首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
2.
Galactomannans [(1-->6)-alpha-D-galactose (Gal)-substituted (1-->4)-beta-D-mannans] are major cell wall storage polysaccharides in the endosperms of some seeds, notably the legumes. Their biosynthesis in developing legume seeds involves the functional interaction of two membrane-bound glycosyltransferases, mannan synthase (MS) and galactomannan galactosyltransferase (GMGT). MS catalyzes the elongation of the mannan backbone, whereas GMGT action determines the distribution and amount of Gal substitution. Fenugreek (Trigonella foenum-graecum) forms a galactomannan with a very high degree of Gal substitution (Man/Gal = 1.1), and its GMGT has been characterized. We now report that the endosperm cell walls of the tobacco (Nicotiana tabacum) seed are rich in a galactomannan with a very low degree of Gal substitution (Man/Gal about 20) and that its depositional time course is closely correlated with membrane-bound MS and GMGT activities. Furthermore, we demonstrate that seeds from transgenic tobacco lines that express fenugreek GMGT constitutively in membrane-bound form have endosperm galactomannans with increased average degrees of Gal substitution (Man/Gal about 10 in T(1) generation seeds and about 7.5 in T(2) generation seeds). Membrane-bound enzyme systems from transgenic seed endosperms form galactomannans in vitro that are more highly Gal substituted than those formed by controls under identical conditions. To our knowledge, this is the first report of structural manipulation of a plant cell wall polysaccharide in transgenic plants via a biosynthetic membrane-bound glycosyltransferase.  相似文献   

3.
Enzyme specificity in galactomannan biosynthesis   总被引:6,自引:2,他引:4  
  相似文献   

4.
Galactomannan biosynthesis in vitro is catalysed by membrane preparations from developing fenugreek seed endosperms. Two enzymes interact: a GDP-mannose dependent (1-->4)-beta-D-mannan synthase and a UDP-galactose dependent (1-->6)-alpha-D-galactosyltransferase. The statistical distribution of galactosyl substituents along the mannan backbone, and the degree of galactose substitution of the primary product of galactomannan biosynthesis appear to be regulated by the specificity of the galactosyltransferase. We now report the detergent solubilisation of the fenugreek galactosyltransferase with retention of activity, the identification on gels of a putative 51 kDa galactosyltransferase protein, and the isolation, cloning and sequencing of the corresponding cDNA. The solubilised galactosyltransferase has an absolute requirement for added acceptor substrates. Beta-(1-->4)-linked D-manno-oligosaccharides with chain lengths greater than or equal to 5 acted as acceptors, as did galactomannans of low to medium galactose-substitution. The putative galactosyltransferase cDNA encodes a 51282 Da protein, with a single transmembrane alpha helix near the N terminus. We have also confirmed the identity of the galactosyltransferase by inserting the cDNA in frame into the genome of the methylotrophic yeast Pichia pastoris under the control of an AOX promoter and the yeast alpha secretion factor and observing the secretion of galactomannan alpha-galactosyltransferase activity. Particularly high activities were observed when a truncated sequence, lacking the membrane-spanning helix, was expressed.  相似文献   

5.
Purified rat liver UDP-GlcNAc:alpha-D-mannoside beta 1-2 N-acetylglucosaminyltransferase II (Bendiak, B., and Schachter, H. (1987) J. Biol. Chem. 262, 5775-5783) has been characterized kinetically, and its substrate specificity and inhibition characteristics have been determined. Kinetic data indicate an ordered, or largely ordered sequential mechanism, with UDP-GlcNAc binding prior to the acceptor. The minimal acceptor structure required for full activity is: (Formula: see text) The acceptor molecule must have a terminal Man alpha 1-6 residue, and a terminal GlcNAc beta 1-2Man alpha 1-3 branch to display any activity, but does not require the reducing GlcNAc residue, as the enzyme was about 50% as active after reduction of this residue to N-acetylglucosaminitol. Additional residues (Gal beta 1-4 on the GlcNAc beta 1-2Man alpha 1-3 arm, or a bisecting GlcNAc beta 1-4 on the beta-Man residue) abolish catalytic activity. These results suggest a rigid order in the biosynthesis of all N-linked complex oligosaccharides (bisected and nonbisected bi-, tri-, and tetraantennary), since the enzyme must act to completion prior to the action of either UDP-Gal:GlcNAc beta 1-4 galactosyltransferase or N-acetylglucosaminyltransferase III to make such structures. Inhibition studies with nucleotides, sugars, nucleotide-sugars, and their respective analogues revealed that analogues of UDP and UTP, in which the hydrogen at the 5 position of the uracil was substituted with -CH3, bromine, or mercury (as the mercaptide) were good reversible inhibitors of the enzyme, whereas substitution at other sites lessened the inhibitory potency, usually to a large degree.  相似文献   

