首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human kallikrein-related peptidases (KLKs) are (chymo)-trypsin-like serine proteinases that are expressed in a variety of tissues such as prostate, ovary, breast, testis, brain, and skin. Although their physiological functions have been only partly elucidated, many of the KLKs appear to be useful prognostic cancer markers, showing distinct correlations between their expression levels and different stages of cancer. Recent advances in the purification of 'new type' recombinant KLKs allowed solution of the crystal structures of KLK4, KLK5, KLK6, and KLK7. Along with these data, enzyme kinetic studies and extended substrate specificity profiling have led to an understanding of the non-prime-side substrate preferences of KLK4, 5, 6, and 7. The shape and polarity of the specificity pockets S1-S4 explain well their substrate preferences. KLK4, 5, and 6 exhibit trypsin-like specificity, with a strong preference for Arg at the P1 position of substrates. In contrast, KLK7 displays a unique chymotrypsin-like specificity for Tyr, which is also preferred at P2. All four KLKs show little specificity for P3 residues and have a tendency to accept hydrophobic residues at P4. Interestingly, for KLK4, 5, and 7 extended charged surface regions were observed that most likely serve as exosites for physiological substrates.  相似文献   

2.
An array of substrates link the tryptic serine protease, kallikrein-related peptidase 14 (KLK14), to physiological functions including desquamation and activation of signaling molecules associated with inflammation and cancer. Recognition of protease cleavage sequences is driven by complementarity between exposed substrate motifs and the physicochemical signature of an enzyme's active site cleft. However, conventional substrate screening methods have generated conflicting subsite profiles for KLK14. This study utilizes a recently developed screening technique, the sparse matrix library, to identify five novel high-efficiency sequences for KLK14. The optimal sequence, YASR, was cleaved with higher efficiency (k(cat)/K(m)=3.81 ± 0.4 × 10(6) M(-1) s(-1)) than favored substrates from positional scanning and phage display by 2- and 10-fold, respectively. Binding site cooperativity was prominent among preferred sequences, which enabled optimal interaction at all subsites as indicated by predictive modeling of KLK14/substrate complexes. These simulations constitute the first molecular dynamics analysis of KLK14 and offer a structural rationale for the divergent subsite preferences evident between KLK14 and closely related KLKs, KLK4 and KLK5. Collectively, these findings highlight the importance of binding site cooperativity in protease substrate recognition, which has implications for discovery of optimal substrates and engineering highly effective protease inhibitors.  相似文献   

3.
Human kallikrein-related peptidases (KLKs) are a family of 15 serine proteases mainly known for their biomarker utility in various neoplastic and non-neoplastic diseases. Despite significant progress in understanding their clinical application, little is known about the activation mechanism(s) of this important family of enzymes. Emerging evidence indicates that KLKs are activated in a stepwise manner, which is a characteristic of proteolytic cascades. Thus far, KLK cascades have been implicated in semen liquefaction and skin desquamation. Many members of the KLK family have been reported to be active in seminal plasma and/or skin, suggesting their involvement in common proteolytic cascades. KLK14, in particular, is highly active and has recently been proposed as one of the key trypsin-like proteases involved in skin desquamation. This study aims to elucidate a probable cascade-mediated role of KLK14 by 1) examining KLK14-mediated cleavage of a heptapeptide library encompassing activation sites of the 15 KLKs and 2) verifying activation of certain candidate downstream targets of KLK14 (i.e. pro-KLK1, -KLK3, and -KLK11). Heptapeptides encompassing activation motifs of KLK2, -3, -5, and -11 were cleaved with a high (> or =85%) cleavage efficiency. Activation of these candidates was confirmed using full-length recombinant proteins. Pro-KLK11, -KLK3, and -KLK1 were rapidly activated in a concentration-dependent manner. Pro-KLK3 regulation was bidirectional because activation was followed by inactivation via internal cleavage of active KLK3. We are proposing a putative cascade model, operating through multiple KLKs. Identification of novel members of such proteolytic cascades will aid in further defining mechanisms involved in seminal/skin homeostasis.  相似文献   

