首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Attenuation of NMDA receptor activity and neurotoxicity by nitroxyl anion, NO-   总被引:10,自引:0,他引:10  
Recent evidence indicates that the NO-related species, nitroxyl anion (NO), is produced in physiological systems by several redox metal-containing proteins, including hemoglobin, nitric oxide synthase (NOS), superoxide dismutase, and S-nitrosothiols (SNOs), which have recently been identified in brain. However, the chemical biology of NO- remains largely unknown. Here, we show that NO- -unlike NO*, but reminiscent of NO+ transfer (or S-nitrosylation)- -reacts mainly with Cys-399 in the NR2A subunit of the N-methyl-D-aspartate (NMDA) receptor to curtail excessive Ca2+ influx and thus provide neuroprotection from excitotoxic insults. This effect of NO- closely resembles that of NOS, which also downregulates NMDA receptor activity under similar conditions in culture.  相似文献   

2.
Under ambient air conditions, NO inhibits NMDAR activity by reacting with the NR2A subunit C399 along with two additional cysteine pairs if their disulfide bonds are reduced to free thiol groups [NR1(C744,C798); NR2(C87,C320)]. Here we demonstrate that relative hypoxia enhances S-nitrosylation of NMDARs by a unique mechanism involving an "NO-reactive oxygen sensor motif" whose determinants include C744 and C798 of the NR1 subunit. Redox reactions involving these two thiol groups sensitize other NMDAR sites to S-nitrosylation and consequent receptor inhibition, while their own nitrosylation has little effect on NMDAR activity. The crystal structure of the ligand-binding domain of NR1 reveals a flexible disulfide bond (C744-C798), which may account for its susceptibility to reduction and subsequent reaction with NO that is observed with biochemical techniques. These thiols may be nitrosylated preferentially during increasing hypoxia or stroke conditions, thus preventing excessive activity associated with cytotoxicity while avoiding blockade of physiologically active NMDARs.  相似文献   

3.
Recent results demonstrated that S-nitrosoglutathione (GSNO) and nitric oxide (*NO) protect brain dopamine neurons from hydroxyl radical (*OH)-induced oxidative stress in vivo because they are potent antioxidants. GSNO and *NO terminate oxidant stress in the brain by (i) inhibiting iron-stimulated hydroxyl radicals formation or the Fenton reaction, (ii) terminating lipid peroxidation, (iii) augmenting the antioxidative potency of glutathione (GSH), (iv) mediating neuroprotective action of brain-derived neurotrophin (BDNF), and (v) inhibiting cysteinyl proteases. In fact, GSNO--S-nitrosylated GSH--is approximately 100 times more potent than the classical antioxidant GSH. In addition, S-nitrosylation of cysteine residues by GSNO inactivates caspase-3 and HIV-1 protease, and prevents apoptosis and neurotoxicity. GSNO-induced antiplatelet aggregation is also mediated by S-nitrosylation of clotting factor XIII. Thus the elucidation of chemical reactions involved in this GSNO pathway (GSH GS* + *NO-->[GSNO]-->GSSG + *NO-->GSH) is necessary for understanding the biology of *NO, especially its beneficial antioxidative and neuroprotective effects in the CNS. GSNO is most likely generated in the endothelial and astroglial cells during oxidative stress because these cells contain mM GSH and nitric oxide synthase. Furthermore, the transfer of GSH and *NO to neurons via this GSNO pathway may facilitate cell to neuron communications, including not only the activation of guanylyl cyclase, but also the nitrosylation of iron complexes, iron containing enzymes, and cysteinyl proteases. GSNO annihilates free radicals and promotes neuroprotection via its c-GMP-independent nitrosylation actions. This putative pathway of GSNO/GSH/*NO may provide new molecular insights for the redox cycling of GSH and GSSG in the CNS.  相似文献   