6.
Pyridylamino asialo-agalacto-biantennary sugar chain (PA-acceptor), prepared from human alpha 1-acid glycoprotein, was incubated with bovine milk galactosyltransferase. Transfer of galactose residues to PA-acceptor was detected by HPLC analysis, and thus PA-acceptor was shown to be useful for galactosyltransferase assay. Moreover, three species of products, i.e. PA-acceptor monogalactosylated on the Man alpha 1-3 branch of the trimannosyl core, PA-acceptor monogalactosylated on the Man alpha 1-6 branch, and digalactosylated PA-acceptor, were separated and identified by reversed-phase HPLC, so we could simultaneously determine the branch specificity (the ratio of galactosylation on Man alpha 1-3 branch to that on Man alpha 1-6 branch) of the galactosyltransferase. We fractionated the bovine milk galactosyltransferase on a DEAE-5PW column and confirmed that there was a heterogeneity in this enzyme preparation. Each fraction was assayed for acceptor specificity (the ratio of the activity towards N-acetylglucosamine to that towards PA-acceptor) and branch specificity using the PA-acceptor. However, we could not detect differences in the specificities among the fractions. In addition, we found that alpha-lactalbumin stimulated the galactosyltransferase activity towards PA-acceptor.  相似文献   

7.
In this work, we demonstrate that the wbbD gene of the O7 lipopolysaccharide (LPS) biosynthesis cluster in Escherichia coli strain VW187 (O7:K1) encodes a galactosyltransferase involved in the synthesis of the O7-polysaccharide repeating unit. The galactosyltransferase catalyzed the transfer of Gal from UDP-Gal to the GlcNAc residue of a GlcNAc-pyrophosphate-lipid acceptor. A mutant strain with a defective wbbD gene was unable to form O7 LPS and lacked this specific galactosyltransferase activity. The normal phenotype was restored by complementing the mutant with the cloned wbbD gene. To characterize the WbbD galactosyltransferase, we used a novel acceptor substrate containing GlcNAcalpha-pyrophosphate covalently bound to a hydrophobic phenoxyundecyl moiety (GlcNAc alpha-O-PO(3)-PO(3)-(CH(2))(11)-O-phenyl). The WbbD galactosyltransferase had optimal activity at pH 7 in the presence of 2.5 mM MnCl(2). Detergents in the assay did not increase glycosyl transfer. Digestion of enzyme product by highly purified bovine testicular beta-galactosidase demonstrated a beta-linkage. Cleavage of product by pyrophosphatase and phosphatase, followed by HPLC and NMR analyses, revealed a disaccharide with the structure Gal beta1-3GlcNAc. Our results conclusively demonstrate that WbbD is a UDP-Gal: GlcNAcalpha-pyrophosphate-R beta1,3-galactosyltransferase and suggest that the novel synthetic glycolipid acceptor may be generally applicable to characterize other bacterial glycosyltransferases.  相似文献   

