首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A cloned EcoRI fragment containing human 18 S rRNA gene sequences was used to screen a gene library to obtain a set of 8 overlapping cloned DNA segments extending into the non-transcribed spacer region of the human ribosomal RNA gene cluster. 19.4 kb of the approx. 43-kb rDNA repeat was obtained in cloned form and mapped with restriction endonucleases. None of the clones obtained extended into 28 S rRNA sequences. A 7-kb region of non-transcribed spacer DNA shared in common between five independent clones was subjected to comparative restriction digests. It was estimated that sequences among the five different spacer isolated varied by not more than 1.0%, if all the observed differences are assumed due to point mutation. HaeII-restriction fragments from within this same 7-kb region contain sequences carried not only within the tandem repeats of the gene cluster but interspersed elsewhere in the genome. Some of these sequences correspond to the Alu family of highly repeated interspersed sequences.  相似文献   

2.
Summary Ribosomal DNA (rDNA) repeats of the plant-parasitic nematode Meloidogyne arenaria are heterogeneous in size and appear to contain 5S rRNA gene sequences. Moreover, in a recA + bacterial host, plasmid clones of a 9 kb rDNA repeat show deletion events within a 2 kb intergenic spacer (IGS), between 28S and 5S DNA sequences. These deletions appear to result from a reduction in the number of tandem 129 by repeats in the IGS. The loss of such repeats might explain how rDNA length heterogeneity, observed in the Meloidogyne genome, could have arisen. Each 129 by repeat also contains three copies of an 8 by subrepeat, which has sequence similarity to an element found in the IGS repeats of some plant rDNAs.  相似文献   

3.
4.
H Benes  J Ware  M D Cave 《Gene》1985,36(1-2):113-122
To examine the modulation of 5S rRNA gene activity during development in the cricket, Acheta domesticus, 5S X DNA was isolated from a lambda Charon 4 genomic library and characterized. Southern blot analysis of cloned A. domesticus genomic DNA revealed that restriction fragments of 3.0 and 2.1 kb represent two size classes of 5S X DNA repeating units; over 90% of the repeats measure 3.0 kb. Restriction analysis of two 5S X DNA clones suggests that the 2.1-kb repeats are not randomly interspersed within clusters of the larger 3.0-kb repeating units. Heteroduplex and restriction mapping of several clones indicate that the spacers of both repeating units account for their unusual length. The major difference between the two classes of repeats may lie in 0.9-kb spacer sequences to the 3.0-kb repeats.  相似文献   

5.
Fragments of rDNA3 from Drosophila melanogaster produced by the restriction endonuclease EcoRI were cloned in the form of recombinant plasmids in Escheriehia coli. Maps were prepared showing the location of the coding regions and of several restriction endonuclease sites. Most rDNA repeats have a single EcoRI site in the 18 S gene region. Thus, 19 of 24 recombinant clones contained a full repeat of rDNA. Ten repeats with continuous 28 S genes and repeats containing insertions in the 28 S gene of 0.5, 1 and 5 kb were isolated. The 0.5 and 1 kb insertion sequences are homologous to segments of the 5 kb insertions; because of this homology they are grouped together and identified as type 1 insertions. Four recombinant clones contain an rDNA fragment that corresponds to only a portion of a repeating unit. In these fragments the 28 S gene is interrupted by a sequence which had been cleaved by EcoRI. The interrupting sequences in these clones are not homologous to any portion of type 1 insertions and are therefore classified as type 2. In one of the above clones the 28 S gene is interrupted at an unusual position; such a structure is rare or absent in genomic rDNA from the fly. Another unusual rDNA fragment was isolated as a recombinant molecule. In this fragment the entire 18 S gene and portions of the spacer regions surrounding it are missing from one repeat. A molecule with the same structure has been found in uncloned genomic rDNA by electron microscopic examination of RNA/DNA hybrids.  相似文献   

6.
7.
8.
Three different repeat sequences have been mapped within the cloned EcoRI fragments that contain the adult beta-globin genes from the BALB/c (Hddd) mouse. One sequence, "a", occurs 1.5-2 kb 3' to the beta-major gene. A second, "b", is found 4kb 5' and 7.5kb 3' to the beta-minor gene. The 14kb EcoRI fragment bearing the beta-minor gene carries at least one additional repetitive element, "c". Probing a BALB/c DNA library with each repeat has demonstrated that these sequences are moderately to highly repetitive and are extensively interspersed with each other throughout the genome. In addition, repeats "a" and "b" are preferentially found in satellite and main-band DNa, respectively. The occurrence of these repeats elsewhere in the beta-globin cluster was demonstrated by probing the non-adult globin clones with each repeat. The arrangement of these repeats around the non-adult genes is 5'-"b"-"b"-epsilon y-beta hl-beta h2-"c"-beta h3-3'. Probing the C57BL/10 (Hbbs) adult gene clones with these repeats demonstrated that the distribution of these sequences in the adult region of these two haplotypes is essentially the same.  相似文献   