4.
Desquamation of the stratum corneum is a serine protease-dependent process. Two members of the human tissue kallikrein (KLK) family of (chymo)tryptic-like serine proteases, KLK5 and KLK7, are implicated in desquamation by digestion of (corneo)desmosomes and inhibition by desquamation-related serine protease inhibitors (SPIs). However, the epidermal localization and specificity of additional KLKs also supports a role for these enzymes in desquamation. This study aims to delineate the probable contribution of KLK1, KLK5, KLK6, KLK13, and KLK14 to desquamation by examining their interactions, in vitro, with: 1) colocalized SPI, lympho-epithelial Kazal-type-related inhibitor (LEKTI, four recombinant fragments containing inhibitory domains 1-6 (rLEKTI(1-6)), domains 6-8 and partial domain 9 (rLEKTI(6-9')), domains 9-12 (rLEKTI(9-12)), and domains 12-15 (rLEKTI(12-15)), secretory leukocyte protease inhibitor, and elafin and 2) their ability to digest the (corneo)desmosomal cadherin, desmoglein 1. KLK1 was not inhibited by any SPI tested. KLK5, KLK6, KLK13, and KLK14 were potently inhibited by rLEKTI(1-6), rLEKTI(6-9'), and rLEKTI(9-12) with Ki values in the range of 2.3-28.4 nm, 6.1-221 nm, and 2.7-416 nm for each respective fragment. Only KLK5 was inhibited by rLEKTI(12-15) (Ki = 21.8 nm). No KLK was inhibited by secretory leukocyte protease inhibitor or elafin. Apart from KLK13, all KLKs digested the ectodomain of desmoglein 1 within cadherin repeats, Ca2+ binding sites, or in the juxtamembrane region. Our study indicates that multiple KLKs may participate in desquamation through cleavage of desmoglein 1 and regulation by LEKTI. These findings may have clinical implications for the treatment of skin disorders in which KLK activity is elevated.  相似文献   

5.
Kallikrein-related peptidases (KLKs) are a group of serine proteases, expressed in several tissues. Their activity is regulated by inhibitors including members of the serine protease of Kazal-type (SPINK) family. Recently, we discovered that SPINK6 is expressed in human skin and inhibits KLK5, KLK7, KLK14 but not KLK8. In this study we tested whether SPINK6 inhibits other members of the KLK family and caspase-14. Using chromogenic substrates, SPINK6 exhibited inhibitory activity against KLK12 and KLK13 with Ki around 1 nM, KLK4 with Ki = 27.3 nM, KLK6 with Ki = 140 nM, caspase-14 with a Ki approximating 1 μM and no activity against KLK1, KLK3 and KLK11. Taken together, SPINK6 is a potent inhibitor of distinct KLKs members.  相似文献   

6.
Hepatocyte growth factor activator (HGFA) is a serine protease and a potent activator of prohepatocyte growth factor/scatter factor (pro-HGF/SF), a multifunctional growth factor that is critically involved in tissue morphogenesis, regeneration, and tumor progression. HGFA circulates as a zymogen (pro-HGFA) and is activated in response to tissue injury. Although thrombin is considered to be an activator of pro-HGFA, alternative pro-HGFA activation pathways in tumor microenvironments remain to be identified. In this study, we examined the effects of kallikrein 1-related peptidases (KLKs), a family of extracellular serine proteases, on the activation of pro-HGFA. Among the KLKs examined (KLK2, KLK3, KLK4 and KLK5), we identified KLK4 and KLK5 as novel activators of pro-HGFA. Using N-terminal sequencing, the cleavage site was identified as the normal processing site, Arg407-Ile408. The activation of pro-HGFA by KLK5 required a negatively charged substance such as dextran sulfate, whereas KLK4 could process pro-HGFA without dextran sulfate. KLK5 showed more efficient pro-HGFA processing than KLK4, and was expressed in 50% (13/25) of the tumor cell lines examined. HGFA processed by these KLKs efficiently activated pro-HGF/SF, and led to cellular scattering and invasion in vitro. The activities of both KLK4 and KLK5 were strongly inhibited by HGFA inhibitor type 1, an integral membrane Kunitz-type serine protease inhibitor that inhibits HGFA and other pro-HGF/SF-activating proteases. These data suggest that KLK4 and KLK5 mediate HGFA-induced activation of pro-HGF/SF within tumor tissue, which may thereafter trigger a series of events leading to tumor progression via the MET receptor.  相似文献   