8.
Galactomannan deposition was investigated in developing endosperms of three leguminous species representative of taxonomic groups which have galactomannans with high, medium and low galactose content. These were fenugreek (Trigonella foenum-graecum L.; mannose/galactose (Man/Gal) = 1.1), guar (Cyamopsis tetragonoloba (L.) Taub.; Man/Gal = 1.6) and Senna occidentalis (L.) Link. (Man/Gal = 3.3), respectively. Endosperms were analysed at different stages of seed development for galactomannan content and the levels, in cell-free extracts, of a mannosyltransferase and a galactosyltransferase which have been shown to catalyse galactomannan biosynthesis in vitro (M. Edwards et al., 1989, Planta 178, 41–51). There was a close correlation in each case between the levels of the biosynthetic mannosyl- and galactosyltransferases and the deposition of galactomannan. The relative in vitro activities of the mannosyl- and galactosyltransferases in fenugreek and guar were similar, and almost constant throughout the period of galactomannan deposition. In Senna the ratio mannosyltransferase/galactosyltransferase was always higher than in the other two species, and it increased substantially throughout the period of galactomannan deposition. In fenugreek and guar the galactomannans present in the endosperms of seeds at different stages of development had the Man/Gal ratios characteristic of the mature seeds. By contrast the galactomannan present in Senna endosperms at the earliest stages of deposition had a Man/Gal ratio of about 2.3. During late deposition this ratio increased rapidly, stabilising at about 3.3, the ratio characteristic of the mature seed. The levels of -galactosidase in the developing endosperms of fenugreek and guar were low and remained fairly constant throughout the deposition of the galactomannan. In Senna, -galactosidase activity in the endosperm was low during early galactomannan deposition, but increased subsequently, peaking during late galactomannan deposition. The developmental patterns of the -galactosidase activity and of the increase in Man/Gal ratio of the Senna galactomannan were closely similar, indicating a cause-and-effect relationship. The endosperm -galactosidase activity in Senna was capable, in vitro, of removing galactose from guar galactomannan without prior depolymerisation of the molecule. In fenugreek and in guar the genetic control of the Man/Gal ratio in galactomannan is not the result of a post-depositional modification, and must reside in the biosynthetic process. In Senna, the Man/Gal ratio of the primary biosynthetic galactomannan product is controlled by the biosynthetic process. Yet the final Man/Gal ratio of the galactomannan in the mature seed is, to an appreciable extent, the result of galactose removal from the primary biosynthetic product by an -galactosidase activity which is present in the endosperm during late galactomannan deposition.Abbreviations al galactose - Man mannose This work was carried out with the aid of a Cooperative Research Grant (No. CRG 1) awarded by the Agricultural and Food Research Council, UK.  相似文献   

9.
We determined whether the two major structural modifications, i.e. phosphorylation and sulfation of the glycosaminoglycan-protein linkage region (GlcAbeta1-3Galbeta1-3Galbeta1-4Xylbeta1), govern the specificity of the glycosyltransferases responsible for the biosynthesis of the tetrasaccharide primer. We analyzed the influence of C-2 phosphorylation of Xyl residue on human beta1,4-galactosyltransferase 7 (GalT-I), which catalyzes the transfer of Gal onto Xyl, and we evaluated the consequences of C-4/C-6 sulfation of Galbeta1-3Gal (Gal2-Gal1) on the activity and specificity of beta1,3-glucuronosyltransferase I (GlcAT-I) responsible for the completion of the glycosaminoglycan primer sequence. For this purpose, a series of phosphorylated xylosides and sulfated C-4 and C-6 analogs of Galbeta1-3Gal was synthesized and tested as potential substrates for the recombinant enzymes. Our results revealed that the phosphorylation of Xyl on the C-2 position prevents GalT-I activity, suggesting that this modification may occur once Gal is attached to the Xyl residue of the nascent oligosaccharide linkage. On the other hand, we showed that sulfation on C-6 position of Gal1 of the Galbeta1-3Gal analog markedly enhanced GlcAT-I catalytic efficiency and we demonstrated the importance of Trp243 and Lys317 residues of Gal1 binding site for enzyme activity. In contrast, we found that GlcAT-I was unable to use digalactosides as acceptor substrates when Gal1 was sulfated on C-4 position or when Gal2 was sulfated on both C-4 and C-6 positions. Altogether, we demonstrated that oligosaccharide modifications of the linkage region control the specificity of the glycosyltransferases, a process that may regulate maturation and processing of glycosaminoglycan chains.  相似文献   