9.
Molecular cloning and characterization of the human beta-like globin gene cluster   总被引:104,自引:0,他引:104  
E F Fritsch  R M Lawn  T Maniatis 《Cell》1980,19(4):959-972
The genes encoding human embryonic (epsilon), fetal (G gamma, A gamma) and adult (delta, beta) beta-like globin polypeptides were isolated as a set of overlapping cloned DNA fragments from bacteriophage lambda libraries of high molecular weight (15-20 kb) chromosomal DNA. The 65 kb of DNA represented in these overlapping clones contains the genes for all five beta-like polypeptides, including the embryonic epsilon-globin gene, for which the chromosomal location was previously unknown. All five genes are transcribed from the same DNA strand and are arranged in the order 5'-epsilon-(13.3 kb)-G gamma-(3.5 kb)-A gamma-(13.9 kb)-delta-(5.4 kb)-beta-3'. Thus the genes are positioned on the chromosome in the order of their expression during development. In addition to the five known beta-like globin genes, we have detected two other beta-like globin sequences which do not correspond to known polypeptides. One of these sequences has been mapped to the A gamma-delta intergenic region while the other is located 6-9 kb 5' to the epsilon gene. Cross hybridization experiments between the intergenic sequences of the gene cluster have revealed a nonglobin repeat sequence (*) which is interspersed with the globin genes in the following manner: 5'-**epsilon-*G gamma-A gamma*-**delta-beta*-3'. Fine structure mapping of the region located 5' to the delta-globin gene revealed two repeats with a maximum size of 400 bp, which are separated by approximately 700 bp of DNA not repeated within the cluster. Preliminary experiments indicate that this repeat family is also repeated many times in the human genome.  相似文献   

10.
The nucleotide sequences at and around the termini of 5 kb type 1 interruptions in three separate clones of D. melanogaster rDNA repeats have been determined, and have been compared with the sequence of the corresponding region of an insertion-free rDNA repeat. All three interrupted rDNA repeats contain a small deletion of 28S rRNA coding material at the left coding/insertion sequence junction. A second deletion was found in one of the three clones, ad other aberrations were suggested by the results of restriction enzyme digestions of unfractionated rDNA. The termini of 5 kb type 1 rDNA insertions in D. melanogaster were also compared with the corresponding regions of 28S rDNA interruptions in D. virilis: the insertion site is identical in the two species, but the termini of the two species' interruptions show no homology. I sequenced a 1.1 kb region of the 5 kb type 1 D. melanogaster rDNA interruption that covers the sequences of the 1 kb and 0.5 kb insertions. There is 98% homology between the rightmost 1 kb of the 5 kb interruption and the sequences of the shorter insertions. Data suggest that Drosophila rDNA interruptions arose as a transposable element, and that divergence had included length alterations generated by unequal crossing over.  相似文献   

11.
The 5S genes of Drosophila melanogaster.   总被引:22,自引:0,他引:22  
We have cloned embryonic Drosophila DNA using the poly (dA-DT) connector method (Lobban and Kaiser, 1973) and the ampicillin-resistant plasmid pSF2124 (So, Gill and Falkow, 1975) as a cloning vehicle. Two clones, containing hybrid plasmids with sequences complementary to a 5S RNA probe isolated from Drosophila tissue culture cells, were identified by the Grunstein and Hogness (1975) colony hybridization procedure. One hybrid plasmid has a Drosophila insert which is comprised solely of tandem repeats of the 5S gene plus spacer sequences. The other plasmid contains an insert which has about 20 tandem 5S repeat units plus an additional 4 kilobases of adjacent sequences. The size of the 5S repeat unit was determined by gel electrophoresis and was found to be approximately 375 base pairs. We present a restriction map of both plasmids, and a detailed map of of the5S repeat unit. The 5S repat unit shows slight length and sequence heterogeneity. We present evidence suggesting that the 5S genes in Drosophila melanogaster may be arranged in a single continuous cluster.  相似文献   

