首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Elastic modulus and stress-transfer properties of tunicate cellulose whiskers   总被引:10,自引:0,他引:10  
Experimental deformation micromechanics of natural cellulose fibers using Raman spectroscopy and X-ray diffraction have been widely reported. However, little has been published on the direct measurements of the mechanical properties, and in particular the elastic modulus, of the highly crystalline material in the native state. Here we report on measurements of the elastic modulus of tunicate cellulose using a Raman spectroscopic technique. A dispersed sample of the material is deformed using a four-point bending test, and a shift in a characteristic Raman band (located at 1095 cm(-1)) is used as an indication of the stress in the material. Relatively little intensity change of the Raman band located at 1095 cm(-1) is shown to occur for samples oriented parallel and perpendicular to the polarization direction of the laser, as compared to a highly oriented flax sample. This indicates that the tunicate sample is a two-dimensional in-plane random network of fibers. By use of this result, the Raman shift, and calibrations with strain from other materials, it is shown that the modulus of the material is very high, at about 143 GPa, and a lack of Raman band broadening is thought to be due to the fact that there is pure crystalline deformation occurring without the effect of crystalline/amorphous fractions. A strain sensitivity of the shift in the 1095-cm(-1) Raman peak for this specimen is shown to be -2.4 +/- 0.2 cm(-1)/%. A molecular mechanics approach, using computer simulation and an empirical force field, was used to predict the modulus of a highly oriented chain of the material, and this is found to be 145 GPa, which is in agreement with the experimental data. However, by use of a normal-mode analysis, it is found that a number of modes have positions close to the central positions of the experimental Raman band. One in particular is found to shift at a rate of 2.5 cm(-1)/%, but due to the complex nature of the structure, it is not entirely conclusive that this band is representative of the experimental findings.  相似文献   

2.
The deformation micromechanics of bacterial cellulose (BC) and microfibrillated cellulose (MFC) networks have been investigated using Raman spectroscopy. The Raman spectra of both BC and MFC networks exhibit a band initially located at ≈ 1095 cm(-1). We have used the intensity of this band as a function of rotation angle of the specimens to study the cellulose fibril orientation in BC and MFC networks. We have also used the change in this peak's wavenumber position with applied tensile deformation to probe the stress-transfer behavior of these cellulosic materials. The intensity of this Raman band did not change significantly with rotation angle, indicating an in-plane 2D network of fibrils with uniform random orientation; conversely, a highly oriented flax fiber exhibited a marked change in intensity with rotation angle. Experimental data and theoretical analysis shows that the Raman band shift rate arising from deformation of networks under tension is dependent on the angles between the axis of fibrils, the strain axis, the incident laser polarization direction, and the back scattered polarization configurations. From this analysis, the effective moduli of single fibrils of BC and MFC in the networks were estimated to be in the ranges of 79-88 and 29-36 GPa, respectively. It is shown also that for the model to fit the data it is necessary to use a negative Poisson's ratio for MFC networks and BC networks. Discussion of this in-plane "auxetic" behavior is given.  相似文献   

3.
The mechanically induced molecular deformation of cellulose nanowhiskers embedded in subpercolation concentration in an epoxy resin matrix was monitored through Raman spectroscopy. Cellulose nanowhiskers isolated by sulfuric acid hydrolysis from tunicates and by sulfuric acid hydrolysis and hydrochloric acid hydrolysis from cotton were used to study how the aspect ratio (ca. 76 for tunicate and 19 for cotton) and surface charges (38 and 85 mmol SO(4)(-)/kg for sulfuric acid hydrolysis of cotton and tunicate, respectively; no detectable surface charges for hydrochloric acid hydrolysis) originating from the isolation process influence stress transfer in such systems. Atomic force microscopy confirmed that uncharged cellulose nanowhiskers produced by hydrochloric acid hydrolysis have a much higher tendency to aggregate than the charged cotton or tunicate nanowhiskers. Each of these nanowhisker types was incorporated in a concentration of 0.7 vol % in a thermosetting epoxy resin matrix. Mechanically induced shifts of the Raman peak initially located at 1095 cm(-1) were used to express the level of deformation imparted to the nanowhiskers embedded in the resin. Much larger shifts of the diagnostic Raman band were observed for nanocomposites with tunicate nanowhiskers than for the corresponding samples comprising cotton nanowhiskers. In the case of nanocomposites comprising nanowhiskers produced by hydrochloric acid hydrolysis, no significant Raman band shift was observed. These results are indicative of different modes of stress transfer, which in turn appear to originate from the different sample morphologies.  相似文献   

