首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electromotor and electrosensory systems of the weakly electric fish Apteronotus leptorhynchus are model systems for studying mechanisms of high-frequency motor pattern generation and sensory processing. Voltage-dependent ionic currents, including low-threshold potassium currents, influence excitability of neurons in these circuits and thereby regulate motor output and sensory filtering. Although Kv1-like potassium channels are likely to carry low-threshold potassium currents in electromotor and electrosensory neurons, the distribution of Kv1 alpha subunits in A. leptorhynchus is unknown. In this study, we used immunohistochemistry with six different antibodies raised against specific mammalian Kv1 alpha subunits (Kv1.1-Kv1.6) to characterize the distribution of Kv1-like channels in electromotor and electrosensory structures. Each Kv1 antibody labeled a distinct subset of neurons, fibers, and/or dendrites in electromotor and electrosensory nuclei. Kv1-like immunoreactivity in the electrosensory lateral line lobe (ELL) and pacemaker nucleus are particularly relevant in light of previous studies suggesting that potassium currents carried by Kv1 channels regulate neuronal excitability in these regions. Immunoreactivity of pyramidal cells in the ELL with several Kv1 antibodies is consistent with Kv1 channels carrying low-threshold outward currents that regulate spike waveform in these cells (Fernandez et al., J Neurosci 2005;25:363-371). Similarly, Kv1-like immunoreactivity in the pacemaker nucleus is consistent with a role of Kv1 channels in spontaneous high-frequency firing in pacemaker neurons. Robust Kv1-like immunoreactivity in several other structures, including the dorsal torus semicircularis, tuberous electroreceptors, and the electric organ, indicates that Kv1 channels are broadly expressed and are likely to contribute significantly to generating the electric organ discharge and processing electrosensory inputs.  相似文献   

2.
Modeling the electric field and images in electric fish contributes to a better understanding of the pre-receptor conditioning of electric images. Although the boundary element method has been very successful for calculating images and fields, complex electric organ discharges pose a challenge for active electroreception modeling. We have previously developed a direct method for calculating electric images which takes into account the structure and physiology of the electric organ as well as the geometry and resistivity of fish tissues. The present article reports a general application of our simulator for studying electric images in electric fish with heterogeneous, extended electric organs. We studied three species of Gymnotiformes, including both wave-type (Apteronotus albifrons) and pulse-type (Gymnotus obscurus and Gymnotus coropinae) fish, with electric organs of different complexity. The results are compared with the African (Gnathonemus petersii) and American (Gymnotus omarorum) electric fish studied previously. We address the following issues: 1) how to calculate equivalent source distributions based on experimental measurements, 2) how the complexity of the electric organ discharge determines the features of the electric field and 3) how the basal field determines the characteristics of electric images. Our findings allow us to generalize the hypothesis (previously posed for G. omarorum) in which the perioral region and the rest of the body play different sensory roles. While the “electrosensory fovea” appears suitable for exploring objects in detail, the rest of the body is likened to a “peripheral retina” for detecting the presence and movement of surrounding objects. We discuss the commonalities and differences between species. Compared to African species, American electric fish show a weaker field. This feature, derived from the complexity of distributed electric organs, may endow Gymnotiformes with the ability to emit site-specific signals to be detected in the short range by a conspecific and the possibility to evolve predator avoidance strategies.  相似文献   

3.
Wave-type weakly electric fish are specialists in time-domain processing: behaviors in these animals are often tightly correlated with the temporal structure of electrosensory signals. Behavioral responses in these fish can be dependent on differences in the temporal structure of electrosensory signals alone. This feature has facilitated the study of temporal codes and processing in central nervous system circuits of these animals. The temporal encoding and mechanisms used to transform temporal codes in the brain have been identified and characterized in several species, including South American gymnotid species and in the African mormyrid genus Gymnarchus. These distantly related groups use similar strategies for neural computations of information on the order of microseconds, milliseconds, and seconds. Here, we describe a suite of mechanisms for behaviorally relevant computations of temporal information that have been elucidated in these systems. These results show the critical role that behavioral experiments continue to have in the study of the neural control of behavior and its evolution.  相似文献   