10.
The catalytic domain of bovine alpha1-->3-galactosyltransferase (alpha3GalT), residues 80-368, have been cloned and expressed, in Escherichia coli. Using a sequential purification protocol involving a Ni(2+) affinity column followed by a UDP-hexanolamine affinity column, we have obtained a pure and active protein from the soluble fraction which catalyzes the transfer of galactose (Gal) from UDP-Gal to N-acetyllactosamine (LacNAc) with a specific activity of 0.69 pmol/min/ng. The secondary structural content of alpha3GalT protein was analyzed by Fourier transform infrared (FTIR) spectroscopy, which shows that the enzyme has about 35% beta-sheet and 22% alpha-helix. This predicted secondary structure content by FTIR spectroscopy was used in the protein sequence analysis algorithm, developed by the Biomolecular Engineering Research Center at Boston University and Tasc Inc., for the assignment of secondary structural elements to the amino acid sequence of alpha3GalT. The enzyme appears to have three major and three minor helices and five sheet-like structures. The studies on the acceptor substrate specificity of the enzyme, alpha3GalT, show that in addition to LacNAc, which is the natural substrate, the enzyme accepts various other disaccharides as substrates such as lactose and Gal derivatives, beta-O-methylgalactose and beta-D-thiogalactopyranoside, albeit with lower specific activities. There is an absolute requirement for Gal to be at the non-reducing end of the acceptor molecule which has to be beta1-->4-linked to a second residue that can be more diverse in structure. The kinetic parameters for four acceptor molecules were determined. Lactose binds and functions in a similar way as LacNAc. However, beta-O-methylgalactose and Gal do not bind as tightly as LacNAc or lactose, as their K(ia) and K(A) values indicate, suggesting that the second monosaccharide is critical for holding the acceptor molecule in place. The 2' and 4' hydroxyl groups of the receiving Gal moiety are important in binding. Even though there is large structural variability associated with the second residue of the acceptor molecule, there are constraints which do not allow certain Gal-R sugars to be good acceptors for the enzyme. The beta1-->4-linked residue at the second position of the acceptor molecule is preferred, but the interactions between the enzyme and the second residue are likely to be non-specific.  相似文献   

11.
《Carbohydrate polymers》2013,92(1):192-199
Endosperms from seeds of different subfamilies of Leguminosae were submitted to sequential aqueous and alkaline aqueous extractions. The extractions from species belonging to the Mimosoideae and Faboideae subfamilies yielded galactomannans with constant Man:Gal ratios, whereas the extractions from Caesalpinioideae seeds gave rise to galactomannans with increasing values of the Man:Gal ratio. The presence of a family of galactomannans within the same species may be a trait found only in Caesalpinioideae subfamily. The final insoluble residues that were obtained after the removal of galactomannans from the Caesalpinioideae and Faboideae subfamilies are composed of pure mannans and do not contain cellulose, while those from the Mimosoideae subfamily are composed of cellulose. A mannan was isolated from the unripe endosperm of Caesalpinia pulcherrima, suggesting no developmental relationship between galactomannan and mannan. These results are consistent with the presence of a distinctive cell wall pattern in the endosperms of Leguminosae species.  相似文献   

12.
In a previous study (Y. Kimura et al., Biosci. Biotechnol. Biochem., 70, 2583-2587, 2006), we found that new complex type N-glycans harboring Thomsen-Friedenreich antigen (Galbeta1-3GalNAc) unit occur on royal jelly glycoproteins, suggesting the involvement of a new beta1-3galactosyltransferase in the synthesis of the unusual complex type N-glycans. So far, such beta1-3galactosyltransferase activity, which can transfer galactosyl residues with the beta1-3 linkage to beta1-4 GalNAc residues in N-glycan, has not been found among any eucaryotic cells. But using GalNAc(2)GlcNAc(2)Man(3)GlcNAc(2)-PA as acceptor N-glycan, we detected the beta1-3 galactosyltransferase activity in membrane fraction prepared from honeybee cephalic portions. This result indicates that honeybee expresses a unique beta1-3 galactosyltransferase involved in biosynthesis of the unusual N-glycan containing a tumor related antigen in the hypopharyngeal gland.  相似文献   

13.
Different sugars, Gal, GalNAc and Man were docked at the monosaccharide binding sites of Erythrina corallodenron (EcorL), peanut lectin (PNA), Lathyrus ochrus (LOLI), and pea lectin (PSL). To study the lectin-carbohydrate interactions, in the complexes, the hydroxymethyl group in Man and Gal favors, gg and gt conformations respectively, and is the dominant recognition determination. The monosaccharide binding site in lectins that are specific to Gal/GalNAc is wider due to the additional amino acid residues in loop D as compared to that in lectins specific to Man/Glc, and affects the hydrogen bonds of the sugar involving residues from loop D, but not its orientation in the binding site. The invariant amino acid residues Asp from loop A, and Asn and an aromatic residue (Phe or Tyr) in loop C provides the basic architecture to recognize the common features in C4 epimers. The invariant Gly in loop B together with one or two residues in the variable region of loop D/A holds the sugar tightly at both ends. Loss of any one of these hydrogen bonds leads to weak interaction. While the subtle variations in the sequence and conformation of peptide fragment that resulted due to the size and location of gaps present in amino acid sequence in the neighborhood of the sugar binding site of loop D/A seems to discriminate the binding of sugars which differ at C4 atom (galacto and gluco configurations). The variations at loop B are important in discriminating Gal and GalNAc binding. The present study thus provides a structural basis for the observed specificities of legume lectins which uses the same four invariant residues for binding. These studies also bring out the information that is important for the design/engineering of proteins with the desired carbohydrate specificity.  相似文献   