4.
Cotton fiber cellulose is highly crystalline and oriented; when native cellulose (cellulose I) is treated with certain alkali concentrations, intermolecular hydrogen bonds are broken and Na-cellulose I is formed. At higher alkali concentrations Na-cellulose II forms, wherein intermolecular and intramolecular hydrogen bonds are broken, ultimately resulting in cellulose II polymers. Crystallinity changes in cotton fibers were observed and assigned using attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectroscopy and X-ray diffraction (XRD) subsequent to sodium hydroxide treatment and compared with an in situ protein-binding methodology using cellulose-directed carbohydrate-binding modules (CBMs). Crystallinity changes observed using CBM probes for crystalline cellulose (CBM2a, CBM3a) and amorphous cellulose (CBM4-1, CBM17) displayed close agreement with changes in crystallinity observed with ATR-FTIR techniques, but it is notable that crystallinity changes observed with CBMs are observed at lower NaOH concentrations (2.0 mol dm(-3)), indicating these probes may be more sensitive in detecting crystallinity changes than those calculated using FTIR indices. It was observed that the concentration of NaOH at which crystallinity changes occur as analyzed using the CBM labeling techniques are also lower than those observed using X-ray diffraction techniques. Analysis of crystallinity changes in cellulose using CBMs offers a new and advantageous method of qualitative and quantitative assessment of changes to the structure of cellulose that occur with sodium hydroxide treatment.  相似文献   

5.
Raman spectra were acquired in situ during tensile straining of mechanically isolated fibers of spruce latewood. Stress-strain curves were evaluated along with band positions and intensities to monitor molecular changes due to deformation. Strong correlations (r = 0.99) were found between the shift of the band at 1097 cm(-1) corresponding to the stretching of the cellulose ring structure and the applied stress and strain. High overall shifts (-6.5 cm(-1)) and shift rates (-6.1 cm(-1)/GPa) were observed. After the fiber failed, the band was found on its original position again, proving the elastic nature of the deformation. Additionally, a decrease in the band height ratio of the 1127 and 1097 cm(-1) bands was observed to go hand in hand with the straining of the fiber. This is assumed to reflect a widening of the torsion angle of the glycosidic C-O-C bonding. Thus, the 1097 cm(-1) band shift and the band height ratio enable one to follow the stretching of the cellulose at a molecular level, while the lignin bands are shown to be unaffected. Observed changes in the OH region are shown and interpreted as a weakening of the hydrogen-bonding network during straining. Future experiments on different native wood fibers with variable chemical composition and cellulose orientation and on chemically and enzymatically modified fibers will help to deepen the micromechanical understanding of plant cell walls and the associated macromolecules.  相似文献   

6.
Orientation of cellulose nanowhiskers (CNWs) derived from tunicates, in an all-cellulose nanocomposite, is achieved through the application of a magnetic field. CNWs are incorporated into a dissolved cellulose matrix system and during solvent casting of the nanocomposite a magnetic field is applied to induce their alignment. Unoriented CNW samples, without the presence of a magnetic field, are also produced. The CNWs are found to orient under the action of the magnetic field, leading to enhanced stiffness and strength of the composites, but not to the level that is theoretically predicted for a fully aligned system. Lowering the volume fraction of the CNWs is shown to allow them to orient more readily in the magnetic field, leading to larger relative increases in the mechanical properties. It is shown, using polarized light microscopy, that the all-cellulose composites have a domain structure, with some domains showing pronounced orientation of CNWs and others where no preferred orientation occurs. Raman spectroscopy is used to both follow the position of bands located at ~1095 and ~895 cm(-1) with deformation and also their intensity as a function rotation angle of the specimens. It is shown that these approaches give valuable independent information on the respective molecular deformation and orientation of the CNWs, and the molecules in the matrix phase, in oriented and nonoriented domains of all-cellulose composites. These data are then related to an increase in the level of molecular deformation in the axial direction, as revealed by the Raman technique. Little orientation of the matrix phase is observed under the action of the magnetic field indicating the dominance of the stiff CNWs in governing mechanical properties.  相似文献   