12.
R L Neve  G A Bruns  T P Dryja  D M Kurnit 《Gene》1983,23(3):343-354
Human Alu repeat ("BLUR") sequences have been cloned into the mini-plasmid vector piVX. The resulting piBLUR clones have been used to rescue selectively, by recombination, bacteriophage carrying human DNA sequences from genomic libraries constructed using DNA from rodent-human somatic cell hybrids. piBLUR clones are able to retrieve human clones from such libraries because at least one Alu family repeat is present on most 15 to 20 kb fragments of human DNA and because of the relative species-specificity of the sequences comprising the Alu family. The rapid, selective plaque purification achieved results in the construction of a collection of recombinant phage carrying diverse human DNA inserts from a specific subset of the human karyotype. Subfragments of two recombinants rescued from a mouse-human somatic cell hybrid containing human chromosomes X, 10, 13, and 22 were mapped to human chromosomes X and 13, respectively, demonstrating the utility of this protocol for the isolation of human chromosome-specific DNA sequences from appropriate somatic cell hybrids.  相似文献   

13.
The chromosomal locations of ribosomal DNA in wheat, rye and barley have been determined by in situ hybridization using high specific activity 125I-rRNA. The 18S-5.8S-26S rRNA gene repeat units in hexaploid wheat (cv. Chinese Spring) are on chromosomes 1B, 6B and 5D. In rye (cv. Imperial) the repeat units occur at a single site on chromosome 1R(E), while in barley (cv. Clipper) they are on both the chromosomes (6 and 7) which show secondary constrictions. In wheat and rye the major 5S RNA gene sites are close to the cytological secondary constrictions where the 18S-5.8S-26S repeating units are found, but in barley the site is on a chromosome not carrying the other rDNA sequences. — Restriction enzyme and R-loop analyses showed the 18S-5.8S-26S repeating units to be approximately 9.5 kb long in wheat, 9.0 kb in rye and barley to have two repeat lengths of 9.5 kb and 10 kb. Electron microscopic and restriction enzyme data suggest that the two barley forms may not be interpersed. Digestion with EcoR1 gave similar patterns in the three species, with a single site in the 26S gene. Bam H1 digestion detected heterogeneity in the spacer regions of the two different repeats in barley, while in rye and wheat heterogeneity was shown within the 26S coding sequence by an absence of an effective Bam H1 site in some repeat units. EcoR1 and Bam H1 restriction sites have been mapped in each species. — The repeat unit of the 5S RNA genes was approximately 0.5 kb in wheat and rye and heterogeneity was evident. The analysis of the 5S RNA genes emphasizes the homoeology between chromosomes 1B of wheat and 1R of rye since both have these genes in the same position relative to the secondary constriction. In barley we did not find a dominant monomer repeat unit for the 5S genes.  相似文献   

14.
Segments of Drosophila melanogaster DNA containing 5S rRNA genes have been propagated in recombinant plasmids using E. coli as a host and Col E1 as a vector. Electron microscope partial denaturation mapping, mapping by ferritin labeling and restriction enzyme-gel electrophoresis analysis all indicate that the Drosophila DNA inserts of these plasmids consist of tandem repeats of 5S genes and spacer regions. The repeat length is approximately 380 nucleotide pairs (ntp), corresponding to a gene of length 120 ntp and a spacer of length 260 ntp. The insert in one plasmid (pCIT9) consists of 32 contiguous repeats. Restriction enzyme-gel electrophoresis analysis shows that all these repeats have the same length within ± 5 nucleotides. This repeat length is estimated as 370 ± 20 ntp by gel electrophoresis and 390 ± 40 ntp by partial denaturation mapping. A second plasmid (pCIT19) contains three complete genes, two complete spacers and incomplete flanking spacer sequences. The two complete repeat units released by suitable restriction endonuclease digestions differ in length by 20 ± 5 ntp, with estimated lengths of 370 and 390 ntp. The positions and spacings of the genes on this plasmid have been observed directly by ferritin labeling and by partial denaturation mapping. The A+T content of the 5S DNA spacer region is calculated to be 68%. By in situ hybridization, cRNA transcribed from one plasmid hybridizes to polytene chromosomes only at band 56F, the known locus of the 5S rRNA genes. Spontaneous excision of some of the tandem repeat units from the recombinant plasmids occurs during growth in E. coli; the frequency of excision does not depend upon the recA character of the host, but is greatly increased by chloramphenicol treatment.  相似文献   