4.
Nitric oxide (NO) regulates a number of signaling functions in both animals and plants under several physiological and pathophysiological conditions. S-Nitrosylation linking a nitrosothiol on cysteine residues mediates NO signaling functions of a broad spectrum of mammalian proteins, including caspases, the main effectors of apoptosis. Metacaspases are suggested to be the ancestors of metazoan caspases, and plant metacaspases have previously been shown to be genuine cysteine proteases that autoprocess in a manner similar to that of caspases. We show that S-nitrosylation plays a central role in the regulation of the proteolytic activity of Arabidopsis thaliana metacaspase 9 (AtMC9) and hypothesize that this S-nitrosylation affects the cellular processes in which metacaspases are involved. We found that AtMC9 zymogens are S-nitrosylated at their active site cysteines in vivo and that this posttranslational modification suppresses both AtMC9 autoprocessing and proteolytic activity. However, the mature processed form is not prone to NO inhibition due to the presence of a second S-nitrosylation-insensitive cysteine that can replace the S-nitrosylated cysteine residue within the catalytic center of the processed AtMC9. This cysteine is absent in caspases and paracaspases but is conserved in all reported metacaspases.  相似文献   

5.
Heo J  Campbell SL 《Biochemistry》2004,43(8):2314-2322
Nitric oxide (NO), a highly reactive redox molecule, can react with protein thiols and protein metal centers to regulate a multitude of physiological processes. NO has been shown to promote guanine nucleotide exchange on the critical cellular signaling protein p21Ras (Ras) by S-nitrosylation of a redox-active thiol group (Cys(118)). This increases cellular Ras-GTP levels in vivo, leading to activation of downstream signaling pathways. Yet the process by which this occurs is not clear. Although several feasible mechanisms for protein S-nitrosylation with NO and NO donating have been proposed, results obtained from our studies suggest that Ras can be S-nitrosylated by direct reaction of Cys(118) with nitrogen dioxide (*NO(2)), a reaction product of NO with O(2), via a Ras thiyl-radical intermediate (Ras-S*). Results from our studies also indicate that Ras Cys(118) can be S-nitrosylated by direct reaction of Cys(118) with a glutathionyl radical (GS*), a reaction product derived from homolytic cleavage of S-nitrosoglutathione (GSNO). Moreover, we present evidence that reaction of GS* with Ras generates a Ras-S* intermediate during GSNO-mediated Ras S-nitrosylation. The Ras-S(*) radical intermediate formed from reaction of the Ras thiol with either *NO(2) or GS*, in turn, reacts with NO to complete Ras S-nitrosylation. NO and GSNO modulate Ras activity by promoting guanine nucleotide dissociation from Ras. Our results suggest that formation of the Ras radical intermediate, Ras-S*, may perturb interactions between Ras and its guanine nucleotide substrate, resulting in enhancement of guanine nucleotide dissociation from Ras.  相似文献   

6.
Although activation of glutamate receptors is essential for normal brain function, excessive activity leads to a form of neurotoxicity known as excitotoxicity. Key mediators of excitotoxic damage include overactivation of N-methyl-D-aspartate (NMDA) receptors, resulting in excessive Ca(2+) influx with production of free radicals and other injurious pathways. Overproduction of free radical nitric oxide (NO) contributes to acute and chronic neurodegenerative disorders. NO can react with cysteine thiol groups to form S-nitrosothiols and thus change protein function. S-nitrosylation can result in neuroprotective or neurodestructive consequences depending on the protein involved. Many neurodegenerative diseases manifest conformational changes in proteins that result in misfolding and aggregation. Our recent studies have linked nitrosative stress to protein misfolding and neuronal cell death. Molecular chaperones - such as protein-disulfide isomerase, glucose-regulated protein 78, and heat-shock proteins - can provide neuroprotection by facilitating proper protein folding. Here, we review the effect of S-nitrosylation on protein function under excitotoxic conditions, and present evidence that NO contributes to degenerative conditions by S-nitrosylating-specific chaperones that would otherwise prevent accumulation of misfolded proteins and neuronal cell death. In contrast, we also review therapeutics that can abrogate excitotoxic damage by preventing excessive NMDA receptor activity, in part via S-nitrosylation of this receptor to curtail excessive activity.  相似文献   

