共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Berking S 《Journal of theoretical biology》2003,222(1):37-52
Current models of pattern formation in Hydra propose head-and foot-specific morphogens to control the development of the body ends and along the body length axis. In addition, these morphogens are proposed to control a cellular parameter (positional value, source density) which changes gradually along the axis. This gradient determines the tissue polarity and the regional capacity to form a head and a foot, respectively, in transplantation experiments. The current models are very successful in explaining regeneration and transplantation experiments. However, some results obtained render problems, in particular budding, the asexual way of reproduction is not understood. Here an alternative model is presented to overcome these problems. A primary system of interactions controls the positional values. At certain positional values secondary systems become active which initiate the local formation of e.g. mouth, tentacles, and basal disc. (i) A system of autocatalysis and lateral inhibition is suggested to exist as proposed by Gierer and Meinhardt (Kybernetik 12 (1972) 30). (ii) The activator is neither a head nor a foot activator but rather causes an increase of the positional value. (iii) On the other hand, a generation of the activator leads to its loss from cells and therewith to a (local) decrease of the positional value. (iv) An inhibitor is proposed to exist which antagonizes an increase of the positional value. External conditions like the gradient of positional values in the surroundings and interactions with other sites of morphogen production decide whether at a certain site of activator generation the positional value will increase (head formation), decrease (foot formation) or increase in the centre and decrease in the periphery thereby forming concentric rings (bud formation). Computer-simulation experiments show basic features of budding, regeneration and transplantation. 相似文献
3.
The basal chordate amphioxus resembles vertebrates in having a dorsal, hollow nerve cord, a notochord and somites. However, it lacks extensive gene duplications, and its embryos are small and gastrulate by simple invagination. Here we demonstrate that Nodal/Vg1 signaling acts from early cleavage through the gastrula stage to specify and maintain dorsal/anterior development while, starting at the early gastrula stage, BMP signaling promotes ventral/posterior identity. Knockdown and gain-of-function experiments show that these pathways act in opposition to one another. Signaling by these pathways is modulated by dorsally and/or anteriorly expressed genes including Chordin, Cerberus, and Blimp1. Overexpression and/or reporter assays in Xenopus demonstrate that the functions of these proteins are conserved between amphioxus and vertebrates. Thus, a fundamental genetic mechanism for axial patterning involving opposing Nodal and BMP signaling is present in amphioxus and probably also in the common ancestor of amphioxus and vertebrates or even earlier in deuterostome evolution. 相似文献
4.
5.
6.
We analyzed the interactions between mutations in antagonistic BMP pathway signaling components to examine the roles that the antagonists play in regulating BMP signaling activity. The dorsalized mutants swirl/bmp2b, snailhouse/bmp7, lost-a-fin/alk8, and mini fin/tolloid were each analyzed in double mutant combinations with the ventralized mutants chordino/chordin and ogon, whose molecular nature is not known. Similar to the BMP antagonist chordino, we found that the BMP ligand mutants swirl/bmp2b and snailhouse/bmp7 are also epistatic to the putative BMP pathway antagonist, ogon, excluding a class of intracellular antagonists as candidates for ogon. In ogon;mini fin double mutants, we observed a mutual suppression of the ogon and mini fin mutant phenotypes, frequently to a wild type phenotype. Thus, the Tolloid/Mini fin metalloprotease that normally cleaves and inhibits Chordin activity is dispensable, when Ogon antagonism is reduced. These results suggest that Ogon encodes a Tolloid and Chordin-independent antagonistic function. By analyzing genes whose expression is very sensitive to BMP signaling levels, we found that the absence of Ogon or Chordin antagonism did not increase the BMP activity remaining in swirl/bmp2b or hypomorphic snailhouse/bmp7 mutants. These results, together with other studies, suggest that additional molecules or mechanisms are essential in generating the presumptive gastrula BMP activity gradient that patterns the dorsal-ventral axis. Lastly we observed a striking increased penetrance of the swirl/bmp2b dominant dorsalized phenotype, when Chordin function is also absent. Loss of the BMP antagonist Chordin is expected to increase BMP signaling levels in a swirl heterozygote, but instead we observed an apparent decrease in BMP signaling levels and a loss of ventral tail tissue. As has been proposed for the fly orthologue of chordin, short gastrulation, our paradoxical results can be explained by a model whereby Chordin both antagonizes and promotes BMP activity. 相似文献
7.