7.
Oh SY  Yoo DI  Shin Y  Kim HC  Kim HY  Chung YS  Park WH  Youk JH 《Carbohydrate research》2005,340(15):2376-2391
Crystalline structures of cellulose (named as Cell 1), NaOH-treated cellulose (Cell 2), and subsequent CO2-treated cellulose (Cell 2-C) were analyzed by wide-angle X-ray diffraction and FTIR spectroscopy. Transformation from cellulose I to cellulose II was observed by X-ray diffraction for Cell 2 treated with 15-20 wt% NaOH. Subsequent treatment with CO2 also transformed the Cell 2-C treated with 5-10 wt% NaOH. Many of the FTIR bands including 2901, 1431, 1282, 1236, 1202, 1165, 1032, and 897 cm(-1) were shifted to higher wave number (by 2-13 cm(-1)). However, the bands at 3352, 1373, and 983 cm(-1) were shifted to lower wave number (by 3-95 cm(-1)). In contrast to the bands at 1337, 1114, and 1058 cm(-1), the absorbances measured at 1263, 993, 897, and 668 cm(-1) were increased. The FTIR spectra of hydrogen-bonded OH stretching vibrations at around 3352 cm(-1) were resolved into three bands for cellulose I and four bands for cellulose II, assuming that all the vibration modes follow Gaussian distribution. The bands of 1 (3518 cm(-1)), 2 (3349 cm(-1)), and 3 (3195 cm(-1)) were related to the sum of valence vibration of an H-bonded OH group and an intramolecular hydrogen bond of 2-OH ...O-6, intramolecular hydrogen bond of 3-OH...O-5 and the intermolecular hydrogen bond of 6-O...HO-3', respectively. Compared with the bands of cellulose I, a new band of 4 (3115 cm(-1)) related to intermolecular hydrogen bond of 2-OH...O-2' and/or intermolecular hydrogen bond of 6-OH...O-2' in cellulose II appeared. The crystallinity index (CI) was obtained by X-ray diffraction [CI(XD)] and FTIR spectroscopy [CI(IR)]. Including absorbance ratios such as A1431,1419/A897,894 and A1263/A1202,1200, the CI(IR) was evaluated by the absorbance ratios using all the characteristic absorbances of cellulose. The CI(XD) was calculated by the method of Jayme and Knolle. In addition, X-ray diffraction curves, with and without amorphous halo correction, were resolved into portions of cellulose I and cellulose II lattice. From the ratio of the peak area, that is, peak area of cellulose I (or cellulose II)/total peak area, CI(XD) were divided into CI(XD-CI) for cellulose I and CI(XD-CII) for cellulose II. The correlation between CI(XD-CI) (or CI(XD-CII)) and CI(IR) was evaluated, and the bands at 2901 (2802), 1373 (1376), 897 (894), 1263, 668 cm(-1) were good for the internal standard (or denominator) of CI(IR), which increased the correlation coefficient. Both fraction of the absorbances showing peak shift were assigned as the alternate components of CI(IR). The crystallite size was decreased to constant value for Cell 2 treated at >or= 15 wt% NaOH. The crystallite size of Cell 2-C (cellulose II) was smaller than that of Cell 2 (cellulose I) treated at 5-10 wt% NaOH. But the crystallite size of Cell 2-C (cellulose II) was larger than that of Cell 2 (cellulose II) treated at 15-20 wt% NaOH.  相似文献   

8.
The molecular deformation of both silkworm (Bombyx mori) and spider dragline (Nephila edulis) silks has been studied using a combination of mechanical deformation and Raman spectroscopy. The stress/strain curves for both kinds of silk showed elastic behavior followed by plastic deformation. It was found that both materials have well-defined Raman spectra and that some of the bands in the spectra shift to lower frequency under the action of tensile stress or strain. The band shift was linearly dependent upon stress for both types of silk fiber. This observation provides a unique insight into the effect of tensile deformation upon molecular structure and the relationship between structure and mechanical properties. Two similar bands in the Raman spectra of both types of silk in the region of 1000-1300 cm(-1) had significant identical rates of Raman band shift of about 7 cm(-1)/GPa and 14 cm(-1)/GPa demonstrating the similarity between the silk fibers from two different animals.  相似文献   