7.
Kallikrein-related peptidases (KLKs) are a group of serine proteases widely expressed in various tissues and involved in a wide range of physiological and pathological processes. Although our understanding of the pathophysiological roles of most KLKs has blossomed in recent years, identification of the direct endogenous substrates of human KLKs remains an unmet objective. In this study we employed a degradomics approach to systemically investigate the endogenous substrates of KLK7 in an effort to understand the molecular pathways underlying KLK7 action in skin. We identified several previously known as well as novel protein substrates. Our most promising candidates were further validated with the use of targeted quantitative proteomics (selected reaction monitoring methods) and in vitro recombinant protein digestion assays. Our study revealed midkine, CYR61, and tenascin-C as endogenous substrates for KLK7. Interestingly, some of these substrates (e.g. midkine) were prone to proteolytic cleavage only by KLK7 (and not by other skin-associated KLKs), whereas others (e.g. CYR61 and tenascin-C) could be digested by several KLKs. Furthermore, using melanoma cell line, we show that KLK7-mediated cleavage of midkine results in an overall reduction in the pro-proliferative and pro-migratory effect of midkine. An inverse relation between KLK7 and midkine is also observed in human melanoma tissues. In summary, our degradomics approach revealed three novel endogenous substrates for KLK7, which may shed more light on the pathobiological roles of KLK7 in human skin. Similar substrate screening approaches could be applied for the discovery of biological substrates of other protease.  相似文献   

8.
Tissue kallikrein (KLK1) and kallikrein-related peptidases (KLK2-15) comprise a family of 15 highly conserved secreted serine proteases with similar structural characteristics and a wide spectrum of functional properties. Both gene expression and protein activity of KLKs are rigorously controlled at various levels via diverse mechanisms, including extensive steroid hormone regulation, to exert their broad physiological role. Nevertheless, deregulated expression, secretion, and function of KLK family members has been observed in several pathological conditions and, particularly, in endocrine-related human malignancies, including those of the prostate, breast, and ovary. The cancer-related abnormal activity of KLKs upon substrates such as growth factors, cell adhesion molecules, cell surface receptors, and extracellular matrix proteins facilitate both tumorigenesis and disease progression to the advanced stages. The well-documented relationship between KLK status and the clinical outcome of cancer patients has led to their identification as promising diagnostic, prognostic, and treatment response monitoring biomarkers for these complex disease entities. The main objective of this review is to summarize the existing knowledge concerning the role of KLKs in prostate, breast, and ovarian cancers and to highlight their continually evolving biomarker capabilities that can provide significant benefits for the management of cancer patients.  相似文献   

9.
Human tissue kallikrein 14 (KLK14) is a novel extracellular serine protease. Clinical data link KLK14 expression to several diseases, primarily cancer; however, little is known of its (patho)-physiological role. To functionally characterize KLK14, we expressed and purified recombinant KLK14 in mature and proenzyme forms and determined its expression pattern, specificity, regulation, and in vitro substrates. By using our novel immunoassay, the normal and/or diseased skin, breast, prostate, and ovary contained the highest concentration of KLK14. Serum KLK14 levels were significantly elevated in prostate cancer patients compared with healthy males. KLK14 displayed trypsin-like specificity with high selectivity for P1-Arg over Lys. KLK14 activity could be regulated as follows: 1) by autolytic cleavage leading to enzymatic inactivation; 2) by the inhibitory serpins alpha1-antitrypsin, alpha2-antiplasmin, antithrombin III, and alpha1-antichymotrypsin with second order rate constants (k(+2)/Ki) of 49.8, 23.8, 1.48, and 0.224 microM(-1) min(-1), respectively, as well as plasminogen activator inhibitor-1; and 3) by citrate and zinc ions, which exerted stimulatory and inhibitory effects on KLK14 activity, respectively. We also expanded the in vitro target repertoire of KLK14 to include collagens I-IV, fibronectin, laminin, kininogen, fibrinogen, plasminogen, vitronectin, and insulin-like growth factor-binding proteins 2 and 3. Our results indicate that KLK14 may be implicated in several facets of tumor progression, including growth, invasion, and angiogenesis, as well as in arthritic disease via deterioration of cartilage. These findings may have clinical implications for the management of cancer and other disorders in which KLK14 activity is elevated.  相似文献   

