive selection at all three genes, formal tests of selection do not support such a conclusion. Departures from neutrality were detected only for dj and bam but not aly. The role played by selection is unique and determined by gene-specific characteristics rather than site of expression. In dj, the departure was due to a high proportion of neutral synonymous polymorphisms in D. simulans, and there was evidence of purifying selection maintaining a high lysine amino acid protein content that is characteristic of other DNA-binding proteins. The earliest spermatogenesis gene surveyed, which plays a role in both male and female gametogenesis, was bam, and its significant departure from neutrality was due to an excess of nonsynonymous substitutions between species. Bam is degraded at the end of mitosis, and rapid evolutionary changes among species might be a characteristic shared with other degradable transient proteins. However, the large number of nonsynonymous changes between D. melanogaster and D. simulans and a phylogenetic comparative analysis among species confirms evidence of positive selection driving the evolution of Bam and suggests an yet unknown germ cell line developmental adaptive change between these two species.  相似文献   

14.
Cattani MV  Presgraves DC 《Genetics》2012,191(2):549-559
The Dobzhansky-Muller model posits that postzygotic reproductive isolation results from the evolution of incompatible epistatic interactions between species: alleles that function in the genetic background of one species can cause sterility or lethality in the genetic background of another species. Progress in identifying and characterizing factors involved in postzygotic isolation in Drosophila has remained slow, mainly because Drosophila melanogaster, with all of its genetic tools, forms dead or sterile hybrids when crossed to its sister species, D. simulans, D. sechellia, and D. mauritiana. To circumvent this problem, we used chromosome deletions and duplications from D. melanogaster to map two hybrid incompatibility loci in F(1) hybrids with its sister species. We mapped a recessive factor to the pericentromeric heterochromatin of the X chromosome in D. simulans and D. mauritiana, which we call heterochromatin hybrid lethal (hhl), which causes lethality in F(1) hybrid females with D. melanogaster. As F(1) hybrid males hemizygous for a D. mauritiana (or D. simulans) X chromosome are viable, the lethality of deficiency hybrid females implies that a dominant incompatible partner locus exists on the D. melanogaster X. Using small segments of the D. melanogaster X chromosome duplicated onto the Y chromosome, we mapped a dominant factor that causes hybrid lethality to a small 24-gene region of the D. melanogaster X. We provide evidence suggesting that it interacts with hhl(mau). The location of hhl is consistent with the emerging theme that hybrid incompatibilities in Drosophila involve heterochromatic regions and factors that interact with the heterochromatin.  相似文献   

15.
Begun DJ  Whitley P 《Genetics》2000,154(3):1231-1238
NF-kappaB and IkappaB proteins have central roles in regulation of inflammation and innate immunity in mammals. Homologues of these proteins also play an important role in regulation of the Drosophila immune response. Here we present a molecular population genetic analysis of Relish, a Drosophila NF-kappaB/IkappaB protein, in Drosophila simulans and D. melanogaster. We find strong evidence for adaptive protein evolution in D. simulans, but not in D. melanogaster. The adaptive evolution appears to be restricted to the IkappaB domain. A possible explanation for these results is that Relish is a site of evolutionary conflict between flies and their microbial pathogens.  相似文献   

16.
Unraveling Selection in the Mitochondrial Genome of Drosophila   总被引:15,自引:6,他引:9  
JWO. Ballard  M. Kreitman 《Genetics》1994,138(3):757-772
We examine mitochondrial DNA variation at the cytochrome b locus within and between three species of Drosophila to determine whether patterns of variation conform to the predictions of neutral molecular evolution. The entire 1137-bp cytochrome b locus was sequenced in 16 lines of Drosophila melanogaster, 18 lines of Drosophila simulans and 13 lines of Drosophila yakuba. Patterns of variation depart from neutrality by several test criteria. Analysis of the evolutionary clock hypothesis shows unequal rates of change along D. simulans lineages. A comparison within and between species of the ratio of amino acid replacement change to synonymous change reveals a relative excess of amino acid replacement polymorphism compared to the neutral prediction, suggestive of slightly deleterious or diversifying selection. There is evidence for excess homozygosity in our world wide sample of D. melanogaster and D. simulans alleles, as well as a reduction in the number of segregating sites in D. simulans, indicative of selective sweeps. Furthermore, a test of neutrality for codon usage shows the direction of mutations at third positions differs among different topological regions of the gene tree. The analyses indicate that molecular variation and evolution of mtDNA are governed by many of the same selective forces that have been shown to govern nuclear genome evolution and suggest caution be taken in the use of mtDNA as a ``neutral' molecular marker.  相似文献   