7.
Wang  Manqi  Dong  Yanyan  Yan  Jinping  Han  Qinqin  Li  Kunzhi  Xu  Huini 《Plant Cell, Tissue and Organ Culture》2020,143(1):173-187
Plant Cell, Tissue and Organ Culture (PCTOC) - S-nitrosylation, the addition of nitric oxide (NO) moiety to a reactive cysteine thiol, to form an S-nitrosothiol (SNO), is emerging as a prototypic...  相似文献   

8.
S-nitrosylation, the covalent attachment of a nitric oxide (NO) moiety to a protein cysteine thiol to form an S-nitrosothiol (SNO) is rapidly emerging as a prototypic, redox-based post-translational modification during plant immune function. Here we review recently identified targets for S-nitrosylation and the consequences of these modifications in relation to the control of plant disease resistance.  相似文献   

9.
S-nitrosothiol compounds are important mediators of NO signalling and can give rise to various redox derivatives of NO: nitrosonium cation (NO+), nitroxyl anion (NO-) and NO* radical. Several enzymes and transporters have been implicated in the intracellular delivery of NO from S-nitrosothiols. In the present study we have investigated the role of GPx (glutathione peroxidase), the L-AT (L-amino acid transporter) system and PDI (protein disulfide-isomerase) in the delivery of NO redox derivatives into human platelets. Washed human platelets were treated with inhibitors of GPx, L-AT and PDI prior to exposure to donors of NO redox derivatives (S-nitrosoglutathione, Angeli's salt and diethylamine NONOate). Rapid delivery of NO-related signalling into platelets was monitored by cGMP accumulation and DAF-FM (4-amino-5-methylamino-2'7'-difluorofluorescein) fluorescence. All NO redox donors produced both a cGMP response and DAF-FM fluorescence in target platelets. NO delivery was blocked by inhibition of PDI in a dose-dependent manner. In contrast, inhibition of GPx and L-AT had only a minimal effect on NO-related signalling.PDI activity is therefore required for the rapid delivery into platelets of NO-related signals from donors of all NO redox derivatives. GPx and the L-AT system appeared to be unimportant in rapid NO signalling by the compounds used in the present study. This does not, however, exclude a possible role during exposure of cells to other S-nitrosothiol compounds, such as S-nitrosocysteine. These results further highlight the importance of PDI in mediating the action of a wide range of NO-related signals.  相似文献   

10.
The biological effects of nitric oxide (NO) are in significant part mediated through S-nitrosylation of cysteine thiol. Work on model thiol substrates has raised the idea that molecular oxygen (O(2)) is required for S-nitrosylation by NO; however, the relevance of this mechanism at the low physiological pO(2) of tissues is unclear. Here we have used a proteomic approach to study S-nitrosylation reactions in situ. We identify endogenously S-nitrosylated proteins in subcellular organelles, including dihydrolipoamide dehydrogenase and catalase, and show that these, as well as hydroxymethylglutaryl-CoA synthase and sarcosine dehydrogenase (SarDH), are S-nitrosylated by NO under strictly anaerobic conditions. S-Nitrosylation of SarDH by NO is best rationalized by a novel mechanism involving the covalently bound flavin of the enzyme. We also identify a set of mitochondrial proteins that can be S-nitrosylated through multiple reaction channels, including anaerobic/oxidative, NO/O(2), and GSNO-mediated transnitrosation. Finally, we demonstrate that steady state levels of S-nitrosylation are higher in mitochondrial extracts than the intact organelles, suggesting the importance of denitrosylation reactions. Collectively, our results provide new insight into the determinants of S-nitrosothiol levels in subcellular compartments.  相似文献   