Summary The effects of tumour promoters and carcinogens on bud formation were investigated in an attempt to clarify the primary process of bud formation in hydra. Treatment with 1.0ng/ml 12-O-tetradecanoylphorbol-13-acetate (TPA), phorbol-12,13-didecanoate (PDD) or mezerein added immediately after feeding rapidly and completely inhibited the formation of new buds in Hydra japonica. Treatment with TPA 3–6 h after feeding also suppressed bud formation 24 h later, but suppressed buds appeared 48 h later. Buds suppressed by TPA also formed in the presence of a diluted homogenate of hydra and during starvation. Carcinogens, such as benzo(a)pyrene and 20-methylcholanthrene, did not have an inhibitory effect on bud formation within 2 days. The tumour promoters and carcinogens used in this experiment did not inhibit the regeneration of tentacles. These results indicate that tumour-promoting phorbol esters, but not carcinogens, rapidly suppress the process by which the formation of buds is initiated by hydra, and the effects of these esters depend on the timing of treatment after feeding. 相似文献
8.
9.
Localization of Shh expression by Wnt and Eda affects axial polarity and shape of hairs 总被引:1,自引:0,他引:1
Axial patterning is a recurrent theme during embryonic development. To elucidate its fundamental principles, the hair follicle is an attractive model due to its easy accessibility and dispensability. Hair follicle asymmetry is evident from its angling and the localization of associated structures. However, axial patterning is not restricted to the follicle itself but also generates rotational hair shaft asymmetry which, for zigzag hairs, generates 3-4 bends that alternately point into opposite directions. Here we show by analyzing mutant and transgenic mice that WNT and ectodysplasin signaling are involved in the control of the molecular and morphological asymmetry of the follicle and the associated hair shaft, respectively. Asymmetry is affected by polarized WNT and ectodysplasin signaling in mature hair follicles. When endogenous signaling is impaired, molecular asymmetry is lost and mice no longer form zigzag hairs. Both signaling pathways affect the polarized expression of Shh which likely functions as a directional reference for hair shaft production in all follicles. We propose that this regulatory pathway also establishes follicular asymmetry during morphogenesis. Moreover, the identified molecular hierarchy offers a model for the periodic patterning of zigzag hairs mechanistically similar to mesodermal segmentation. 相似文献
10.
Nematogenesis, the production of stinging cells (nematocytes) in Cnidaria, can be considered as a model neurogenic process. Most molecular data concern the freshwater polyp Hydra, in which nematocyte production is scattered throughout the body column ectoderm, the mature cells then migrating to the tentacles. We have characterized tentacular nematogenesis in the Clytia hemisphaerica hydromedusa and found it to be confined to the ectoderm of the tentacle bulb, a specialized swelling at the tentacle base. Analysis by a variety of light and electron microscope techniques revealed that while cellular aspects of nematogenesis are similar to Hydra, the spatio-temporal characteristics are markedly more ordered. The tentacle bulb nematogenic ectoderm (TBE) was found to be polarized, with a clear progression of successive nematoblast stages from a proximal zone (comprising a majority of undifferentiated cells) to the distal end where the tentacle starts. Pulse-chase labelling experiments demonstrated a continuous displacement of differentiating nematoblasts towards the tentacle tip, and that nematogenesis proceeds more rapidly in Clytia than in Hydra. Compact expression domains of orthologues of known nematogenesis-associated genes (Piwi, dickkopf-3, minicollagens and NOWA) were correspondingly staggered along the TBE. These distinct characteristics make the Clytia TBE a promising experimental system for understanding the mechanisms regulating nematogenesis. 相似文献
11.