10.
Human tissue kallikreins (KLKs or kallikrein-related peptidases) are a subgroup of extracellular serine proteases that act on a wide variety of physiological substrates, while they display aberrant expression patterns in certain types of cancer. Differential expression patterns lead to the exploitation of these proteins as new cancer biomarkers for hormone-dependent malignancies, in particular. The prostate-specific antigen or kallikrein-related peptidase 3 (PSA/KLK3) is an established tumor marker for the diagnosis and monitoring of prostate cancer. It is well documented that specific KLK genes are co-expressed in tissues and in various pathologies suggesting their participation in complex proteolytic cascades. Here, we review the currently established knowledge on the involvement of KLK proteolytic cascades in the regulation of physiological and pathological processes in prostate tissue and in skin. It is well established that the activity of KLKs is often regulated by auto-activation and subsequent autolytic internal cleavage leading to enzymatic inactivation, as well as by inhibitory serpins or by allosteric inhibition by zinc ions. Redistribution of zinc ions and alterations in their concentration due to physiological or pathological reasons activates specific KLKs initiating the kallikrein cascade(s). Recent studies on kallikrein substrate specificity allowed for the construction of a kallikrein interaction network involved in semen liquefaction and prostate cancer, as well as in skin pathologies, such as skin desquamation, psoriasis and cancer. Furthermore, we discuss the crosstalks between known proteolytic pathways and the kallikrein cascades, with emphasis on the activation of plasmin and its implications in prostate cancer. These findings may have clinical implications for the underlying molecular mechanism and management of cancer and other disorders in which KLK activity is elevated.  相似文献   

11.
Human tissue kallikrein-related peptidases (KLK) are a family of 15 genes located on chromosome 19q13.4 that encode secreted serine proteases with trypsin- and/or chymotrypsin-like activity. Relatively large levels of many KLKs are present in human cervico-vaginal fluid (CVF) and in the supernatant of cultured human vaginal epithelial cells. Many KLKs are also hormonally regulated in vaginal epithelial cells, particularly by glucocorticoids and estrogens. The physiological role of KLK in the vagina is currently unknown; however, analysis of the CVF proteome has revealed clues for potential KLK functions in this environment. Here, we detail potential roles for KLKs in cervico-vaginal physiology. First, we suggest that KLKs play a role in the vagina similar to their role in skin physiology: (1) in the desquamation of vaginal epithelial cells, similar to their activity in the desquamation of skin corneocytes; and (2) in their ability to activate antimicrobial proteins in CVF as they do in sweat. Consequently, we hypothesize that dysregulated KLK expression in the vagina could lead to the development of pathological conditions such as desquamative inflammatory vaginitis. Second, we propose that KLKs may play a role in premature rupture of membranes and pre-term birth through their cleavage of fetal membrane extracellular matrix proteins.  相似文献   

12.
The human kallikrein-related peptidases (KLKs) comprise 15 members (KLK1-15) and are the single largest family of serine proteases. The KLKs are utilized, or proposed, as clinically important biomarkers and therapeutic targets of interest in cancer and neurodegenerative disease. All KLKs appear to be secreted as inactive pro-forms (pro-KLKs) that are activated extracellularly by specific proteolytic release of their N-terminal pro-peptide. This processing is a key step in the regulation of KLK function. Much recent work has been devoted to elucidating the potential for activation cascades between members of the KLK family, with physiologically relevant KLK regulatory cascades now described in skin desquamation and semen liquefaction. Despite this expanding knowledge of KLK regulation, details regarding the potential for functional intersection of KLKs with other regulatory proteases are essentially unknown. To elucidate such interaction potential, we have characterized the ability of proteases associated with thrombostasis to hydrolyze the pro-peptide sequences of the KLK family using a previously described pro-KLK fusion protein system. A subset of positive hydrolysis results were subsequently quantified with proteolytic assays using intact recombinant pro-KLK proteins. Pro-KLK6 and 14 can be activated by both plasmin and uPA, with plasmin being the best activator of pro-KLK6 identified to date. Pro-KLK11 and 12 can be activated by a broad-spectrum of thrombostasis proteases, with thrombin exhibiting a high degree of selectivity for pro-KLK12. The results show that proteases of the thrombostasis family can efficiently activate specific pro-KLKs, demonstrating the potential for important regulatory interactions between these two major protease families.  相似文献   