4.
This article deals with the role of fish's body and object's geometry on determining the image spatial shape in pulse Gymnotiforms. This problem was explored by measuring local electric fields along a line on the skin in the presence and absence of objects. We depicted object's electric images at different regions of the electrosensory mosaic, paying particular attention to the perioral region where a fovea has been described. When sensory surface curvature increases relative to the object's curvature, the image details depending on object's shape are blurred and finally disappear. The remaining effect of the object on the stimulus profile depends on the strength of its global polarization. This depends on the length of the object's axis aligned with the field, in turn depending on fish body geometry. Thus, fish's body and self-generated electric field geometries are embodied in this "global effect" of the object. The presence of edges or local changes in impedance at the nearest surface of closely located objects adds peaks to the image profiles ("local effect" or "object's electric texture"). It is concluded that two cues for object recognition may be used by active electroreceptive animals: global effects (informing on object's dimension along the field lines, conductance, and position) and local effects (informing on object's surface). Since the field has fish's centered coordinates, and electrosensory fovea is used for exploration of surfaces, fish fine movements are essential to perform electric perception. We conclude that fish may explore adjacent objects combining active movements and electrogenesis to represent them using electrosensory information.  相似文献   

5.
The electrical properties of the tonoplast from a large variety of plant materials such as mesophyll cells, storage cells, tumor cells, suspension cultured cells, guard cells, coleoptile cells, and liverwort cells have been investigated using the patch-clamp technique. Whole-vacuole recordings were employed to study the dynamics of an ATP-dependent proton pump by directly measuring the electrogenic currents. The addition of Mg-ATP induced an inwardly directed current which depolarized the tonoplast (the vacuole becoming positive inside). Furthermore, voltage-dependent passive ion fluxes were analyzed using whole vacuoles and isolated membrane patches. Whole-vacuolar currents and single-channel currents were induced at hyperpolarizing potentials, whereas currents decreased at positive trans-tonoplast potentials. The electrical properties of the tonoplast of vacuoles from various plant tissues were similar and it was concluded that ion fluxes across the tonoplast follow the same general mechanisms.  相似文献   

6.
There are several reasons why one can expect that the study of electric fish may prove instructive about general mechanisms of sensory processing and neuronal integration. These reasons include the following: the simplicity of the electrical signals which are the normal input and output; the availability of a variety of stereotyped behaviors to characterize the system as a whole; the case with which individual receptors or primary afferents can be activated; the demonstrated presence of corollary discharge and reafference mechanisms for motor control over sensory input; the presence of highly specialized CNS structures which have evolved to meet the unusual demands of the electrosensory system. Work relating to these and other aspects of the electrosensory systems is discussed with an emphasis on the potential which these systems offer.  相似文献   

7.
Sensory systems must solve the inverse problem of determining environmental events based on patterns of neural activity in the central nervous system that are affected by those environmental events. Different environmental events can give rise to indistinguishable patterns of neural activity, so that there will often, perhaps even always, be multiple solutions to a sensory inverse problem. Imaging strategies and brain organization confine these multiple solutions within a bounded set. Three different active strategies may be employed by animals to constrain the number of solutions to the sensory inverse problem: active generation of the energy (carrier) that stimulates receptors; reorientation of the point of view; and control of signal conditioning before transduction (pre-receptor mechanisms). This paper describes how these strategies are used in sensory-motor systems, using electric fish as a paradigmatic example. Carrier generation and receptor tuning to the carrier improve signal to noise ratio. Receptor tuning to different frequency bands of the carrier spectrum allows a sensory system to evaluate different kinds of carrier modulations and to extract the different features of objects in the environment. Pre-receptor mechanisms condition the signals, optimizing their detection at a foveal region where the sensory resolution is maximum. Active orientation of the sensory surface redirects the fovea to explore in detail the source of interesting signals. Sensory input generated by these active exploration mechanisms ('reafference') has two components: one, necessary, derived from the self-generated actions and another, contingent, consisting of the information obtained from the external world. Extracting environmental information ('exafference') requires that the self generated afference be subtracted from the sensory inflow. Such subtraction is often associated with the generation and storage of expectations about sensory inputs. It can be concluded that an animal's perceptual world and its ability to transform the world are inextricably linked. Understanding sensory systems must, therefore, always require understanding the organization of motor behavior.  相似文献   