The enormous diversity of extant animal forms is a testament to the power of evolution, and much of this diversity has been achieved through the emergence of novel morphological traits. The origin of novel morphological traits is an extremely important issue in biology, and a frequent source of this novelty is co-option of pre-existing genetic systems for new purposes (Carroll et al., 2008). Appendages, such as limbs, fins and antennae, are structures common to many animal body plans which must have arisen at least once, and probably multiple times, in lineages which lacked appendages. We provide evidence that appendage proximodistal patterning genes are expressed in similar registers in the anterior embryonic neurectoderm of Drosophila melanogaster and Saccoglossus kowalevskii (a hemichordate). These results, in concert with existing expression data from a variety of other animals suggest that a pre-existing genetic system for anteroposterior head patterning was co-opted for patterning of the proximodistal axis of appendages of bilaterian animals. 相似文献
12.
13.
Vitamin A and its metabolites are known to be involved in patterning the vertebrate embryo. Study of the effect of vitamin A on axial skeletal patterning has been hindered by the fact that deficient embryos do not survive past midgestation. In this study, pregnant vitamin A-deficient rats were maintained on a purified diet containing limiting amounts of all-trans retinoic acid (12 microg atRA/g diet) and given a daily oral bolus dose of retinol starting at embryonic day 0.5, 8.25, 8.5, 8.75, 9.25, 9.5, 9.75, or 10.5. Embryos were recovered at E21.5 for analysis of the skeleton and at earlier times for analysis of select mRNAs. Normal axial skeletal development and patterning were observed in embryos from pregnant animals receiving retinol starting on or before E8.75. Delay of retinol supplementation to E9.5 or later resulted in a marked increase in both occurrence and severity of skeletal malformations, extending from the craniocervical to sacral regions. Embryos from the groups receiving retinol starting at E9.5 and E9.75 had one-vertebral anterior transformations of the cervical, thoracic, lumbar, and sacral vertebrae. Few embryos survived in the E10.5 group, but these embryos yielded the most severe and extensive anteriorization events. The skeletal alterations seen in vitamin A deficiency are associated with posterior shifts in the mesodermal expression of Hoxa-4, Hoxb-3, Hoxd-3, Hoxd-4, and Hoxa-9 mRNAs, whereas the anterior domains of Hoxb-4 and Cdx2 expression are unaltered. This work defines a critical window of development in the late gastrula-stage embryo when vitamin A is essential for normal axial skeletal patterning and shows that vitamin A deficiency causes anterior homeotic transformations extending from the cervical to lumbosacral regions. 相似文献
14.
Anselme I Laclef C Lanaud M Rüther U Schneider-Maunoury S 《Developmental biology》2007,304(1):208-220
During vertebrate development, brain patterning and head morphogenesis are tightly coordinated. In this paper, we study these processes in the mouse mutant Fused toes (Ft), which presents severe head defects at midgestation. The Ft line carries a 1.6-Mb deletion on chromosome 8. This deletion eliminates six genes, three members of the Iroquois gene family, Irx3, Irx5 and Irx6, which form the IrxB cluster, and three other genes of unknown function, Fts, Ftm and Fto. We show that in Ft/Ft embryos, both anteroposterior and dorsoventral patterning of the brain are affected. As soon as the beginning of somitogenesis, the forebrain is expanded caudally and the midbrain is reduced. Within the expanded forebrain, the most dorsomedial (medial pallium) and ventral (hypothalamus) regions are severely reduced or absent. Morphogenesis of the forebrain and optic vesicles is strongly perturbed, leading to reduction of the eyes and delayed or absence of neural tube closure. Finally, facial structures are hypoplastic. Given the diversity, localisation and nature of the defects, we propose that some of them are caused by the elimination of the IrxB cluster, while others result from the loss of one or several of the Fts, Ftm and Fto genes. 相似文献
15.
We have identified in Caenorhabditis elegans a homologue of the vertebrate Crim1, crm-1, which encodes a putative transmembrane protein with multiple cysteine-rich (CR) domains known to have bone morphogenetic proteins (BMPs) binding activity. Using the body morphology of C. elegans as an indicator, we showed that attenuation of crm-1 activity leads to a small body phenotype reminiscent of that of BMP pathway mutants. We showed that the crm-1 loss-of-function phenotype can be rescued by constitutive supply of sma-4 activity. crm-1 can enhance BMP signaling and this activity is dependent on the presence of the DBL-1 ligand and its receptors. crm-1 is expressed in neurons at the ventral nerve cord, where the DBL-1 ligand is produced. However, ectopic expression experiments reveal that crm-1 gene products act outside the DBL-1 producing cells and function non-autonomously to facilitate dbl/sma pathway signaling to control body size. 相似文献
16.