11.
The plausible nitric oxide (NO)-sensing module of TRPC5 was incorporated in a enhanced green fluorescent protein (EGFP) to evaluate its conformational change as an optical response upon the reaction with NO. Two cysteine residues located in the NO-sensing module have been proposed to form a disulfide bond through S-nitrosylation of the thiol group by NO. Modification of the cysteine residues by NO resulted a ratiometric change of EGFP emission through transducing the conformational change of NO-sensing module to the EGFP chromophore. The oxidized form of NO-sensing module fused EGFP changed the intensity of emission spectra upon reduction of the disulfide bond at the NO-reactive module. The NO-sensing module fused EGFP in its reduced form avidly reacted with NO and realized the ratiometric fluorescence intensity changes depending on the formation of disulfide bond. These results support the notion that NO induces a conformational change at the putative NO-sensing segment of TRPC5, and provide a prototype for the genetically encoded cellular NO sensors.  相似文献   

12.
Interaction of bilirubin and biliverdin with reactive nitrogen species   总被引:12,自引:0,他引:12  
Bilirubin (BR) and biliverdin (BV), two metabolites produced during haem degradation by haem oxygenase, possess strong antioxidant activities toward peroxyl radical, hydroxyl radical and hydrogen peroxide. Considering the importance attributed to nitric oxide (NO) and its congeners in the control of physiological and pathophysiological processes, we examined the interaction of BR and BV with NO and NO-related species in vitro. Exposure of BR and BV to agents that release NO or nitroxyl resulted in a concentration- and time-dependent loss of BR and BV, as assessed by high performance liquid chromatography. Peroxynitrite, a strong oxidant derived from the reaction of NO with superoxide anion, also showed high reactivity toward BR and BV. The extent of BR and BV consumption largely depended on the NO species being analysed and on the half-lives of the pharmacological compounds considered. Of major importance, BR and BV decomposition occurred also in the presence of pure NO under anaerobic conditions, confirming the ability of bile pigments to scavenge the gaseous free radical. Increasing concentrations of thiols prevented BR consumption by nitroxyl, indicating that bile pigments and thiol groups can compete and/or synergise the cellular defence against NO-related species. In view of the high inducibility of haem oxygenase-1 by NO-releasing agents in different cell types, the present findings highlight novel anti-nitrosative characteristics of BR and BV suggesting a potential function for bile pigments against the damaging effects of uncontrolled NO production.  相似文献   

13.
The pathological processes of neurodegenerative disorders such as Alzheimer's and Parkinson's diseases engender synaptic and neuronal cell damage. While mild oxidative and nitrosative (nitric oxide (NO)-related) stress mediates normal neuronal signaling, excessive accumulation of these free radicals is linked to neuronal cell injury or death. In neurons, N-methyl-D-aspartate (NMDA) receptor (NMDAR) activation and subsequent Ca(2+) influx can induce the generation of NO via neuronal NO synthase. Emerging evidence has demonstrated that S-nitrosylation, representing covalent reaction of an NO group with a critical protein thiol, mediates the vast majority of NO signaling. Analogous to phosphorylation and other posttranslational modifications, S-nitrosylation can regulate the biological activity of many proteins. Here, we discuss recent studies that implicate neuropathogenic roles of S-nitrosylation in protein misfolding, mitochondrial dysfunction, synaptic injury, and eventual neuronal loss. Among a growing number of S-nitrosylated proteins that contribute to disease pathogenesis, in this review we focus on S-nitrosylated protein-disulfide isomerase (forming SNO-PDI) and dynamin-related protein 1 (forming SNO-Drp1). Furthermore, we describe drugs, such as memantine and newer derivatives of this compound that can prevent both hyperactivation of extrasynaptic NMDARs as well as downstream pathways that lead to nitrosative stress, synaptic damage, and neuronal loss.  相似文献   