8.
We review modelling and experimental work dealing with the mechanisms of generation of electric image. We discuss: (1) the concept of electric image in the context of the reafference principle; (2) how waveform codes an impedance related qualia of the object image, referred to as "electric colour"; (3) that some characteristics of the spatial profiles generated by pre-receptor mechanisms are suitable for edge detection; (4) which parameters of the spatial profiles provide information for distance discrimination; (5) that electric images are distributed representations of the scene.  相似文献   

9.
Weakly electric fishes “electrically illuminate” the environment in two forms: pulse fishes emit a succession of discrete electric discharges while wave fishes emit a continuous wave. These strategies are present in both taxonomic groups of weakly electric fishes, mormyrids and gymnotids. As a consequence one can distinguish four major types of active electrosensory strategies evolving in parallel. Pulse gymnotids have an electrolocating strategy common with pulse mormyrids, but brains of pulse and wave gymnotids are alike. The beating strategy associated to other differences in the electrogenic system and electrosensory responses suggests that similar hardware might work in a different mode for processing actively generated electrosensory images. In this review we summarize our findings in pulse gymnotids’ active electroreception and outline a primary agenda for the next research.  相似文献   

10.
In the platypus, electroreceptors are located in rostro-caudal rows in skin of the bill, while mechanoreceptors are uniformly distributed across the bill. The electrosensory area of the cerebral cortex is contained within the tactile somatosensory area, and some cortical cells receive input from both electroreceptors and mechanoreceptors, suggesting a close association between the tactile and electric senses. Platypus can determine the direction of an electric source, perhaps by comparing differences in signal strength across the sheet of electroreceptors as the animal characteristically moves its head from side to side while hunting. The cortical convergence of electrosensory and tactile inputs suggests a mechanism for determining the distance of prey items which, when they move, emit both electrical signals and mechanical pressure pulses. Distance could be computed from the difference in time of arrival of the two signals. Much of the platypus' feeding is done by digging in the bottom of streams with the bill. Perhaps the electroreceptors could also be used to distinguish animate and inanimate objects in this situation where the mechanoreceptors would be continuously stimulated. Much of this is speculation, and there is still much to be learned about electroreception in the platypus and its fellow monotreme, the echidna.  相似文献   

11.
We have investigated the potential dependence of the electrogenic sodium pump in Aplysia neurons by recording the potential and current induced by sudden change of the artificial sea water from one containing K+ at various concentrations to K+ -free sea water in the presence or absence of ouabain. Both K+ free sea water and ouabain block sodium transport and result in a significant depolarization due to removal of a maintained outward current that is a result of transport of more Na+ out of the cell than K+ into the cell during pump operation. In the presence of ouabain there is, however, an inward current induced by changing external K+ concentration from zero to some value between 1 and 20 mM, and this current is greater with a greater K+ concentration gradient. The current induced by change from zero to 1 mM K+ does not show any potential dependence, although those currents induced by higher K+ concentrations are potential dependent. We conclude that the activity of the electrogenic sodium pump is not potential dependent, but that the potential independence is obscured if higher concentrations of K+ are used to activate the electrogenic sodium pump.  相似文献   