9.
A metastable state of myoglobin is produced by reduction of metmyoglobin at low temperatures. This is done either by irradiation with x-rays at 80 K or by electron transfer from photoexcited tris(2, 2'-bipyridine)-ruthenium(II) at 20 K. At temperatures above 150 K, the conformational transition toward the equilibrium deoxymyoglobin is observed. X-ray crystallography, Raman spectroscopy, and temperature-dependent optical absorption spectroscopy show that the metastable state has a six-ligated iron low-spin center. The x-ray structure at 115K proves the similarity of the metastable state with metmyoglobin. The Raman spectra yield the high-frequency vibronic modes and give additional information about the distortion of the heme. Analysis of the temperature dependence of the line shape of the Soret band reveals that a relaxation within the metastable state starts at approximately 120 K. Parameters representative of static properties of the intermediate state are close to those of CO-ligated myoglobin, while parameters representative of dynamics are close to deoxymyoglobin. Thus within the metastable state the relaxation to the equilibrium is initiated by changes in the dynamic properties of the active site.  相似文献   

10.
Raman spectroscopy has been used in investigating the conformational transitions of poly-L -alanine (PLA) induced by mechanical deformation. We see evidence of the alpha-helical, antiparallel beta-sheet, and a disordered conformation in PLA. The disordered conformation has not been discussed in previous infrared and X-ray diffraction investigations and may have local order similar to the left-handed 31 poly glycine helix. The amide III mode in the Raman spectrum of PLA is more sensitive than the amide I and II modes to changes in secondary structure of the polypeptide chain. Several lines below 1200 cm?1 are conformationally sensitive and may generally be useful in the analysis of Raman spectra of proteins. A line at 909 cm?1 decreases in intensity after deformation of PLA. In general only weak scattering is observed around 900 cm?1 in the Raman spectra of antiparallel beta-sheet polypeptides. The Raman spectra of the amide N–H deuterated PLA and poly-L -leucine (PLL) in the alpha-helical conformation and poly-L -valine (PLV) in the beta-sheet conformation are presented. Splitting is observed in the amide III mode of PLV and the components of this mode are assigned. The Raman spectrum of an alpha-helical random copolymer of L -leucine and L -glutamic acid is shown to be consistent with the spectra of other alphahelical polypeptides.  相似文献   

11.
DNA experiences numerous mechanical events, necessitating single-molecule force spectroscopy techniques to provide insight into DNA mechanics as a whole system. Inherent Brownian motion limits current force spectroscopy methods from observing possible bond level structural changes. We combine optical trapping and surface-enhanced Raman scattering to establish a direct relationship between DNA’s extension and structure in the low force, entropic regime. A DNA molecule is trapped close to a surface-enhanced Raman scattering substrate to facilitate a detectable Raman signal. DNA Raman modes shift in response to applied force, indicating phosphodiester mechanical alterations. Molecular dynamic simulations confirm the local structural alterations and the Raman sensitive band identified experimentally. The combined Raman and force spectroscopy technique, to our knowledge, is a novel methodology that can be generalized to all single-molecule studies.  相似文献   

12.
9-beta-D-arabinofuranosyaldenine-5'-monophosphate (5'-ara-AMP) is an arabinonucleotide that has antiviral and antitumor activity. The accurate knowledge of the nature of its vibrational modes is a valuable step for the forthcoming elucidation of drug-nucleotide and drug-enzyme interactions. The FTIR and FT Raman spectra (4000-30 cm(-1)) of 5'ara-AMP and two deuterated derivatives ara-AMP-d(C8) (deuteration in C8) and ara-AMP-d7 (deuteration in C8, amino and hydroxyl groups) are reported. Theoretical vibrational calculations were performed using the Hartree-Fock/6-31G** method. An assignment of the observed spectra is proposed considering the scaled potential energy distribution of the vibrational modes of the 5'ara-AMP molecule and the observed band shifts by deuteration. The scaled ab initio frequencies are in good agreement with the experimental data (<3 cm(-1) SD).  相似文献   

