首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The temporalis: blood supply and innervation   总被引:3,自引:0,他引:3  
  相似文献   

2.
The neuromuscular organization of feline anterior sartorius was examined using three experimental approaches. First, the branching pattern of the nerve supplying anterior sartorius was inspected in muscles taken from a large number of feline cadavers. All muscles were found to be supplied by two major nerve branches, one directed proximally and the other directed distally, and most muscles (42/51) had a third distinct branch that entered the muscle centrally. Second, the motoneuronal populations supplying the three nerve branches were investigated by electrophysiological techniques. Motoneurons that supplied axons to the distally-directed branch did not appear to have collaterals in more proximally-located branches. In contrast, other motoneurons supplying the proximally-directed branch also appeared to supply axon collaterals to the centrally-directed branch. This result suggested that the motoneuronal population of the distally-directed branch was largely separate from that supplying the proximally- and centrally-directed branches. Third, the motor unit territories supplied by different nerve branches were mapped using glycogen-depletion methods. Muscle fibers supplied by the distally-directed nerve branch were mostly distributed to the medial portion of anterior sartorius, whereas the fibers supplied by the other two branches were generally found more anteriorly. Further, the muscle fibers supplied by an individual nerve branch were present in greater numbers at the end of the muscle closest to the entry point of that branch. Thus, the motor units supplied by discrete nerve branches were found to be distributed asymmetrically within anterior sartorius, but were arranged neither strictly in-parallel nor strictly in-series.  相似文献   

3.
Soleus muscles in the rat were freely grafted alongside a normal soleus muscle in the absence of mechanical trauma to any of the surrounding muscles or motor nerves. The object of this experiment was to determine whether or not the muscle grafts would become reinnervated under these circumstances. Contractile and histochemical properties of the grafts were compared with those of the contralateral denervated soleus as well as normal muscles. Innervation of the grafts did occur, and it was concluded that the innervation of the grafts arose primarily from sprouts from nerves supplying neighboring muscles. The grafts were studied with specific nerve stains, histochemical techniques and by analysis of their contractile properties.  相似文献   

4.
β-Hydroxy-β-methylbutyrate (HMB) is a leucine metabolite shown to reduce protein catabolism in disease states and promote skeletal muscle hypertrophy in response to loading exercise. In this study, we evaluated the efficacy of HMB to reduce muscle wasting and promote muscle recovery following disuse in aged animals. Fisher 344×Brown Norway rats, 34 mo of age, were randomly assigned to receive either Ca-HMB (340 mg/kg body wt) or the water vehicle by gavage (n = 32/group). The animals received either 14 days of hindlimb suspension (HS, n = 8/diet group) or 14 days of unloading followed by 14 days of reloading (R; n = 8/diet group). Nonsuspended control animals were compared with suspended animals after 14 days of HS (n = 8) or after R (n = 8). HMB treatment prevented the decline in maximal in vivo isometric force output after 2 wk of recovery from hindlimb unloading. The HMB-treated animals had significantly greater plantaris and soleus fiber cross-sectional area compared with the vehicle-treated animals. HMB decreased the amount of TUNEL-positive nuclei in reloaded plantaris muscles (5.1% vs. 1.6%, P < 0.05) and soleus muscles (3.9% vs. 1.8%, P < 0.05). Although HMB did not significantly alter Bcl-2 protein abundance compared with vehicle treatment, HMB decreased Bax protein abundance following R, by 40% and 14% (P < 0.05) in plantaris and soleus muscles, respectively. Cleaved caspase-3 was reduced by 12% and 9% (P < 0.05) in HMB-treated reloaded plantaris and soleus muscles, compared with vehicle-treated animals. HMB reduced cleaved caspase-9 by 14% and 30% (P < 0.05) in reloaded plantaris and soleus muscles, respectively, compared with vehicle-treated animals. Although, HMB was unable to prevent unloading-induced atrophy, it attenuated the decrease in fiber area in fast and slow muscles after HS and R. HMB's ability to protect against muscle loss may be due in part to putative inhibition of myonuclear apoptosis via regulation of mitochondrial-associated caspase signaling.  相似文献   