17.
A repeating unit of the histone gene cluster from Drosophila simulans containing the H1, H2A, H2B and H4 genes (the H3 gene region has already been analyzed) was cloned and analyzed. A nucleotide sequence of about 4.6 kbp was determined to study the nucleotide divergence and molecular evolution of the histone gene cluster. Comparison of the structure and nucleotide sequence with those of Drosophila melanogaster showed that the four histone genes were located at identical positions and in the same directions. The proportion of different nucleotide sites was 6.3% in total. The amino acid sequence of H1 was divergent, with a 5.1% difference. However, no amino acid change has been observed for the other three histone proteins. Analysis of the GC contents and the base substitution patterns in the two lineages, D. melanogaster and D. simulans, with a common ancestor showed the following. 1) A strong negative correlation was found between the GC content and the nucleotide divergence in the whole repeating unit. 2) The mode of molecular evolution previously found for the H3 gene was also observed for the whole repeating unit of histone genes; the nucleotide substitutions were stationary in the 3' and spacer regions, and there was a directional change of the codon usage to the AT-rich codons. 3) No distinct difference in the mode or pattern of molecular evolution was detected for the histone gene repeating unit in the D. melanogaster and D. simulans lineages. These results suggest that selectional pressure for the coding regions of histones, which eliminate A and T, is less effective in the D. melanogaster and D. simulans lineages than in the other GC-rich species.  相似文献   

18.
A. J. Berry  J. W. Ajioka    M. Kreitman 《Genetics》1991,129(4):1111-1117
Evolutionary processes can be inferred from comparisons of intraspecific polymorphism and interspecific divergence. We sequenced a 1.1-kb fragment of the cubitus interruptus Dominant (ciD) locus located on the nonrecombining fourth chromosome for ten natural lines of Drosophila melanogaster and nine of Drosophila simulans. We found no polymorphism within D. melanogaster and a single polymorphism within D. simulans; divergence between the species was about 5%. Comparison with the alcohol dehydrogenase gene and its two flanking regions in D. melanogaster, for which comparable data are available, revealed a statistically significant departure from neutrality in all three tests. This lack of polymorphism in the ciD locus may reflect recent positive selective sweeps on the fourth chromosome with extreme hitchhiking generated by the lack of recombination. By simulation, we estimate there to be a 50% chance that the selective sweeps occurred within the past 30,000 years in D. melanogaster and 75,000 in D. simulans.  相似文献   

19.
Body size and thermal tolerance clines in Drosophila melanogaster occur along the east coast of Australia. However the extent to which temperature affects the genetic architecture underlying the observed clinal divergence remains unknown. Clinal variation in these traits is associated with cosmopolitan chromosome inversions that cline in D. melanogaster. Whether this association influences the genetic architecture for these traits in D. melanogaster is unclear. Drosophila simulans shows linear clines in body size, but nonlinear clines in cold resistance. Clinally varying inversions are absent in D. simulans. Line-cross and clinal analyses were performed between tropical and temperate populations of D. melanogaster and D. simulans from the east coast of Australia to investigate whether clinal patterns and genetic effects contributing to clinal divergence in wing centroid size, thorax length, wing-to-thorax ratio, cold and heat resistance differed under different developmental temperatures (18 °C, 25 °C, and 29 °C). Developmental temperature influenced the genetic architecture in both species. Similarities between D. melanogaster and D. simulans suggest clinally varying inversion polymorphisms have little influence on the genetic architecture underlying clinal divergence in size in D. melanogaster. Differing genetic architectures across different temperatures highlight the need to consider different environments in future evolutionary and molecular studies of phenotypic divergence.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号