13.
R P Rava  T G Spiro 《Biochemistry》1985,24(8):1861-1865
Ultraviolet resonance Raman (RR) spectra, with 200- and 218-nm excitation from a H2-shifted quadrupled Nd:YAG laser, are reported for insulin and alpha-lactalbumin in dilute aqueous solution, at pH values known to produce differences in the exposure of the aromatic residues to solvent. At 200 nm, the spectra are dominated by tyrosine bands, whose intensity is lowered somewhat in protein conformations in which tyrosine is exposed to solvent. The expected shift in the relative intensities of the components of the approximately 850-cm-1 tyrosine doublet is difficult to discern because the higher energy component shows much greater resonance enhancement and the lower energy component appears as a weak shoulder. The peptide vibrations, amides I, II, and III, are also enhanced at 200 nm. The infrared active amide II mode is particularly prominent, although it is not observed in Raman spectra with visible excitation. In addition, the amide I band is quite broad in the 200-nm RR spectra, and the peak frequency is lower than that seen in visible excitation Raman spectra and is close to the infrared frequency. It appears that 200-nm excitation produces resonance enhancement of the infrared-active components of both amide I and amide II. Excitation at 218 nm enhances tryptophan modes strongly. The 876-cm-1 band, assigned to a deformation mode of the five-membered ring, shows a measurable upshift upon exposure of tryptophan to solvent, attributable to N-H hydrogen bonding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The dependence of pyrolysis behavior on the crystal state of cellulose   总被引:1,自引:0,他引:1  
Cellulose was dissolved in the ionic liquid 1-butyl-3-methylimidazolium chloride, and then regenerated from the solution by using different methods. Thermogravimetric analysis (TG)-Differential Scanning Calorimetry (DSC), X-ray diffraction (XRD), and Scanning Electron Microscopy (SEM) were used to characterize the structure of the original and regenerated cellulose. Cellulose II or amorphous cellulose was obtained by pouring cellulose solution into de-ioned water or pouring de-ioned water into cellulose solution, respectively. The pyrolysis behavior of original and regenerated cellulose was tested in a fixed bed reactor. The pyrolysis of cellulose I gave high content of furfural and 1,4;3,6-dianhydro-alpha-d-glucopyranose in the liquid products, and cellulose II and amorphous cellulose gave high content of furfural and 5-(hydroxymethyl)-2-furancarboxyaldehyde, with 5-(hydroxymethyl)-2-furancarboxyaldehyde the highest for cellulose II and furfural the highest for amorphous cellulose. And the treatment of the cellulose samples favored the removal of oxygen in the form of CO2 in the pyrolysis.  相似文献   

15.
The selective detection of crystalline cellulose in biomass was demonstrated with sum-frequency-generation (SFG) vibration spectroscopy. SFG is a second-order nonlinear optical response from a system where the optical centrosymmetry is broken. In secondary plant cell walls that contain mostly cellulose, hemicellulose, and lignin with varying concentrations, only certain vibration modes in the crystalline cellulose structure can meet the noninversion symmetry requirements. Thus, SFG can be used to detect and analyze crystalline cellulose selectively in lignocellulosic biomass without extraction of noncellulosic species from biomass or deconvolution of amorphous spectra. The selective detection of crystalline cellulose in lignocellulosic biomass is not readily achievable with other techniques such as XRD, solid-state NMR, IR, and Raman analyses. Therefore, the SFG analysis presents a unique opportunity to reveal the cellulose crystalline structure in lignocellulosic biomass.  相似文献   