15.
The amplifiable unit of DNA no. 1 (AUD1) of Streptomyces lividans consists of three 1 kb repeats (left direct repeat, LDR; middle direct repeat, MDR; and the slightly different right direct repeat, RDR) and two 4.7 kb repeats alternately arranged in identical orientation to each other. Both 4.7 kb repeats have been sequenced. They are identical and contain one open reading frame ( orf4.7  ). The deduced amino acid sequence has a low similarity to chitinases, and two amino acid repeats present high similarities to fibronectin type III modules. Sequencing had previously shown that the ORF corresponding to each 1 kb repeat encodes a putative DNA-binding protein. Crude extracts of Escherichia coli overexpressing the orfRDR- encoded protein and of S. lividans Jni1, having a high amplification of AUD1 and therefore orfMDR , were used in gel retardation assays. The orfRDR - and probably the orfMDR -encoded proteins can bind to an imperfect palindromic sequence upstream from MDR and RDR and to another sequence downstream from RDR. An extrachromosomal DNA amplification system was constructed containing different combinations of the sequences composing AUD1. In mutants having a deletion of the chromosomal AUD1, the 4.7 kb repeats could be reduced in size, mutated or replaced by E. coli DNA without altering the ability to amplify when RDR was present. Therefore, the only function of the 4.7 kb repeats in amplification is to provide directly repeated DNA sequences. When RDR was lacking or mutated, no amplification was observed. This strongly suggests that the DNA-binding protein encoded by orfRDR is required for AUD1 amplification.  相似文献   

16.
Previous studies (R. R. Spaete and N. Frenkel, Cell 30:295-304, 1982) have documented the potential use of defective virus vectors (amplicons) derived from herpes simplex virus for the efficient introduction of foreign DNA sequences into eucaryotic cells. Specifically, cotransfection of cells with helper virus DNA and cloned amplicons (8 to 10 kilobases [kb]) containing bacterial plasmid DNA sequences linked to a set of herpes simplex virus cis-acting propagation signals (a replication origin and a cleavage-packaging signal) resulted in the generation of virus stocks containing packaged defective genomes that consisted of uniform head-to-tail reiterations of the chimeric seed amplicon sequences. The chimeric defective genomes could be stably propagated in virus stocks and could thus be used to efficiently infect cells. We now report on additional studies designed to propagate relatively large sets of eucaryotic DNA sequences within chimeric packaged defective genomes. These studies have utilized a 12-kb chicken DNA sequence encoding the chicken ovalbumin gene and cloned by Lai et al. (Proc. Natl. Acad. Sci. U.S.A. 77:244-248, 1980) in the plasmid pOV12. Virus stocks derived from cells cotransfected with helper virus DNA and chimeric amplicons (overall size of 19.8 kb, of which 12 kb corresponded to the chicken DNA) contained defective genomes composed of reiterations of the 19.8-kb seed amplicon sequences. However, in addition to the authentically sized repeat units, defective genomes in the derivative virus stocks contained smaller repeat units representing deleted versions of the seed 19.8-kb amplicons. The recombinational events leading to the formation of deleted repeats did not appear to occur at unique sites, as shown by comparative analyses of multiple, independently generated virus series propagated from separate transfections. In contast, seed amplicons ranging in size from 11 to 15 kb and containing subsets of the 12-kb chicken DNA sequences replicated efficiently and could be stably propagated in virus stocks. The results of these studies suggest the existence of size restrictions (up to 15 kb) on the efficient replication of seed herpes simplex virus amplicons.  相似文献   

17.
The restriction enzyme TaqI digests 0.2% of the genomic DNA from the grasshopper Caledia captiva to a family of sequences 168 bp in length (length of consensus sequence). The sequence variation of this "Taq family" of repeat units was examined among four races from C. captiva to assay the pattern of evolution within this highly repeated DNA. The Taq-family repeats are located in C-banded heterochromatin on at least one member of each homologous pair of chromosomes; the locations range from centromeric to telomeric. Thirty-nine cloned repeats isolated from two population 1A individuals along with 11 clones from seven populations taken from three of the races demonstrated sequence variation at 72 positions. Pairwise comparisons of the cloned repeats, both within an individual and between different races, indicate that levels of intraspecific divergence, as measured by reproductive incompatibility, do not correlate with sequence divergence among the 168-bp repeats. A number of subsequences within the repeat remain unchanged among all 50 clones; the longest of these is 18 bp. That the same 18-bp subsequence is present in all clones examined is a finding that departs significantly (P less than 0.01) from what would be expected to occur at random. Two other cloned repeats, from a reproductively isolated race of C. captiva, have sequences that show 56% identity with this 18-bp conserved region. An analysis showed that the frequency of occurrence of an RsaI recognition site within the 168- bp repeat in the entire Taq family agreed with that found in the cloned sequences. These data, along with a partial sequence for the entire Taq family obtained by sequencing uncloned repeats, suggest that the consensus sequence from the cloned copies is representative of this highly repeated family and is not a biased sample resulting from the cloning procedure. The 18-bp conserved sequence is part of a 42-bp sequence that possesses dyad symmetry typical of protein-binding sites. We speculate that this may be significant in the evolution of the Taq family of sequences.   相似文献   