17.
18.
He X Yan YL Eberhart JK Herpin A Wagner TU Schartl M Postlethwait JH 《Developmental biology》2011,(2):463-477
Vertebrate Hox clusters contain protein-coding genes that regulate body axis development and microRNA (miRNA) genes whose functions are not yet well understood. We overexpressed the Hox cluster microRNA miR-196 in zebrafish embryos and found four specific, viable phenotypes: failure of pectoral fin bud initiation, deletion of the 6th pharyngeal arch, homeotic aberration and loss of rostral vertebrae, and reduced number of ribs and somites. Reciprocally, miR-196 knockdown evoked an extra pharyngeal arch, extra ribs, and extra somites, confirming endogenous roles of miR-196. miR-196 injection altered expression of hox genes and the signaling of retinoic acid through the retinoic acid receptor gene rarab. Knocking down rarab mimicked the pectoral fin phenotype of miR-196 overexpression, and reporter constructs tested in tissue culture and in embryos showed that the rarab 3′UTR is a miR-196 target for pectoral fin bud initiation. These results show that a Hox cluster microRNA modulates development of axial patterning similar to nearby protein-coding Hox genes, and acts on appendicular patterning at least in part by modulating retinoic acid signaling. 相似文献
19.
von Bubnoff A Peiffer DA Blitz IL Hayata T Ogata S Zeng Q Trunnell M Cho KW 《Developmental biology》2005,281(2):210-226
The complex gene regulatory networks governed by growth factor signaling are still poorly understood. In order to accelerate the rate of progress in uncovering these networks, we explored the usefulness of interspecies sequence comparison (phylogenetic footprinting) to identify conserved growth factor response elements. The promoter regions of two direct target genes of Bone Morphogenetic Protein (BMP) signaling in Xenopus, Xvent2 and XId3, were compared with the corresponding human and/or mouse counterparts to identify conserved sequences. A comparison between the Xenopus and human Vent2 promoter sequences revealed a highly conserved 21 bp sequence that overlaps the previously reported Xvent2 BMP response element (BRE). Reporter gene assays using Xenopus animal pole ectodermal explants (animal caps) revealed that this conserved 21 bp BRE is both necessary and sufficient for BMP responsiveness. We combine the same phylogenetic footprinting approach with luciferase assays to identify a highly conserved 49 bp BMP responsive region in the Xenopus Id3 promoter. GFP reporters containing multimers of either the Xvent2 or XId3 BREs appear to recapitulate endogenous BMP signaling activity in transgenic Xenopus embryos. Comparison of the Xvent2 and the XId3 BRE revealed core sequence features that are both necessary and sufficient for BMP responsiveness: a Smad binding element (SBE) and a GC-rich element resembling an OAZ binding site. Based on these findings, we have implemented genome scanning to identify over 100 additional putative target genes containing 2 or more BRE-like sequences which are conserved between human and mouse. RT-PCR and in situ analyses revealed that this in silico approach can effectively be used to identify potential BMP target genes. 相似文献
20.
doubleridge is a transgene-induced mutation characterized by polydactyly and syndactyly of the forelimbs. The transgene insertion maps to the proximal region of chromosome 19. During embryonic development of the mutant forelimb, delayed elevation and compaction of the apical ectodermal ridge (AER) produces a ridge that is abnormally broad and flat. Fgf8 expression persists in the ventral forelimb ectoderm of the mutant until E10.5. Strong expression of Fgf8 and other markers at the borders of the AER at E11.5 gives the appearance of a double ridge. At E11.5, apoptotic cells are distributed across the broadened ridge, but at E13.5, there is reduced apoptosis in the interdigital regions. The Shh expression domain is widely spaced at the posterior margin of the AER. The doubleridge AER is morphologically similar to that of En1 null mice, but the expression of En1 and Wnt7a is properly restricted in doubleridge, and the dorsal and ventral structures are correctly determined. doubleridge thus exhibits an unusual limb phenotype combining abnormal compaction of the AER with normal dorsal/ventral patterning. 相似文献