5.
6.
A proteomic analysis was performed comparing normal slow twitch type fiber rat soleus muscle and normal fast twitch type fiber tibialis anterior muscle to immobilized soleus and tibialis anterior muscles at 0.5, 1, 2, 4, 6, 8 and 10 days post immobilization. Muscle mass measurements demonstrate mass changes throughout the period of immobilization. Proteomic analysis of normal and atrophied soleus muscle demonstrated statistically significant changes in the relative levels of 17 proteins. Proteomic analysis of normal and atrophied tibialis anterior muscle demonstrated statistically significant changes in the relative levels of 45 proteins. Protein identification using mass spectrometry was attempted for all differentially regulated proteins from both soleus and tibialis anterior muscles. Four differentially regulated soleus proteins and six differentially regulated tibialis anterior proteins were identified. The identified proteins can be grouped according to function as metabolic proteins, chaperone proteins, and contractile apparatus proteins. Together these data demonstrate that coordinated temporally regulated changes in the proteome occur during immobilization-induced atrophy in both slow twitch and fast twitch fiber type skeletal muscle.  相似文献   

7.
This article investigates how the internal structure of muscle and its relationship with tendon and even skeletal structures influence the translation of muscle fiber contractions into movement of a limb. Reconstructions of the anatomy of the human soleus muscle from the Visible Human Dataset (available from the National Library of Medicine), magnetic resonance images (MRI), and cadaver studies revealed a complex 3D connective tissue structure populated with pennate muscle fibers. The posterior aponeurosis and the median septum of the soleus form the insertion of the muscle and are continuous with the Achilles tendon. The distal extremities of the pennate muscle fibers attach to these structures. The anterior aponeurosis is located intramuscularly, between the posterior aponeurosis and the median septum. It forms the origin of the muscle and contacts the proximal extremities of the soleus muscle fibers. MRI measurements of in vivo tissue velocities during isometric contractions (20% and 40% maximum voluntary contractions) revealed a similarly complex 3D distribution of tissue movements. The distribution of velocities was similar to the distribution of major connective tissue structures within the muscle. During an isometric contraction, muscle fiber contractions move the median septum and posterior aponeurosis proximally, relative to the anterior aponeurosis. The pennate arrangement of muscle fibers probably amplifies muscle fiber length changes but not sufficiently to account for the twofold difference in muscle fiber length changes relative to excursion of the calcaneus. The discrepancy may be accounted for by an additional gain mechanism operating directly on the Achilles tendon by constraining the posterior movement of the tendon, which would otherwise occur due to the increasingly posterior location of the calcaneus in plantarflexeion.  相似文献   

8.
9.
Innervation of the tongue and associated musculature in plethodontid salamanders was studied using Palmgren stained sectioned materials, fresh dissection, and whole mounts of experimental specimens treated with horseradish peroxidase (HRP). Species studied were chosen to represent modes of tongue projection recognized by Lombard and Wake ('77). Special attention was given to species of the genera Plethodon, Batrachoseps, Pseudoeurycea, and Hydromantes, but representatives of other genera were investigated. As expected we found that cranial nerves IX and X and spinal nerve 1 supplied the muscles involved in tongue movement. The peripheral courses of the nerves were traced, and both functionally related and phylogenetically determined routes were found. As relative projection length increases, the nerves supplying the tongue tip also increase in length. When the tongue is at rest the long nerves are stored in coils. The coil of ramus lingualis lies between the ceratobranchials, but that of ramus hypoglossus is more variable, although constant within a species. Ramus hypoglossus bifurcates into separate branches to tongue and anterior musculature of the floor of the mouth. In generalized, presumably primitive, modes the bifurcation and coiling are far anterior. In most of the tongue projection modes bifurcation is relatively posterior, but in one, bifurcation is anterior, but coiling is relatively posterior in position. The most unusual condition is in Hydromantes, in which bifurcation is relatively posterior and a coiled ramus hypoglossus joins a coiled ramus lingualis to form a unique, coiled common ramus to the tongue tip. Hydromantes has the greatest projection distance of any salamander.  相似文献   