16.
To structurally characterize the nonaggregated state of the amyloid beta peptide, which assembles into the hallmark fibrils of Alzheimer disease, we investigated the conformation of the N-terminal extracellular peptide fragment Abeta(1-28) in D(2)O at acidic pD by utilizing combined FTIR and isotropic and anisotropic Raman spectra measured between 1550 and 1750 cm(-1). Peptide aggregation is avoided under the conditions chosen. The amide I' band was found to exhibit a significant noncoincidence effect in that the first moment of the anisotropic Raman and of the IR band profile appears red-shifted from that of the isotropic Raman scattering. A simulation based on a coupled oscillator model involving all 27 amide I' modes of the peptide reveals that the peptide adopts a predominantly polyproline II conformation. Our results are inconsistent with the notion that the monomeric form of Abeta(1-28) is a totally disordered, random-coil structure. Generally, they underscore the notion that polyproline II is a characteristic motif of the unfolded state of proteins and peptides.  相似文献   

17.
Modeling protein flexibility constitutes a major challenge in accurate prediction of protein-ligand and protein-protein interactions in docking simulations. The lack of a reliable method for predicting the conformational changes relevant to substrate binding prevents the productive application of computational docking to proteins that undergo large structural rearrangements. Here, we examine how coarse-grained normal mode analysis has been advantageously applied to modeling protein flexibility associated with ligand binding. First, we highlight recent studies that have shown that there is a close agreement between the large-scale collective motions of proteins predicted by elastic network models and the structural changes experimentally observed upon ligand binding. Then, we discuss studies that have exploited the predicted soft modes in docking simulations. Two general strategies are noted: pregeneration of conformational ensembles that are then utilized as input for standard fixed-backbone docking and protein structure deformation along normal modes concurrent to docking. These studies show that the structural changes apparently "induced" upon ligand binding occur selectively along the soft modes accessible to the protein prior to ligand binding. They further suggest that proteins offer suitable means of accommodating/facilitating the recognition and binding of their ligand, presumably acquired by evolutionary selection of the suitable three-dimensional structure.  相似文献   

18.
The changes in the cellulose structure by compression milling were studied and expressed in terms of crystallinity, accessibility, specific surface area, and degree of polymerization. The kinetic parameters, maximum reaction rate, and Michaelis constant were determined experimentally. Based on the experimental results a two-phase model, which is based on the degradation of cellulose by simultaneous actions of the cellulase complex on the crystalline and amorphous phases, is proposed. The relationships between cellulose accessibility and the kinetic parameters were compared with those predicted by the model. A good agreement was found, although the two-phase hypothesis is a simplification of the true state of order in cellulose.  相似文献   

19.
We have studied the thermal denaturation of native basic pancreatic trypsin inhibitor (BPTI) by monitoring the Raman bands in the 4000-400 cm(-1) range. In agreement with results obtained by calorimetry, a cooperative melting transition is observed starting at 75 degrees C. This transition is found to involve predominantly the unfolding of helical structures accompanied by beta-aggregation, loss of hydrophobic interactions between side chains and changes in CSSC dihedral angles. However, salt bridge breaking starts near 40 degrees C, as deduced from the nu(s)(COO(-)) band and from the bands close to 1320 and 1345 cm(-1) which for the first time have been shown to be due largely to vibrations of the arginine guanidyl group in BPTI. The thermal stability is, hence, attributable to cooperative contributions from hydrophobic and backbone hydrogen bond interactions as well as from disulfide bonds.  相似文献   

20.
We carry out temperature-dependent lattice dynamics calculations to determine the vibrational normal modes associated with the interbase H-bond breathing motion in several B-DNA copolymers at temperatures from room temperature to the melting temperatures. We take into consideration Raman selection rules and incorporate a simple empirical model of Raman susceptibility in the interbase H bonds in our calculation and compare them to Raman measurements. Our calculations are carried out using empirical force constants that are not further refined to low-frequency spectra. Our calculations show the existence of strong interbase H-bond breathing modes at frequencies and with relative oscillator strengths close to the observed Raman peaks in the range of 60–140 cm?1 for the DNA sequences considered except for one helix. The correlation between the calculated and observed frequencies and oscillator strengths indicates that the observed Raman peaks in the frequency range are likely interbase H-bond breathing modes. We find that these modes exhibit sizable temperature as well as sequence dependence. We show the softening of these modes on approaching thermal denaturation that is also in agreement with the observed behavior in Raman and melting measurements. The sensitivity of the calculation on the empirical model of Raman susceptibility and the possible reasons for the discrepancy between a few calculated values and observations are discussed. © 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号