14.
The reaction of nitric oxide (*NO) with ubiquinol-0 and ubiquinol-2, short-chain analogs of coenzyme Q, was examined in anaerobic and aerobic conditions in terms of formation of intermediates and stable molecular products. The chemical reactivity of ubiquinol-0 and ubiquinol-2 towards *NO differed only quantitatively, the reactions of ubiquinol-2 being slightly faster than those of ubiquinol-0. The ubiquinol/*NO reaction entailed oxidation of ubiquinol to ubiquinone and reduction of *NO to NO-, the latter identified by its reaction with metmyoglobin to form nitroxylmyoglobin and indirectly by measurement of nitrous oxide (N2O) by gas chromatography. Both the rate of ubiquinone accumulation and *NO consumption were linearly dependent on ubiquinol and *NO concentrations. The stoichiometry of *NO consumed per either ubiquinone formed or ubiquinol oxidized was 1.86 A 0.34. The reaction of *NO with ubiquinols proceeded with intermediate formation of ubisemiquinones that were detected by direct EPR. The second order rate constants of the reactions of ubiquinol-0 and ubiquinol-2 with *NO were 0.49 and 1.6 x 10(4) M(-1)s(-1), respectively. Studies in aerobic conditions revealed that the reaction of *NO with ubiquinols was associated with O2 consumption. The formation of oxyradicals - identified by spin trapping EPR- during ubiquinol autoxidation was inhibited by *NO, thus indicating that the O2 consumption triggered by *NO could not be directly accounted for in terms of oxyradical formation or H2O2 accumulation. It is suggested that oxyradical formation is inhibited by the rapid removal of superoxide anion by *NO to yield peroxynitrite, which subsequently may be involved in the propagation of ubiquinol oxidation. The biological significance of the reaction of ubiquinols with *NO is discussed in terms of the cellular O2 gradients, the steady-state levels of ubiquinols and *NO, and the distribution of ubiquinone (largely in its reduced form) in biological membranes with emphasis on the inner mitochondrial membrane.  相似文献   

15.
The conversion of NO into its congeners, nitrosonium (NO+) and nitroxyl (HNO/NO-) species, has important consequences in NO metabolism. Dinitrosyl iron complex (DNIC) combined with thiol ligands was shown to catalyze the conversion of NO into NO+, resulting in the synthesis of S-nitrosothiols (RSNO) both in vitro and in vivo. The formation mechanism of DNIC was proposed to involve the intermediate release of nitroxyl. Since the detection of hydroxylamine (as the product of a rapid reaction of HNO/NO- with thiols) is taken as the evidence for nitroxyl generation, we examined the formation of hydroxylamine, RSNO, and nitrite (the product of a rapid reaction of NO+ with water) in neutral solutions containing iron ions and thiols exposed to NO under anaerobic conditions. Hydroxylamine was detected in NO treated solutions of iron ions in the presence of cysteine, but not glutathione (GSH). The addition of urate, a major "free" iron-binding agent in humans, to solutions of GSH and iron ions, and the subsequent treatment of these solutions with NO increased the synthesis of GSNO and resulted in the formation of hydroxylamine. This caused a loss of urate and yielded a novel nitrosative/nitration product. GSH attenuated the urate decomposition to such a degree that it could be reflected as the function of GSH:urate. Results described here contribute to the understanding of the role of iron ions in catalyzing the conversion of NO into HNO/NO- and point to the role of uric acid not previously described.  相似文献   

16.
S-nitrosylation in health and disease   总被引:9,自引:0,他引:9  
S-nitrosylation is a ubiquitous redox-related modification of cysteine thiol by nitric oxide (NO), which transduces NO bioactivity. Accumulating evidence suggests that the products of S-nitrosylation, S-nitrosothiols (SNOs), play key roles in human health and disease. In this review, we focus on the reaction mechanisms underlying the biological responses mediated by SNOs. We emphasize reactions that can be identified with complex (patho)physiological responses, and that best rationalize the observed increase or decrease in specific classes of SNOs across a spectrum of disease states. Thus, changes in the levels of various SNOs depend on specific defects in both enzymatic and non-enzymatic mechanisms of nitrosothiol formation, processing and degradation. An understanding of these mechanisms is crucial for the development of an integrated model of NO biology, and for effective treatment of diseases associated with dysregulation of NO homeostasis.  相似文献   