10.
Postural muscle activity pattern was examined in the eyes-closed state after adequate adaptation to floor anteroposterior oscillation. Twenty-three subjects were grouped almost evenly according to dominance of anterior or posterior postural muscles in the trunk and thigh during quiet stance. In the posterior-dominant group, this dominance was maintained at every frequency in most subjects. In the anterior-dominant group, this dominance was maintained in most subjects at 0.1 and 0.5 Hz but changed to posterior dominance at 1.0 and 1.5 Hz in about half the subjects. Periodicity of muscle activity was evaluated by EMG amplitude spectrum at the floor oscillation frequency. Periodicity of posterior-dominant muscles in the trunk and thigh increased with increasing oscillatory frequency. In the trunk, the periodicity did not differ significantly between posterior-dominant and anterior-dominant groups. However, in the thigh, periodicity was significantly lower in the anterior-dominant muscles. This was considered to be caused by nonperiodic alternating action of the anterior and posterior muscles. In the lower leg, posterior dominance was observed in quiet stance and at all oscillation frequencies. Periodicity of soleus and gastrocnemius increased at higher frequencies and was higher in gastrocnemius than in soleus. The periodicity difference between both muscles decreased with increasing oscillation frequency.  相似文献   

11.
The presence and pattern of coexistence of some biologically active substances in nerve fibres supplying the mammary gland in the immature pig were studied using immunohistochemical methods. The substances studied included: protein gene product 9.5 (PGP), tyrosine hydroxylase (TH), somatostatin (SOM), neuropeptide Y (NPY), galanin (GAL), calcitonin gene-related peptide (CGRP) and substance P (SP). The mammary gland was found to be richly supplied by PGP-immunoreactive (PGP-IR) nerve fibres that surrounded blood vessels, bundles of smooth muscle cells and lactiferous ducts. The vast majority of these nerves also displayed immunoreactivity to TH. Immunoreactivity to SOM was observed in a moderate number of nerve fibres which were associated with smooth muscles of the nipple and blood vessels. Immunoreactivity to NPY occurred in many nerve fibres associated with blood vessels and in single nerves supplying smooth muscle cells. Solitary GAL-IR axons supplied mostly blood vessels. Many CGRP-IR nerve fibres were associated with both blood vessels and smooth muscles. SP-IR nerve fibres richly supplied blood vessels only. The colocalization study revealed that SOM, NPY and GAL partly colocalized with TH in nerve fibres supplying the porcine mammary gland.  相似文献   

12.
The metabolic integrity of fully regenerated transplants was investigated by measuring induced changes in glycogen concentration. The extensor digitorum longus and the soleus muscles were cross transplanted: the extensor digitorum longus into the soleus muscle bed (SOLT) and the soleus muscle into the extensor digitorum longus bed (EDLT). The histochemical fiber type distribution of the regenerated muscles was determined and was found to transform in cross-transplanted EDLT and SOLT. After transplantation and regeneration, both muscles had initially low glycogen concentrations. However, the EDLT glycogen concentration was not significantly different from that of the contralateral extensor digitorum longus control muscle after 60 days. In the SOLT, glycogen gradually increased but remained less than in the contralateral soleus control muscle. SOLT and control soleus muscles responded with a significant glycogen depletion to an epinephrine dose two orders of magnitude less than the lowest dose affecting glycogen levels in EDLT and extensor digitorum longus muscles. These results indicate that transplanted muscles are capable of regenerating normal glycogenolytic responses and that the sensitivity of the response observed depends on the site of transplantation and is related to the type of innervation and histochemical fiber type.  相似文献   

13.
Lipoprotein lipase was assayed in extracts of acetone-ether powders of rat skeletal muscles. Enzyme activity in soleus had typical characteristics of lipoprotein lipase in other tissues: inhibition by molar NaCl and protamine sulfate and activation by the human apolipoprotein, R-glutamic acid. Activity in muscles with predominantly red fibers (soleus, diaphragm, lateral head of gastrocnemius and anterior band of semitendinosus) was higher than in those with predominantly white fibers (body of gastrocnemius and posterior band of semitendinosus). No effect of a 24 hour fast upon enzyme activity was observed in ten skeletal muscles, but activity decreased substantially in four adipose tissue depots and increased slightly in heart muscle with fasting. Four minutes after intravenous injection of labeled lymph chylomicrons, skeletal muscles with predominantly red fibers incorporated several times more chylomicron triglyceride fatty acids than thos with predominantly white fibers. Estimated lipoprotein lipase activity in total skeletal muscle was about two-thirds that in total adipose tissue of rats fed ad libitum. After a 24 hour fast, total activity in skeletal muscle was about twice that in adipose tissue. These data suggest that a substantial fraction of lipoprotein lipase is in skeletal muscle of rats and that this tissue, especially its red fibers, is an important site of removal of triglycerides from the blood.  相似文献   