12.
Painful channels in sensory neurons   总被引:3,自引:0,他引:3  
Lee Y  Lee CH  Oh U 《Molecules and cells》2005,20(3):315-324
Pain is an unpleasant sensation experienced when tissues are damaged. Thus, pain sensation in some way protects body from imminent threat or injury. Peripheral sensory nerves innervated to peripheral tissues initially respond to multiple forms of noxious or strong stimuli, such as heat, mechanical and chemical stimuli. In response to these stimuli, electrical signals for conducting the nociceptive neural signals through axons are generated. These action potentials are then conveyed to specific areas in the spinal cord and in the brain. Sensory afferent fibers are heterogeneous in many aspects. For example, sensory nerves are classified as Aa, -b, -d and C-fibers according to their diameter and degree of myelination. It is widely accepted that small sensory fibers tend to respond to vigorous or noxious stimuli and related to nociception. Thus these fibers are specifically called nociceptors. Most of nociceptors respond to noxious mechanical stimuli and heat. In addition, these sensory fibers also respond to chemical stimuli [Davis et al. (1993)] such as capsaicin. Thus, nociceptors are considered polymodal. Recent advance in research on ion channels in sensory neurons reveals molecular mechanisms underlying how various types of stimuli can be transduced to neural signals transmitted to the brain for pain perception. In particular, electrophysiological studies on ion channels characterize biophysical properties of ion channels in sensory neurons. Furthermore, molecular biology leads to identification of genetic structures as well as molecular properties of ion channels in sensory neurons. These ion channels are expressed in axon terminals as well as in cell soma. When these channels are activated, inward currents or outward currents are generated, which will lead to depolarization or hyperpolarization of the membrane causing increased or decreased excitability of sensory neurons. In order to depolarize the membrane of nerve terminals, either inward currents should be generated or outward currents should be inhibited. So far, many cationic channels that are responsible for the excitation of sensory neurons are introduced recently. Activation of these channels in sensory neurons is evidently critical to the generation of nociceptive signals. The main channels responsible for inward membrane currents in nociceptors are voltage-activated sodium and calcium channels, while outward current is carried mainly by potassium ions. In addition, activation of non-selective cation channels is also responsible for the excitation of sensory neurons. Thus, excitability of neurons can be controlled by regulating expression or by modulating activity of these channels.  相似文献   

13.
The electrical potential differences across membranes where active transport of ions occurs has been examined using the formalism of linear non-equilibrium thermodynamics, and can be represented as the arithmetic sum of a resistive term, a term directly dependent on metabolism (i.e. electrogenic) and terms appropriate for describing a diffusion potential. The Hittorf transport number for each ion in the latter terms is the ratio of the partial conductances of the membrane to that ion to the total membrane conductance, and the conductance to an ion consists of the arithmetic sum of conductance of active and passive pathways providing these are independent. The conductances of active transport mechanisms arise from variation of the rate of transport with the electrochemical potentials against which they operate. The electrogenic term arises from imbalance between anion and cation transport. If an ion is transported by an obligatorily electrically neutral exchange for some other ion such transport gives rise to no electrogenic effect. A membrane will transport salt most efficiently if there is no imbalance between anion and cation transport, when it will not be electrogenic, but modest deviations from this condition will not degrade the efficiency of active transport markedly.  相似文献   

14.
Plants have multiple potassium (K(+)) uptake and efflux mechanisms that are expressed throughout plant tissues to fulfill different physiological functions. Several different classes of K(+) channels and carriers have been identified at the molecular level in plants. K(+) transporters of the HKT1 superfamily have been cloned from wheat (Triticum aestivum), Arabidopsis, and Eucalyptus camaldulensis. The functional characteristics as well as the primary structure of these transporters are diverse with orthologues found in bacterial and fungal genomes. In this report, we provide a detailed characterization of the functional characteristics, as expressed in Xenopus laevis oocytes, of two cDNAs isolated from E. camaldulensis that encode proteins belonging to the HKT1 superfamily of K(+)/Na(+) transporters. The transport of K(+) in EcHKT-expressing oocytes is enhanced by Na(+), but K(+) was also transported in the absence of Na(+). Na(+) is transported in the absence of K(+) as has been demonstrated for HKT1 and AtHKT1. Overall, the E. camaldulensis transporters show some similarities and differences in ionic selectivity to HKT1 and AtHKT1. One striking difference between HKT1 and EcHKT is the sensitivity to changes in the external osmolarity of the solution. Hypotonic solutions increased EcHKT induced currents in oocytes by 100% as compared with no increased current in HKT1 expressing or uninjected oocytes. These osmotically sensitive currents were not enhanced by voltage and may mediate water flux. The physiological function of these osmotically induced increases in currents may be related to the ecological niches that E. camaldulensis inhabits, which are periodically flooded. Therefore, the osmosensing function of EcHKT may provide this species with a competitive advantage in maintaining K(+) homeostasis under certain conditions.  相似文献   

