首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
P. Lange  K. Wöhrmann 《Genetica》1981,57(2):105-111
Competition experiments between yeast strains which were either inducible or constitutive for maltase synthesis were performed. The experiments showed a selective advantage of cells with an inducible maltase over cells with a constitutive maltase. However, with respect to the carbon source of the media, the most remarkable decrease of frequency of constitutive cells was observed on maltose and not on glucose as could be expected. It could be shown that the higher amount of protein and not the overproduction of maltase by the constitutive strain is responsible for the lower growth rates of these strains. The results are in agreement with the energy conservation hypothesis.  相似文献   

2.
Maltose transport and maltase activities were inactivated during sporulation of a MAL constitutive yeast strain harboring different MAL loci. Both activities were reduced to almost zero after 5 h of incubation in sporulation medium. The inactivation of maltase and maltose permease seems to be related to optimal sporulation conditions such as a suitable supply of oxygen and cell concentration in the sporulating cultures, and occurs in the fully derepressed conditions of incubation in the sporulation acetate medium. The inactivation of maltase and maltose permease under sporulation conditions in MAL constitutive strains suggests an alternative mechanism for the regulation of the MAL gene expression during the sporulation process.  相似文献   

3.
Protein stability, as measured by irreversible protein aggregation, is one of the central difficulties in the handling of detergent-solubilized membrane proteins. We present a quantitative analysis of the stability of the Escherichia coli lactose (lac) permease and a series of lac permease fusion proteins containing an insertion of cytochrome(b562), T4 lysozyme or beta-lactamase in the central hydrophilic loop of the permease. The stability of the proteins was evaluated under a variety of storage conditions by both a qualitative SDS-PAGE assay and by a quantitative hplc assay. Long-chain maltoside detergents were more effective at maintaining purified protein in solution than detergents with smaller head groups and/or shorter alkyl tails. A full factorial experiment established that the proteins were insensitive to sodium chloride concentrations, but greatly stabilized by glycerol, low temperature and the combination of glycerol and low temperature. The accurate quantitation of the protein by absorbance spectroscopy required exclusion of all contact with clarified polypropylene or polyvinyl chloride (PVC) materials. Although some of the fusion proteins were more prone to aggregation than the wild-type permease, the stability of a fusion protein containing a cytochrome(b562) insertion was indistinguishable from that of native lac permease.  相似文献   

4.
Metabolic Flux and Fitness   总被引:15,自引:8,他引:7       下载免费PDF全文
Studies of Escherichia coli under competition for lactose in chemostat cultures have been used to determine the selective effects of variation in the level of the beta-galactoside permease and the beta-galactosidase enzyme. The results determine the adaptive topography of these gene products relative to growth in limiting lactose and enable predictions concerning the selective effects of genetic variants found in natural populations. In the terms of metabolic control theory, the beta-galactosidase enzyme at wild-type-induced levels has a small control coefficient with respect to fitness (C = 0.018), and hence genetic variants resulting in minor changes in enzyme activity have disproportionately small effects on fitness. However, the apparent control coefficient of the beta-galactoside permease at wild-type-induced levels is large (C = 0.551), and hence even minor changes in activity affect fitness. Therefore, we predict that genetic polymorphisms in the lacZ gene are subject to less effective selection in natural populations than are those in the lacY gene. The beta-galactoside permease is also less efficient than might be expected, and possible forces resulting in selection for an intermediate optimum level of permease activity are considered. The selective forces that maintain the lactose operon in a regulated state in natural populations are also discussed.  相似文献   

5.
Summary In order to test the hypothesis that the high prevalence of the mar(X) syndrome is caused by a high mutation rate in male germ cells only, the fraction of new mutants among mothers of probands in 112 informative families has been examined by segregation analysis among their brothers and sisters. The estimated fraction of new mutants among these mothers is much lower than expected if a stable equilibrium existed between an unusually high mutation rate and a selective disadvantage of mentally retarded, male and female mar(X) carriers. Hence, the above-mentioned hypothesis could not be confirmed.  相似文献   