14.
By use of 500-MHz 1H NMR spectroscopy, the branch specificity of bovine colostrum CMP-NeuAc:Gal beta 1----4GlcNAc-R alpha 2----6-sialyltransferase towards a biantennary glycopeptide and oligosaccharides of the N-acetyllactosamine type, differing in completeness and structure of their core portion, was investigated. In agreement with earlier reports (Van den Eijnden, D. H., Joziasse, D. H., Dorland, L., Van Halbeek H., Vliegenthart, J. F. G., and Schmid, K. (1980) Biochem. Biophys. Res. Commun. 92, 839-845), it appears that the enzyme strongly prefers the galactosyl residue at the Man alpha 1----3Man branch of the biantennary glycopeptide for attachment of the first sialic acid residue. This branch specificity is fully preserved with the structure (formula; see text) Reduction of the reducing N-acetylglucosaminyl residue in this structure, however, leads to a decreased branch specificity, whereas removal of this residue results in a random attachment of sialic acid to the galactoses at both branches. The decrease in branch specificity is accompanied by a reduction in the rate of sialic acid transfer to the galactose at the alpha 1----3 branch. Our results indicate that the presence of the aforementioned N-acetylglucosaminyl residue is a minimal structural requirement for branch specificity of the sialyltransferase. We propose that in the interaction of the sialyltransferase with its substrates, this N-acetylglucosaminyl residue functions as a recognition site mediating the correct positioning of the substrate on the enzyme.  相似文献   

15.
Using 500-MHz 1H NMR spectroscopy we have investigated the branch specificity that bovine colostrum CMP-NeuAc:Gal beta 1----4GlcNAc-R alpha 2----6-sialyltransferase shows in its sialylation of bi-, tri-, and tetraantennary glycopeptides and oligosaccharides of the N-acetyllactosamine type. The enzyme appears to highly prefer the galactose residue at the Gal beta 1----4GlcNAc beta 1----2Man alpha 1----3 branch for attachment of the 1st mol of sialic acid in all the acceptors tested. The 2nd mol of sialic acid becomes linked mainly to the Gal beta 1----4GlcNAc beta 1----2Man alpha 1----6 branch in bi- and triantennary substrates, but this reaction invariably proceeds at a much lower rate. Under the conditions employed, the Gal beta 1----4GlcNAc beta 1----6Man alpha 1----6 branch is extremely resistant to alpha 2----6-sialylation. A higher degree of branching of the acceptors leads to a decrease in the rate of sialylation. In particular, the presence of the Gal beta 1----4GlcNAc beta 1----6Man alpha 1----6 branch strongly inhibits the rate of transfer of both the 1st and the 2nd mol of sialic acid. In addition, it directs the incorporation of the 2nd mol into tetraantennary structures toward the Gal beta 1----4GlcNAc beta 1----4Man alpha 1----3 branch. In contrast, the presence of the Gal beta 1----4GlcNAc beta 1----4Man alpha 1----3 branch has only minor effects on the rates of sialylation and, consequently, on the branch preference of sialic acid attachment. Results obtained with partial structures of tetraantennary acceptors indicate that the Man beta 1----4GlcNAc part of the core is essential for the expression of branch specificity of the sialyltransferase. The sialylation patterns observed in vivo in glycoproteins of different origin are consistent with the in vitro preference of alpha 2----6-sialyltransferase for the Gal beta 1----4GlcNAc beta 1----2Man alpha 1----3 branch. Our findings suggest that the terminal structures of branched glycans of the N-acetyllactosamine type are the result of the complementary branch specificity of the various glycosyltransferases that are specific for the acceptor sequence Gal beta 1----4GlcNAc-R.  相似文献   