17.
Oxidative addition of a nitric oxide (NO) molecule to the thiol group of cysteine residues is a physiologically important post-translational modification that has been implicated in several metabolic and pathophysiological events. Our previous studies have indicated that S-nitrosylation can result in the disruption of the endothelial NO synthase (eNOS) dimer. It has been suggested that for S-nitrosylation to occur, the cysteine residue must be flanked by hydrophilic residues either in the primary structure or in the spatial proximity through appropriate conformation. However, this hypothesis has not been confirmed. Thus, the objective of this study was to determine if the nature of the amino acid residues that flank the cysteine in the primary structure has a significant effect on the rate and/or specificity of S-nitrosylation. To accomplish this, we utilized several model peptides based on the eNOS protein sequence. Some of these peptides contained point mutations to allow for different combinations of amino acid properties (acidic, basic, and hydrophobic) around the cysteine residue. To ensure that the results obtained were not dependent on the nitrosylation procedure, several common S-nitrosylation techniques were used and S-nitrosylation followed by mass spectrometric detection. Our data indicated that all peptides independent of the amino acids surrounding the cysteine residue underwent rapid S-nitrosylation. Thus, there does not appear to be a profound effect of the primary sequence of adjacent amino acid residues on the rate of cysteine S-nitrosylation at least at the peptide levels. Finally, our studies using recombinant human eNOS confirm that Cys98 undergoes S-nitrosylation. Thus, our data validate the importance of Cys98 in regulating eNOS dimerization and activity, and the utility of mass spectroscopy to identify cysteine residues susceptible to S-nitrosoylation.  相似文献   

18.
Nitric oxide (NO) is an important signaling molecule that interacts with different targets depending on its redox state. NO can interact with thiol groups resulting in S-nitrosylation of proteins, but the functional implications of this modification are not yet fully understood. We have reported that treatment of RAW 264.7 cells with NO caused a decrease in levels of iron regulatory protein 2 (IRP2), which binds to iron-responsive elements present in untranslated regions of mRNAs for several proteins involved in iron metabolism. In this study, we show that NO causes S-nitrosylation of IRP2, both in vitro and in vivo, and this modification leads to IRP2 ubiquitination followed by its degradation in the proteasome. Moreover, mutation of one cysteine (C178S) prevents NO-mediated degradation of IRP2. Hence, S-nitrosylation is a novel signal for IRP2 degradation via the ubiquitin-proteasome pathway.  相似文献   

19.
Protein S-nitrosylation: purview and parameters   总被引:15,自引:0,他引:15  
S-nitrosylation, the covalent attachment of a nitrogen monoxide group to the thiol side chain of cysteine, has emerged as an important mechanism for dynamic, post-translational regulation of most or all main classes of protein. S-nitrosylation thereby conveys a large part of the ubiquitous influence of nitric oxide (NO) on cellular signal transduction, and provides a mechanism for redox-based physiological regulation.  相似文献   

20.
刘振  刘霞  刘建中 《植物学报》2016,51(1):130-143
亚硝基化是近年来新发现的不依赖于环磷酸鸟苷的一氧化氮信号转导途径, 是一氧化氮分子通过共价结合修饰靶蛋白的半胱氨酸残基从而改变其功能的过程。该文重点综述了近年来亚硝基化在细胞死亡和抗病反应这两个紧密关联的生物学过程中的最新研究成果, 总结了亚硝基化通过修饰和调控靶蛋白从而促进或抑制细胞死亡和抗病反应, 并对现有研究结果中某些不一致之处提出自己的观点。最后根据动物学领域的最新研究进展对植物学领域未来亚硝基化的研究方向进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号