6.
Protein stability, as measured by irreversible protein aggregation, is one of the central difficulties in the handling of detergent-solubilized membrane proteins. We present a quantitative analysis of the stability of the Escherichia coli lactose (lac) permease and a series of lac permease fusion proteins containing an insertion of cytochromeb562, T4 lysozyme or β-lactamase in the central hydrophilic loop of the permease. The stability of the proteins was evaluated under a variety of storage conditions by both a qualitative SDS-PAGE assay and by a quantitative hplc assay. Long-chain maltoside detergents were more effective at maintaining purified protein in solution than detergents with smaller head groups and/or shorter alkyl tails. A full factorial experiment established that the proteins were insensitive to sodium chloride concentrations, but greatly stabilized by glycerol, low temperature and the combination of glycerol and low temperature. The accurate quantitation of the protein by absorbance spectroscopy required exclusion of all contact with clarified polypropylene or polyvinyl chloride (PVC) materials. Although some of the fusion proteins were more prone to aggregation than the wild-type permease, the stability of a fusion protein containing a cytochromeb562 insertion was indistinguishable from that of native lac permease.  相似文献   

7.
A recombinant Escherichia coli strain with the cloned gene of restriction endonuclease EcoR-V was studied. The diauxic growth of this strain under batch conditions, the composition of excreted products and the hyperbolic shape of the chemostat growth curve has made it possible to formulate the following hypothesis. At a high flow rate, one of the first reactions in the tricarboxylic acid cycle or a reaction directly preceding the cycle is a limiting step in the metabolism of E. coli cells. The saturation of the limiting reaction with a substrate at a flow rate higher than the critical one may be responsible for the hyperbolic profile of chemostat curves. The above hypothesis was confirmed by experiments conducted under extreme conditions, in which the composition of the growth medium was changed and the temperature was raised so that the cloned protein synthesis was depressed. Under such conditions, the enzyme composition of the cell was fixed and determined by the physiological state of the culture at a time when the temperature was elevated. The hypothesis was also supported by the results obtained in growing the strain with the induced protein synthesis in media to which various compounds were added.  相似文献   

8.
We have examined the effects of wall populations on coexistence between strains of Escherichia coli in the liquid phase of mixed (two-strain) chemostats. The wall populations of the two competing strains became established soon after the start of the cultures and, although the relative abundance of the strains in the liquid phase could change over time by several orders of magnitude, the composition of an established wall population did not change markedly. The bacterial strains examined could not displace an established wall population of a competing strain. The presence of a permanent wall population allowed a strain that was less fit in the liquid phase to coexist with a superior strain. The resulting coexistence did not require that the inferior strain attached to the vessel wall better than the superior strain. We believe that the coexistence developed because the inferior strain survived and reproduced on the vessel wall. The progeny from that wall population then provided replacements for the bacteria that the inferior strain lost through a selective disadvantage in the liquid phase of the culture. By replacing the chemostat vessel, hence eliminating the wall populations, we could distinguish between cases where the coexistence depended on the presence of a wall population and where it resulted from some alternative mechanism.  相似文献   

9.
The accompanying articles (Saffen, D.W., Presper, K.A., Doering, T.L., and Roseman, S. (1987) J. Biol. Chem. 262, 16241-16253; Mitchell, W.J., Saffen, D. W., and Roseman, S. (1987) J. Biol. Chem. 262, 16254-16260) show that "inducer exclusion" in intact cells of Escherichia coli is regulated by IIIGlc, a protein encoded by the crr gene of the phosphoenolpyruvate:glycose phosphotransferase system (PTS). The present studies attempt to show a direct effect of IIIGlc on non-PTS transport systems. Inner membrane vesicles prepared from a wild type strain of Salmonella typhimurium (pts+), carrying the E. coli lactose operon on an episome, showed respiration-dependent accumulation of methyl-beta-D-thiogalactopyranoside (TMG) via the lactose permease. In the presence of methyl-alpha-D-glucopyranoside or other PTS sugars, TMG uptake was reduced by an amount which was dependent on the relative concentrations of IIIGlc and lactose permease in the vesicles. The endogenous IIIGlc concentration in these vesicles was in the range 5-10 microM, similar to that found in whole cells. Methyl-alpha-glucoside had no effect on lactose permease activity in vesicles prepared from a deletion mutant strain lacking the soluble PTS proteins Enzyme I, HPr, and IIIGlc. One or more of the pure proteins could be inserted into the mutant vesicles; when one of the two electrophoretically distinguishable forms of the phosphocarrier protein, IIIGlc Slow, was inserted, both the initial rate and steady state level of TMG accumulation were reduced by up to 40%. The second electrophoretic form, IIIGlc Fast, had much less effect. A direct relationship was observed between the intravesicular concentration of IIIGlc Slow and the extent of inhibition of the lactose permease. No inhibition was observed when IIIGlc Slow was added to the outside of the vesicles, indicating that the site of interaction with the lactose permease is accessible only from the inner face of the membrane. In addition to the lactose permease, IIIGlc Slow was found to inhibit both the galactose and the melibiose permeases. Uptake of proline, on the other hand, was unaffected. The results are therefore consistent with an hypothesis that dephosphorylated IIIGlc Slow is an inhibitor of certain non-PTS permeases.  相似文献   