13.
Human tissue kallikrein-related peptidases (KLKs) are 15 hormonally regulated genes on chromosome 19q13.4 encoding secreted serine proteases. Many KLKs are expressed throughout the female reproductive system and found in cervico-vaginal fluid (CVF). Immunohistochemistry was performed to determine KLK localization in the female reproductive system (fallopian tube, endometrium, cervix and vagina tissues). KLK levels were measured in CVF and saliva over the menstrual cycle to study whether KLKs are regulated by hormonal changes during the cycle. In vitro cleavage analysis was performed to establish whether KLKs may play a role in vaginal epithelial desquamation, mucus remodeling or processing of antimicrobial proteins. KLKs were localized in the glandular epithelium of the fallopian tubes and endometrium, the cervical mucus-secreting epithelium and vaginal stratified squamous epithelium. KLK levels peaked in CVF and saliva after ovulation. In vitro cleavage analysis confirmed KLKs 5 and 12 as capable of digesting desmoglein and desmocollin adhesion proteins and cervical mucin proteins 4 and 5B. KLK5 can digest defensin-1alpha, suggesting it may aid in cervico-vaginal host defense. We provide evidence of potential physiological roles for KLKs in cervico-vaginal physiology: in desquamation of vaginal epithelial cells, remodeling of cervical mucus and processing of antimicrobial proteins.  相似文献   

14.
Natural and synthetic inhibitors of kallikrein-related peptidases (KLKs)   总被引:1,自引:0,他引:1  
Including the true tissue kallikrein KLK1, kallikrein-related peptidases (KLKs) represent a family of fifteen mammalian serine proteases. While the physiological roles of several KLKs have been at least partially elucidated, their activation and regulation remain largely unclear. This obscurity may be related to the fact that a given KLK fulfills many different tasks in diverse fetal and adult tissues, and consequently, the timescale of some of their physiological actions varies significantly. To date, a variety of endogenous inhibitors that target distinct KLKs have been identified. Among them are the attenuating Zn2+ ions, active site-directed proteinaceous inhibitors, such as serpins and the Kazal-type inhibitors, or the huge, unspecific compartment forming α2-macroglobulin. Failure of these inhibitory systems can lead to certain pathophysiological conditions. One of the most prominent examples is the Netherton syndrome, which is caused by dysfunctional domains of the Kazal-type inhibitor LEKTI-1 which fail to appropriately regulate KLKs in the skin. Small synthetic inhibitory compounds and natural polypeptidic exogenous inhibitors have been widely employed to characterize the activity and substrate specificity of KLKs and to further investigate their structures and biophysical properties. Overall, this knowledge leads not only to a better understanding of the physiological tasks of KLKs, but is also a strong fundament for the synthesis of small compound drugs and engineered biomolecules for pharmaceutical approaches. In several types of cancer, KLKs have been found to be overexpressed, which makes them clinically relevant biomarkers for prognosis and monitoring. Thus, down regulation of excessive KLK activity in cancer and in skin diseases by small inhibitor compounds may represent attractive therapeutical approaches.  相似文献   

15.
Kallikrein-related peptidases (KLKs) are an emerging group of secreted serine proteases involved in several physiological and pathological processes. We used a degradomic approach to identify potential substrates of KLK12. MDA-MB-231 cells were treated either with KLK12 or vehicle control, and the proteome of the overlying medium was analyzed by mass spectrometry. CCN1 (cyr61, ctgf, nov) was among the proteins released by the KLK12-treated cells, suggesting that KLK12 might be responsible for the shedding of this protein from the cell surface. Fragmentation of CCN1 by KLK12 was further confirmed in vitro, and the main cleavage site was localized in the hinge region between the first and second half of the recombinant protein. KLK12 can target all six members of the CCN family at different proteolytic sites. Limited proteolysis of CCNs (cyr61, ctgf, nov) was also observed in the presence of other members of the KLK family, such as KLK1, KLK5, and KLK14, whereas KLK6, KLK11, and KLK13 were unable to fragment CCNs. Because KLK12 seems to have a role in angiogenesis, we investigated the relations between KLK12, CCNs, and several factors known to be involved in angiogenesis. Solid phase binding assays showed that fragmentation of CCN1 or CCN5 by KLK12 prevents VEGF(165) binding, whereas it also triggers the release of intact VEGF and BMP2 from the CCN complexes. The KLK12-mediated release of TGF-β1 and FGF-2, either as intact or truncated forms, was found to be concentration-dependent. These findings suggest that KLK12 may indirectly regulate the bioavailability and activity of several growth factors through processing of their CCN binding partners.  相似文献   