15.
The two closely related, proton-coupled, electrogenic mammalian peptide transporters PEPT1 and PEPT2 differ substantially in substrate affinity and mode of function. The intestinal carrier PEPT1 has a lower affinity for most substrates than the isoform PEPT2 that is expressed in kidney, lung, brain and other tissues. A previous analysis of PEPT1-PEPT2 chimeras has suggested that the N-terminal half of the carrier proteins is important for substrate affinity. We constructed and analyzed new PEPT1-PEPT2 chimeras for identifying smaller segments within the N-terminal region of the transporter proteins that contribute to the kinetic properties. The first 59 or 91 amino-acid residues of PEPT1 were used to replace the corresponding region in PEPT2 leading to the chimeras CH3 and CH4, which could be analyzed when expressed in Xenopus laevis oocytes. Substrate affinities of both chimeras for the zwitterionic substrate D-Phe-Ala ranged between those that are characteristic for either PEPT1 or PEPT2, but when charged dipeptide substrates were employed, both chimeras possessed PEPT1-like affinities. The chimera CH3 carrying the N-terminal 59 amino-acid residues of PEPT1 exhibited a PEPT2-like phenotype with respect to pHout-dependency as well as to the current-voltage relationship of inward currents. In the chimera CH4 possessing the 91 amino-terminal residues of PEPT1, a pronounced alteration in the pHout-dependence was observed, with highest transport rates occurring at pH values as low as pH 4.0. Based on this analysis, we propose that the two identified aminoterminal regions in mammalian peptide carriers play an important role in determining the substrate affinity and also other characteristic features of the two transporter subtypes.  相似文献   

16.
Sensory neurons encode natural stimuli by changes in firing rate or by generating specific firing patterns, such as bursts. Many neural computations rely on the fact that neurons can be tuned to specific stimulus frequencies. It is thus important to understand the mechanisms underlying frequency tuning. In the electrosensory system of the weakly electric fish, Apteronotus leptorhynchus, the primary processing of behaviourally relevant sensory signals occurs in pyramidal neurons of the electrosensory lateral line lobe (ELL). These cells encode low frequency prey stimuli with bursts of spikes and high frequency communication signals with single spikes. We describe here how bursting in pyramidal neurons can be regulated by intrinsic conductances in a cell subtype specific fashion across the sensory maps found within the ELL, thereby regulating their frequency tuning. Further, the neuromodulatory regulation of such conductances within individual cells and the consequences to frequency tuning are highlighted. Such alterations in the tuning of the pyramidal neurons may allow weakly electric fish to preferentially select for certain stimuli under various behaviourally relevant circumstances.  相似文献   