10.
Selective recycle has successfully been used to maintain an unstable plasmid-bearing bacterial strain as dominant in a continuous reactor, whereas the culture reverts to 100% segregant cells when selective recycle is not used. The plasmid-bearing strain is slower growing and flocculent; however, when the cells lose their plasmid, the resulting segregant cells are nonflocculent and grow at a faster rate due to their decreased metabolic burden. Both types of cells exit a chemostat and enter an inclined settler where the flocculent plasmid-bearing cells are separated from the nonflocculent segregant cells by differential sedimentation. The underflow from the cell separator, which is enriched with plasmid-bearing cells, is recycled back to the chemostat, while the segregant cells are withdrawn off the top of the settler and discarded. The experimental results agree well with selective recycle reactor theory. On the basis of the theory, a criterion is presented that has been shown to successfully predict whether or not a selective recycle reactor can maintain a plasmid-bearing strain.  相似文献   

11.
Wild-type Escherichia coli cannot grow on L-1,2-propanediol; mutants that can do so have increased basal activity of an NAD-linked L-1,2-propanediol oxidoreductase. This enzyme belongs to the L-fucose system and functions normally as L-lactaldehyde reductase during fermentation of the methylpentose. In wild-type cells, the activity of this enzyme is fully induced only anaerobically. Continued aerobic selection for mutants with an improved growth rate on L-1,2-propanediol inevitably leads to full constitutive expression of the oxidoreductase activity. When this occurs, L-fuculose 1-phosphate aldolase concomitantly becomes constitutive, whereas L-fucose permease, L-fucose isomerase, and L-fuculose kinase become noninducible. It is shown in this study that the noninducibility of the three proteins can be changed by two different kinds of suppressor mutations: one mapping external to and the other within the fuc gene cluster. Both mutations result in constitutive synthesis of the permease, the isomerase, and the kinase, without affecting synthesis of the oxidoreductase and the aldolase. Since expression of the fuc structural genes is activated by a protein specified by the regulator gene fucR, and since all the known genes of the fuc system are clustered at minute 60.2 of the chromosome, the external gene in which the suppressor mutation can occur probably has an unrelated function in the wild-type strain. The internal suppressor mutation might be either in fucR or in the promoter region of the genes encoding the permease, the isomerase, and the kinase, if these genes belong to the same operon.  相似文献   

12.
Continuous fermentations were carried out involving competition between two strains of Saccharomyces cerevisiae. One of the strains has a lower specific growth rate and is very flocculent, whereas the fastergrowing strain is nonflocculent. The product stream from the chemostat was fed into an inclined settler where the flocculent strain was partially separated from the nonflocculent strain as a result of the higher sedimentation rate of the flocculent cells. The underflow from the inclined settler, which was concentrated and enriched with flocculent cells, was recycled to the chemostat. When no recycle was used, the fastergrowing, nonflocculent yeast rapidly overtook the culture. With selective recycle, however, the experiments demonstrated that the slower-growing flocculent yeast could be maintained as the dominant species. A theoretical development is also presented in order to describe the competition between two strains in the bioreactor-settler system. The concept of selective recycle via selective flocculation and sedimentation offers a possible means of maintaining unstable recombinant microorganisms in continuous fermentations.  相似文献   

13.
A mathematical model has been developed to describe the stability behaviour of the pBR322 plasmid derivative pBB210 with the β-lactamase gene and the human interferon-α1 gene in Escherichia coli TG1 under non-selective, selective and modified selective conditions in a chemostat. The model was formulated on the basis of experimental investigations. It includes the interaction between β-lactam antibiotics (ampicillin and sulbactam) and cells (with and without plasmids), in particular the correlation between the growth rate of plasmid-free cells and ampicillin concentration in the medium; ampicillin transport into the periplasm of the plasmid-bearing cells; ampicillin degradation in the periplasm by by plasmid-encoded β-lactamase and the inhibition of the latter by sulbactam. The results obtained by the simulation of chemostat cultivations under various conditions and by steady state analyses are closely related to the results of experiments. Under non-selective conditions, the fraction of plasmid-bearing cells was approaching zero. Under selective and modified selective conditions, a coexistence between plasmid-free and plasmid-bearing cells was reached at steady state. Under these conditions, the steady state fraction of plasmid-bearing cells was proportional to the ampicillin concentration in the feed and inversely proportional to the cell concentration in the chemostat. During high-density cultivation, a large amount of ampicillin is necessary to suppress plasmid-free cells. Even small concentrations of the β-lactamase inhibitor sulbactam in the feed increased the steady state fraction of plasmid-bearing cells (from 17.2% to 99.6% at sulbactam-Na concentrations of 0 to 5 mg/l).  相似文献   