16.
Zhang Y  Deshpande A  Xie Z  Natesh R  Acharya KR  Brew K 《Glycobiology》2004,14(12):1295-1302
Aromatic amino acids are frequent components of the carbohydrate binding sites of lectins and enzymes. Previous structural studies have shown that in alpha-1,3 galactosyltransferase, the binding site for disaccharide acceptor substrates is encircled by four tryptophans, residues 249, 250, 314, and 356. To investigate their roles in enzyme specificity and catalysis, we expressed and characterized variants of the catalytic domain of alpha-1,3 galactosyltransferase with substitutions for each tryptophan. Substitution of glycine for tryptophan 249, whose indole ring interacts with the nonpolar B face of glucose or GlcNAc, greatly increases the K(m) for the acceptor substrate. In contrast, the substitution of tyrosine for tryptophan 314, which interacts with the beta-galactosyl moiety of the acceptor and UDP-galactose, decreases k(cat) for the galactosyltransferase reaction but does not affect the low UDP-galactose hydrolase activity. Thus, this highly conserved residue stabilizes the transition state for the galactose transfer to disaccharide but not to water. High-resolution crystallographic structures of the Trp(249)Gly mutant and the Trp(314)Tyr mutant indicate that the mutations do not affect the overall structure of the enzyme or its interactions with ligands. Substitutions for tryptophan 250 have only small effects on catalytic activity, but mutation of tryptophan 356 to threonine reduces catalytic activity for both transferase and hydrolase activities and reduces affinity for the acceptor substrate. This residue is adjacent to the flexible C-terminus that becomes ordered on binding UDP to assemble the acceptor binding site and influence catalysis. The results highlight the diverse roles of these tryptophans in enzyme action and the importance of k(cat) changes in modulating glycosyltransferase specificity.  相似文献   

17.
Ishii T  Ono H  Ohnishi-Kameyama M  Maeda I 《Planta》2005,221(6):953-963
A single alpha-L-arabinopyranosyl (alpha-L-Arap) residue was shown, by a combination of chemical and spectroscopic methods, to be transferred to O-4 of the nonreducing terminal galactosyl (Gal) residue of 2-aminobenzamide (2AB)-labeled galacto-oligosaccharides when these oligosaccharides were reacted with UDP-ss-L-arabinopyranose (UDP-ss-L-Arap) in the presence of a Triton X-100-soluble extract of microsomal membranes isolated from mung bean (Vigna radiata, L. Wilezek) hypocotyls. Maximum-(1-->4)-arabinopyranosyltransferase activity was obtained at pH 6.0-6.5 and 20 degrees C in the presence of 25 mM Mn2+. The enzyme had an apparent K m of 45 microM for the 2AB-labeled galactoheptasaccharide and 330 microM for UDP-ss-L-Arap. A series of 2AB-labeled galacto-oligosaccharides with a degree of polymerization (DP) between 6 and 10 that contained a single alpha-L-Arap residue linked to the former nonreducing terminal Gal residue were generated when the 2AB-labeled galactohexasaccharide (Gal6-2AB) was reacted with UDP- ss-L-Ara p in the presence of UDP-beta-D-Galp and the solubilized microsomal fraction. The mono-arabinosylated galacto-oligosaccharides are not acceptor substrates for the galactosyltransferase activities known to be present in mung bean microsomes. These results show that mung bean hypocotyl microsomes contain an enzyme that catalyzes the transfer of Arap to the nonreducing Gal residue of galacto-oligosaccharides and suggest that the presence of a alpha-L-Arap residue on the former terminal Gal residue prevents galactosylation of galacto-oligosaccharides.  相似文献   