17.
The plant hormones GA, ABA, and auxin differ from the majority of animal hormones in that they are hydrophobic weak acids. They are soluble in the inter- and intra-cellular environments of plant tissues and their neutral species can cross the plasma membrane by passive diffusion. Auxin transport is mediated by specific uptake and efflux carriers in plasma membranes, and there is some evidence for carrier-mediated uptake of GA and ABA. Because these plant hormones can cross the plasma membrane it is not a prerequisite that receptors for them should be at the protoplast surface. Nevertheless, there is substantial evidence that auxin acts at the plasma membrane, and evidence suggesting that GA may be perceived at the plasma membrane of A. fatua aleurone protoplasts has been reviewed here. It is conceivable that the plant plasma membrane might provide the means to integrate, transduce, and amplify these signals, and that such properties of the plasma membrane, rather than the permeability characteristics of these ligands, may determine the site of perception. Further progress in our understanding of signal transduction pathways that may be involved in the actions of plant hormones is likely to shed light on these questions. It has been proposed that GA receptors involved in cell elongation may be soluble rather than membrane bound. The soluble 50 kDa GA-binding protein observed in aleurone by GA4 photoaffinity labelling may be a good candidate for a soluble GA receptor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Intracellular pH (pHi) regulation in the vertebrate liver relies heavily on ionic transport mechanisms. Liver, in common with many tissues, has plasma membrane Na(+)-H+ and Cl(-)-HCO3- electroneutral exchangers which work in opposition to tightly control pHi. Mammalian livers also possess electrogenic Na(+)-HCO3- exchangers, capable of base uptake, which, when coupled to pHi-mediated changes in membrane potential, probably confer an additional measure of pHi control, compared to fish livers, where the transporter appears to be functionally absent. It is suggested that this may be a fundamental difference between aquatic and aerial breathing. pHi regulation has barely been examined in invertebrate hepatic tissues, but already some interesting differences are apparent. Notably, an electrogenic 2Na(+)-1H+ acid-extrusion system is present in apical membranes of crustacean hepatopancreas. Despite these ionic control systems, complex acid-base disturbances (e.g., "metabolic" acidosis) have been known for some time to influence hepatic metabolism in vertebrates, but few studies have carefully examined the independent effects of the acid-base variables involved. Thus mechanistic explanations for the effects of acid-base disturbances are scarce. Ureogenesis in mammals has been well studied, and several pH-related mechanisms are evident. In contrast, the pH-insensitivity of ureogenesis in fish liver may represent a second difference between aquatic and terrestrial species. In summary, by virtue of its metabolic diversity, liver represents a potentially important organ in acid-base balance, and an interesting study tissue for interrelationships between metabolism and acid-base balance.  相似文献   

19.
Summary The responses of single neurons to visual and electrosensory stimulation were studied in the optic tectum of the weakly electric fishApteronotus albifrons. Most of the cells recorded in the region of the tectum studied, the anterior medial quadrant, were poorly responsive or completely insensitive to flashes of light or to bursts of AC electrical stimuli applied to the entire fish. However, these cells gave vigorous responses to moving visual or electrosensory stimuli. Most cells showed differences in their response contingent upon the direction of the stimulus movement and most received input from both the visual and electrosensory systems. Electrosensory responses to moving stimuli were depressed by jamming stimuli, 4 Hz amplitude modulation of the animal's electric organ discharge, presented simultaneously with the moving stimulus. However, the jamming signal presented alone typically evoked no response. Moving visual stimuli, presented simultaneously with the electrosensory, were usually able to restore the magnitude of a response toward its value in the unjammed situation. For most of the cells studied the receptive fields for vision and electroreception were in register. In some cases the visual and electrosensory components could be separated by presenting the two types of stimuli separately, or by presenting both simultaneously but with some amount of spatial separation, which causes the two to be misaligned relative to the fish. In other cases the individual responses could not be separated by spatial manipulations of the two stimuli and in these cases differences in the alignment of the two types of stimuli could cause changes in the intensity of the cells' responses.Abbreviations AM amplitude modulation - EOD electric organ discharge - PLLL posterior lateral line lobe  相似文献   

20.
Many aquatic vertebrates can sense the weak electric fields generated by other animals and may also sense geoelectric or electromagnetic phenomena for use in orientation. All these sources generate stationary (dc) fields. In addition, fields from animals are modulated by respiration and other body movements. Since electroreceptors are insensitive to a pure dc field, it has been suggested that the ac modulation carries most of the relevant information for electrosensory animals. However, in a natural situation pure dc fields are rare since any relative movement between source and receiver will transform a dc field into a time varying signal. In this paper, we will describe the properties of such signals and how they are filtered at the first stage of electrosensory information processing in the brain. We will show that the signal perceived by an animal traversing a dc electric field contains all the information necessary to reconstruct the distance to the source and that the signal conditioning algorithms are perfectly adapted to preserve such information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号