14.
Cells of the wild-type yeast (Saccharomyces cerevisiae) strain Y185, grown under conditions that de-repress the formation of a general amino acid permease ('Gap') system, bind delta-N-chloroacetyl[1-(14)C]ornithine; L- and D-amino acid substrates of the general amino acid permease system protect against this binding. The protein responsible is released from the cells by homogenization or by preparation of protoplasts; it is not released by osmotic shock. This protein is virtually absent from the wild-type strain when it is grown under conditions that repress the general amino acid permease system, and is also absent from a Gap- mutant Y185-His3, selected by its resistance to D-amino acids. This mutant and repressed wild-type cells also fail to form a number of membrane proteins elaborated by de-repressed wild-type cells. It is possible that all these proteins are components of the general amino acid permease system.  相似文献   

15.
An Escherichia coli strain which overproduces the lactose permease was used to investigate the mechanism of allosteric regulation of this permease and those specific for melibiose, glycerol, and maltose by the phosphoenolpyruvate-sugar phosphotransferase system (PTS). Thio-beta-digalactoside, a high affinity substrate of the lactose permease, released the glycerol and maltose permeases from inhibition by methyl-alpha-d-glucoside. Resumption of glycerol uptake occurred immediately upon addition of the galactoside. The effect was not observed in a strain which lacked or contained normal levels of the lactose permease, but growth of wild-type E. coli in the presence of isopropyl-beta-thiogalactoside plus cyclic AMP resulted in enhanced synthesis of the lactose permease so that galactosides relieved inhibition of glycerol uptake. Thiodigalactoside also relieved the inhibition of glycerol uptake caused by the presence of other PTS substrates such as fructose, mannitol, glucose, 2-deoxyglucose, and 5-thioglucose. Inhibition of adenylate cyclase activity by methyl-alpha-glucoside was also relieved by thiodigalactoside in E. coli T52RT provided that the lactose permease protein was induced to high levels. Cooperative binding of sugar and enzyme III(Glc) to the melibiose permease in Salmonella typhimurium was demonstrated, but no cooperativity was noted with the glycerol and maltose permeases. These results are consistent with a mechanism of PTS-mediated regulation of the lactose and melibiose permeases involving a fixed number of allosteric regulatory proteins (enzyme III(Glc)) which may be titrated by the increased number of substrate-activated permease proteins. This work suggests that the cooperativity in the binding of sugar substrate and enzyme III(Glc) to the permease, demonstrated previously in in vitro experiments, has mechanistic significance in vivo. It substantiates the conclusion that PTS-mediated regulation of non-PTS permease activities involves direct allosteric interaction between the permeases and enzyme III(Glc), the postulated regulatory protein of the PTS.  相似文献   

16.
Ureidosuccinic acid (USA) is an intermediary product in pyrimidine biosynthesis. When proline was the sole nitrogen source, USA uptake occurred; however, when ammonium sulfate or glutamic acid was the nitrogen source, uptake was inhibited. Thus, a ura2 strain which does not synthesize USA would not grow when this substance was supplied on an ammonium sulfate or glutamic acid medium. Mutants are described in which uptake was constitutive on such a medium. Permeaseless mutants for USA have been found, and evidence is presented for permease specificity. It is shown that all constitutive mutants use the same transport system that is missing in the permeaseless mutant. These mutants are constitutive for two permeases: the specific USA permease and the general amino acid permease. The transport system studied here, like the general amino acid transport system, is regulated by nitrogen metabolism. These facts and others suggest that our permease constitutive mutants are impaired in nitrogen metabolism.  相似文献   

17.
Mutant strains of Pseudomonas putida PP3 capable of utilizing monochloroacetate (MCA) and dichloroacetate (DCA) as the sole sources of carbon and energy were isolated from chemostat cultures. The mutants differed from the parent strain in that they could grow on products of MCA and DCA dehalogenation (catalyzed by inducible dehalogenases I and II) and were resistant to growth inhibition by the two substrates. The growth inhibition of strain PP3 by MCA, DCA, and other halogenated alkanoic acids was studied. Sensitivity to dehalogenase substrates was related to the expression of the dehalogenase genes. For example, mutants producing elevated levels of one or both of the dehalogenases were sensitive to 2-monochloropropionate and 2-monochlorobutanoate at concentrations which did not affect the growth of strain PP3. P. putida PP1, the parent of strain PP3, was resistant to the inhibitory effects of MCA and DCA. Spontaneous mutants of strain PP3, also resistant to MCA and DCA, were selected at high frequency, and four different classes of these strains were distinguished on the basis of dehalogenase phenotype. All dehalogenase-producing mutants were inducible; no constitutive mutant has yet been isolated. Most of the resistant mutants examined did not produce one or both of the dehalogenase, and over half of those tested failed to revert back to the parental (strain PP3) phenotype, indicating that the observed mutations involved high-frequency deletion of DNA base sequences affecting expression of genes encoding dehalogenases and associated permease(s).  相似文献   