18.
One side chain in the cell wall mannan of the yeast Kluyveromyces lactis has the structure (see article). (Raschke, W. C., and Ballou, C. E. (1972) Biochemistry 11, 3807). This (Man)4GNAc unit (the N-acetyl-D-glucosamine derivative of mannotetroase) and the (Man)4 side chain, aMan(1 yields 3)aMan(1 yields 2)aMan(1 yields 2)Man, are the principle immunochemical determinants on the cell surface. Two classes of mutants were obtained which lack the N-acetyl-D-glucosamine-containing determinant. The mannan of one class, designated mmnl, lacks both the (Man)4GNAc and (Man)4 side chains. Apparently, it has a defective alpha-1 yields 3-mannosyltransferase and the (Man)4 unit must be formed to serve as the acceptor before the alpha-1 yields 2-N-acetyl-glucosamine transferase can act. The other mutant class, mnn2, lacks only the (Man)4GNAc determinant and must be defective in adding N-acetylglucosamine to the mannotetrasose side chains. Two members of this class were obtained, one which still showed a wild type N-acetylglucosamine transferase activity in cell-free extracts and the other lacking it. They are allelic or tightly linked, and were designated mnn2-1 mnn2-2. Protoplast particles from the wild type cells catalyzed a Mn2+-dependent transfer of N-acetylglucosamine from UDP-N-acetylglucosamine to the mannotetraose side chain of endogenous acceptors. Exogenous mannotetraose also served as an acceptor in a Mn2+-dependent reaction and yielded (Man)4GNAc. Related oligosaccharides with terminal alpha (1 yields 3)mannosyl units were also good acceptors. The product from the reaction with alphaMan(1 yields 3)Man had the N-acetylglucosamine attached to the mannose unit at the reducing end, which supports the conclusion that the cell-free glycosyltransferase activity is identical with that involved in mannan synthesis. The reaction was inhibited by uridine diphosphate. Protoplast particles from the mmnl mutants showed wild type N-acetylglucosamine transferase activity with exogenous acceptor, but they had no endogenous activity because the endogenous mannan lacked acceptor side chains. Particles from the mnn2-1 mutant failed to catalyze N-acetylglucosamine transfer. In contrast, particles from the mnn2-2 mutant were indistinguishable from wild type cells in their transferase activity. Some event accompanying cell breakage and assay of the mnn2-2 mutant allowed expression of a latent alpha-1 yields 2-N-acetylglucosamine transferase with kinetic properties similar to those of the wild type enzyme.  相似文献   

19.
The structural basis for specificity in human ABO(H) blood group biosynthesis   总被引:12,自引:0,他引:12  
The human ABO(H) blood group antigens are produced by specific glycosyltransferase enzymes. An N-acetylgalactosaminyltransferase (GTA) uses a UDP-GalNAc donor to convert the H-antigen acceptor to the A antigen, whereas a galactosyltransferase (GTB) uses a UDP-galactose donor to convert the H-antigen acceptor to the B antigen. GTA and GTB differ only in the identity of four critical amino acid residues. Crystal structures at 1.8-1.32 A resolution of the GTA and GTB enzymes both free and in complex with disaccharide H-antigen acceptor and UDP reveal the basis for donor and acceptor specificity and show that only two of the critical amino acid residues are positioned to contact donor or acceptor substrates. Given the need for stringent stereo- and regioselectivity in this biosynthesis, these structures further demonstrate that the ability of the two enzymes to distinguish between the A and B donors is largely determined by a single amino acid residue.  相似文献   

20.
Man9-mannosidase, an alpha 1,2-specific enzyme located in the endoplasmic reticulum and involved in N-linked-oligosaccharide processing, has been isolated from crude pig-liver microsomes and its substrate specificity studied using a variety of free and peptide-bound high-mannose oligosaccharide derivatives. The purified enzyme displays no activity towards synthetic alpha-mannosides, but removes three alpha 1,2-mannose residues from the natural Man9-(GlcNAc)2 substrate (M9). The alpha 1,2-mannosidic linkage remaining in the M6 intermediate is cleaved about 40-fold more slowly. Similar kinetics of hydrolysis were determined with Man9-(GlcNAc)2 N-glycosidically attached to the hexapeptide Tyr-Asn-Lys-Thr-Ser-Val (GP-M9), indicating that the specificity of the enzyme is not influenced by the peptide moiety of the substrate. The alpha 1,2-mannose residue which is largely resistant to hydrolysis, was found to be attached in both the M6 and GP-M6 intermediate to the alpha 1,3-mannose of the peripheral alpha 1,3/alpha 1,6-branch of the glycan chain. Studies with glycopeptides varying in the size and branching pattern of the sugar chains, revealed that the relative rates at which the various alpha 1,2-mannosidic linkages were cleaved, differed depending on their structural complexity. This suggests that distinct sugar residues in the aglycon moiety may be functional in substrate recognition and binding. Reduction or removal of the terminal GlcNAc residue of the chitobiose unit in M9 increased the hydrolytic susceptibility of the fourth (previously resistant) alpha 1,2-mannosidic linkage significantly. We conclude from this observation that, in addition to peripheral mannose residues, the intact chitobiose core represents a structural element affecting Man9-mannosidase specificity. A possible biological role of the enzyme during N-linked-oligosaccharide processing is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号