14.
15.
A reappraisal of the anatomy of the levator ani muscle in man   总被引:1,自引:0,他引:1  
A study of the attachments of the musculotendinous fibres of the levator ani muscle shows that it is made of two portions: a thick anterior portion which is mostly fleshy and a thin posterior portion which is mostly aponeurotic. The anterior portion consists of two layers: a superficial perineal layer and a deep pelvic layer. Both layers have a common origin from the back of the body of the pubic bone and the anterior part of the tendinous arch. In addition both layers make a U-shaped loop around the recto-anal junction. The posterior fibres of the deep pelvic layer received nerve supply only from the third and fourth sacral nerves. The rest of the muscle was supplied from the sacral nerves as well as the perineal branches of the pudendal nerve. The role of the anterior fibres in reinforcing the sphincters of the anal canal and fixation of the pelvic viscera is stressed. The close anatomical relation between the posterior portion of the muscle and the obturator internus suggests that the latter may play a role in supporting the weak posterior portion of the levator ani, especially during straining positions associated with lateral rotation at both hips.  相似文献   

16.
We investigated selected histochemical and histometrical characteristics of the heterogeneous fiber types of rat skeletal muscle following long-term compensatory muscle growth. Sixty days following surgical removal of the synergistic gastrocnemius muscle, the compensated ipsilateral plantaris and soleus muscles and the corresponding control muscles from the contralateral leg were excised and stained histochemically for myofibrillar ATPase and DPNH-diaphorase activities. The number of fibers per cross-section was determined by a direct count from transverse sections taken from the midportion of the muscles. Fiber area was determined by direct planimetry. The plantaris and soleus muscles hypertrophied 103% and 45%, respectively, within 60 days. Compensatory hypertrophy of the plantaris muscle was accompanied by a significant but disproportionate increase in the cross-sectional areas of the three muscle fiber types. There was an approximate 4-fold increase in the number of slow-twitch-oxidative (SO) fibers observed per transverse section. The hypertrophied plantaris muscle exhibited a significantly greater number of fibers per cross-section (29%) than the respective control muscle. The compensated soleus muscle consisted of nearly 100% SO fibers compared to 83% for the control soleus muscle.  相似文献   

17.
家兔胫骨前肌肌纤维型的分布研究   总被引:2,自引:0,他引:2  
根据家兔胫骨前肌的肌纤维起止、排列和神经支配特征,将该肌分为前、后两个亚体。利用家兔8例16侧胫骨前肌,按上述两个亚体分别取材,作恒冷箱冰冻横切,肌球蛋白ATP酶染色,将肌纤维分为Ⅰ型、ⅡA型、ⅡB型,检测各亚体的肌纤维型构成比例,肌束内肌纤维的分布特征,并用图象分析仪测量各亚体肌纤维横切面积和直径。结果发现,前、后亚体以Ⅱ型纤维居多,前亚体ⅡA型纤维高达35.4%,后亚体Ⅰ型纤维多达24.5%,两者的ⅡB型纤维均达50%左右。而左、右侧之间无差异,肌束周边部内Ⅰ型纤维仅占12.7~13.3%,ⅡB型纤维高达59.9~60.0%,说明受肌束膜压迫影响,ⅡB型肌纤维血供少,以适应无氧酵解的功能。各亚体的Ⅰ型纤维较细,Ⅱ型纤维较Ⅱ粗,A型与ⅡB型二者相似。作者认为,前亚体主要参与快速有力的足背屈运动,后亚体则维持踝关节的稳定,保持足弓的形状和弹性,以便适应该肌的站立、跑动和跳跃的功能。  相似文献   