18.
A new rice repetitive DNA shows sequence homology to both 5S RNA and tRNA.   总被引:2,自引:0,他引:2  
T Y Wu  R Wu 《Nucleic acids research》1987,15(15):5913-5923
Moderately repetitive DNA sequences are found in the genomes of all eucaryotes that have been examined. We now report the discovery of a novel, transcribed, moderately repetitive DNA sequence in a higher plant which is different from any of the known repetitive DNA sequences from any organism. We isolated a rice cDNA clone which hybridizes to multiple bands on genomic blot analysis. The sequence of this 352 bp cDNA contains four regions of homology to the wheat phenylalanine tRNA, including the polymerase III-type promoter. Unexpectedly, two regions of the same 352 bp sequence also show homology to the wheat 5S RNA sequence. Using the cDNA as a probe, we have isolated six genomic clones which contain long tandem repeats of 355 bp sequence, and have sequenced nine repeat units. Our findings suggest that the rice repetitive sequence may be an amplified pseudogene with sequence homology to both 5S RNA and tRNA, but organized as long tandem repeats resembling 5S RNA genes. This is the first example showing homology between the sequences of a moderately repetitive DNA with unknown function and 5S RNA.  相似文献   

19.
The 5 S DNAs and several tDNAs of Xenopus laevis reside primarily in large clusters of tandem repeating units. We have discovered that a substantial number of these genes, along with portions of their adjacent spacer sequences, are also located in dispersed genomic locations apart from the major clusters. This was accomplished by "null-digesting" total genomic DNA with restriction enzymes that do not cut within the X. laevis tDNA or 5 S DNA major repeats. The tDNA and 5 S DNA main clusters therefore remain intact and can be easily separated on gels from the dispersed tDNAs and 5 S DNAs present as low molecular weight restriction fragments. Probing these smaller fragments with different portions of the major repeats has revealed that many of the dispersed genes are organized differently from the corresponding tDNAs and 5 S DNAs of the primary clusters. Some of the fragments containing dispersed genes are actually present in multiple copies. In addition, many tDNA null-digestion fragments contain more than one type of tRNA coding region. One set of "dispersed" tDNAs actually comprises a tandemly arranged minor tDNA family which has retained the same repeat length (3.18 kb) as the major tDNA family, but has a substantially different organization. There is significant population polymorphism in the organization of the dispersed tDNAs and 5 S DNAs. Dispersed genes that appear to be derived from clusters of tandem repeats ("orphons") have been described for several gene families in invertebrates. The occurrence of this phenomenon in vertebrates as well, suggests that such dispersed genes may be a general feature of all eukaryotic genomes.  相似文献   

20.
T Tozaki  S Inoue  S Mashima  M Ohta  N Miura  M Tomita 《Génome》2000,43(2):354-365
Microsatellites are useful tools for the construction of a linkage map and parentage testing of equines, but only a limited number of equine microsatellites have been elucidated. Thus, we constructed the equine genomic library enriched for DNA fragments containing (CAG)n repeats. The enriched method includes hybridization-capture of repeat regions using biotin-conjugated oligonucleotides, nucleotide substrate-biased polymerase reaction with the oligonucleotides and subsequent PCR amplification, because these procedures are useful for the cloning of less abundant trinucleotide microsatellites. Microsatellites containing (CAG)n repeats were obtained at the ratio of one per 3-4 clones, indicating an enrichment value about 10(4)-fold, resulting in less time consumption and less cost for cloning. In this study, 66 different microsatellites, (CAG)n repeats, were identified. The number of complete simple CAG repeats in our clones ranged 4-33, with an average repeat length of 8.8 units. The microsatellites were useful as sequence-tagged site (STS) markers. In addition, some clones containing (CAG)n repeats showed homology to human (CAG)n-containing genes, which have been previously mapped. These results indicate that the clones might be a useful tool for chromosome comparison between equines and humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号