16.
17.
The tissue kallikreins (KLKs) form a family of serine proteases that are involved in processing of polypeptide precursors and have important roles in a variety of physiologic and pathological processes. Common features of all tissue kallikrein genes identified to date in various species include a similar genomic organization of five exons, a conserved triad of amino acids for serine protease catalytic activity, and a signal peptide sequence encoded in the first exon. Here, we show that KLK4/KLK-L1/prostase/ARM1 (hereafter called KLK4) is the first significantly divergent member of the kallikrein family. The exon predicted to code for a signal peptide is absent in KLK4, which is likely to affect the function of the encoded protein. Green fluorescent protein (GFP)-tagged KLK4 has a distinct perinuclear localization, suggesting that its primary function is inside the cell, in contrast to the other tissue kallikreins characterized so far that have major extracellular functions. There are at least two differentially spliced, truncated variants of KLK4 that are either exclusively or predominantly localized to the nucleus when labeled with GFP. Furthermore, KLK4 expression is regulated by multiple hormones in prostate cancer cells and is deregulated in the androgen-independent phase of prostate cancer. These findings demonstrate that KLK4 is a unique member of the kallikrein family that may have a role in the progression of prostate cancer.  相似文献   

18.
19.
Kallikrein-related peptidases (KLKs) are a family of serine proteases that were shown to be useful cancer biomarkers. KLKs have been shown to be dysregulated in prostate cancer (PCa). microRNAs (miRNAs) are short RNA nucleotides that negatively regulate gene expression and have been reportedly dysregulated in PCa. We compiled a comprehensive list of 55 miRNAs that are differentially expressed in PCa from previous microarray analysis and published literature. Target prediction analyses showed that 29 of these miRNAs are predicted to target 10 KLKs. Eight of these miRNAs were predicted to target more than one KLK. Quantitative real-time (qRT)-PCR demonstrated that there was an inverse correlation pattern in the expression (normal vs. cancer) between dysregulated miRNAs and their target KLKs. In addition, we experientially validated the miRNA-KLK interaction by transfecting miR-331-3p and miR-143 into a PCa cell line. Decreased expression of targets KLK4 and KLK10, respectively, and decreased cellular growth were observed. In addition to KLKs, dysregulated miRNAs were predicted to target other genes involved in the pathogenesis of PCa. These data show that miRNAs can contribute to KLK regulation in PCa. The miRNA-KLK axis of interaction projects a new element in the pathogenesis of PCa that may have therapeutic implications.  相似文献   

20.
The human kallikrein (KLK)-related peptidases are the largest family of serine peptidases, comprising 15 members (KLK1-15) and with the majority (KLK4-15) being identified only within the last decade. Members of this family are associated with important diseased states (including cancer, inflammation, and neurodegeneration) and have been utilized or proposed as clinically important biomarkers or therapeutic targets of interest. All human KLKs are synthesized as prepro-forms that are proteolytically processed to secreted pro-forms via the removal of an amino-terminal secretion signal peptide. The secreted inactive pro-KLKs are then activated extracellularly to mature peptidases by specific proteolytic release of their amino-terminal propeptide. Although a key step in the regulation of KLK function, details regarding the activation of the human pro-KLKs (i.e. the KLK "activome") are unknown, to a significant extent, but have been postulated to involve "activation cascades" with other KLKs and endopeptidases. To characterize more completely the KLK activome, we have expressed from Escherichia coli individual KLK propeptides fused to the amino terminus of a soluble carrier protein. The ability of 12 different mature KLKs to process the 15 different pro-KLK peptide sequences has been determined. Various autolytic and cross-activation relationships identified using this system have subsequently been characterized using recombinant pro-KLK proteins. The results demonstrate the potential for extensive KLK activation cascades and, when combined with available data for the tissue-specific expression of the KLK family, permit the construction of specific regulatory cascades. One such tissue-specific cascade is proposed for the central nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号