18.
Cross-reinnervation studies performed ex ovo with newly hatched chicks demonstrate that peripheral motor neurons control the phenotypic characteristics of avian muscles. The present experiments were designed to determine whether or not nerves play a similar role during the initial expression of muscle fiber types. Previous experiments indicated that differentiation of specific fiber types occurs during the first week of embryogenesis, temporally coincident with the penetration of nerves within muscle masses. These observations suggested that peripheral nerves may be associated with the initial differentiation of fiber types. To test this hypothesis directly, anterior limb buds of the chick embryo were rendered aneurogenic by deletion of the brachial segment of the neural tube. To ensure a completely aneurogenic environment for developing brachial muscles, surgery was performed at day 2 in ovo before the exit of ventral root fibers. Experimental and control embryos from Stage (St) 25 (4.5 d) through St 45 (19d) were analyzed histochemically by a silver-cholinesterase reaction to detect nerves and by the myosin ATPase reaction, following alkali and acid preincubation, to determine the fiber type composition of the muscles. In addition, the total volume of aneurogenic and control muscles was compared. Results demonstrate that the characteristic myosin ATPase profiles of individual aneurogenic and innervated (control) muscles were identical throughout the entire period analyzed. Therefore, we conclude that these enzymic profiles are endogenously expressed and are not under neuronal control during early embryogenesis. Furthermore, the entire sequence of events from the migration of myogenic cells to the anterior limb bud through the division of the primary muscle masses to form individual brachial muscles proceeded on schedule in the absence of nerves. Since the growth of aneurogenic muscles was impaired, we conclude that during embryogenesis peripheral motor nerves are necessary initially for the proper growth of muscles and ultimately, for their survival. They are not involved, however, with either the initial formation or initial differentiation of individual brachial muscles.  相似文献   

19.
Estimation of instantaneous moment arms of lower-leg muscles   总被引:2,自引:0,他引:2  
Muscle moment arms at the human knee and ankle were estimated from muscle length changes measured as a function of joint flexion angle in cadaver specimens. Nearly all lower-leg muscles were studied: extensor digitorum longus, extensor hallucis longus, flexor digitorum longus, flexor hallucis longus, gastrocnemius lateralis, gastrocnemius medialis, peroneus brevis, peroneus longus, peroneus tertius, plantaris, soleus, tibialis anterior, and tibialis posterior. Noise in measured muscle length was filtered by means of quintic splines. Moment arms of the mm. gastrocnemii appear to be much more dependent on joint flexion angles than was generally assumed by other investigators. Some consequences for earlier analyses are mentioned.  相似文献   

20.
In mice, certain proteins show a highly confined expression in specific muscle groups. Also, resting and exercise/contraction-induced phosphorylation responses are higher in rat skeletal muscle with low mitochondrial content compared to muscles with high mitochondrial content, possibly related to differential reactive oxygen species (ROS)-scavenging ability or resting glycogen content. To evaluate these parameters in humans, biopsies from soleus, gastrocnemius and vastus lateralis muscles were taken before and after a 45 min inclined (15%) walking exercise bout at 69% VO2(max) aimed at simultaneously activating soleus and gastrocnemius in a comparable dynamic work-pattern. Hexokinase II and GLUT4 were 46-59% and 26-38% higher (p<0.05) in soleus compared to the two other muscles. The type I muscle fiber percentage was highest in soleus and lowest in vastus lateralis. No differences were found in protein expression of signalling proteins (AMPK subunits, eEF2, ERK1/2, TBC1D1 and 4), mitochondrial markers (F1 ATPase and COX1) or ROS-handling enzymes (SOD2 and catalase). Gastrocnemius was less active than soleus measured as EMG signal and glycogen use yet gastrocnemius displayed larger increases than soleus in phosphorylation of AMPK Thr172, eEF2 Thr56 and ERK 1/2 Thr202/Tyr204 when normalised to the mean relative EMG-signal. In conclusion, proteins with muscle-group restricted expression in mice do not show this pattern in human lower extremity muscle groups. Nonetheless the phosphorylation-response is greater for a number of kinase signalling pathways in human gastrocnemius than soleus at a given activation-intensity. This may be due to the combined subtle effects of a higher type I muscle fiber content and higher training status in soleus compared to gastrocnemius muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号