18.
The features that govern the interaction of ligand binding proteins with membrane permeases of cognate ABC transporters are largely unknown. Using sequence alignments and structural modeling based on the structure of the Escherichia coli BtuCD vitamin B12 transporter, we identified six conserved basic residues in the permease, comprised of FhuB and FhuG proteins, in the ferrichrome transporter of Staphylococcus aureus. Using alanine-scanning mutagenesis we demonstrate that two of these residues, FhuB Arg-71 and FhuG Arg-61, play a more dominant role in transporter function than FhuB Arg-74 and Arg-311, and FhuG Arg-64 and Lys-306. Moreover, we show that at positions 71 and 61 in FhuB and FhuG, respectively, arginine cannot be substituted for lysine without loss of transporter function. Previously, our laboratory demonstrated the importance of conserved acidic residues in the ferrichrome binding protein, FhuD2. Taken together, these results support the hypothesis that Glu-Arg salt bridges are critical for the interaction of the ligand binding protein with the transmembrane domains FhuB and FhuG. This hypothesis was further studied by “charge swapping” experiments whereby we constructed a S. aureus strain expressing FhuD2 with conserved residues Glu-97 and Glu-231 replaced by Arg and FhuB and FhuG with conserved basic residues Arg-71 and Arg-61, respectively, replaced by Glu. A strain containing this combination of substitutions restored partial function to the ferrichrome transporter. The results provide a direct demonstration of the functional importance of conserved basic residues on the extracellular surface of the ferrichrome permease in the Gram-positive bacterium S. aureus.  相似文献   

19.
In this report we describe the production and biological activity of human bone marrow-derived enhancing factor (BDEF). This factor is the constitutive product of cultured human BMC and could initially be recovered by ultrafiltration of cell-free BM supernatants to yield a crude fraction of Mr greater than 10,000 Da. This preparation can enhance the Ab response of human tonsillar cells, as well as murine spleen cells, to SRBC. HPLC fractionation of BM supernatants enriches for enhancing activity in a peak with an approximate Mr of 60 kDa. PAGE gel analysis reveals two protein bands which migrate to this area, one of 60 kDa, and a slightly smaller protein at 55 kDa. Antibodies generated against the above two proteins were shown to be specific by Western blotting and could recognize the native BM proteins as determined by ELISA. The antibodies were used to affinity purify the respective proteins, p60 and p55. The BM protein p60, but not p55, was able to enhance Ab synthesis in vitro and was also mitogenic for murine BMC and thymocytes. The addition of anti-p60 Ab to human tonsillar cells cultured with SRBC and human BDEF preparations resulted in abrogation of enhancement. These findings support the notion that the BM protein p60 is BDEF and that it may represent a novel enhancing molecule produced by normal human BM.  相似文献   

20.
Efficient xylose utilisation by microorganisms is of importance to the lignocellulose fermentation industry. The aim of this work was to develop constitutive catabolite repression mutants in a xylose-utilising recombinantSaccharomyces cerevisiae strain and evaluate the differences in xylose consumption under fermentation conditions.S. cerevisiae YUSM was constitutively catabolite repressed through specific disruptions within theMIG1 gene. The strains were grown aerobically in synthetic complete medium with xylose as the sole carbon source. Constitutive catabolite repressed strain YCR17 grew four-fold better on xylose in aerobic conditions than the control strain YUSM. Anaerobic batch fermentation in minimal medium with glucose-xylose mixtures and N-limited chemostats with varying sugar concentrations were performed. Sugar utilisation and metabolite production during fermentation were monitored. YCR17 exhibited a faster xylose consumption rate than YUSM under high glucose conditions in nitrogen-limited chemostat cultivations. This study shows that a constitutive catabolite repressed mutant could be used to enhance the xylose consumption rate even in the presence of high glucose in the fermentation medium. This could help in reducing fermentation time and cost in mixed sugar fermentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号