首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies on solar inactivation of Escherichia coli in freshwater and in situ have been limited. At 63rd St. Beach, Chicago, Ill., factors influencing the daily periodicity of culturable E. coli, particularly insolation, were examined. Water samples for E. coli analysis were collected twice daily between April and September 2000 three times a week along five transects in two depths of water. Hydrometeorological conditions were continuously logged: UV radiation, total insolation, wind speed and direction, wave height, and relative lake level. On 10 days, transects were sampled hourly from 0700 to 1500 h. The effect of sunlight on E. coli inactivation was evaluated with dark and transparent in situ mesocosms and ambient lake water. For the study, the number of E. coli samples collected (n) was 2,676. During sunny days, E. coli counts decreased exponentially with day length and exposure to insolation, but on cloudy days, E. coli inactivation was diminished; the E. coli decay rate was strongly influenced by initial concentration. In situ experiments confirmed that insolation primarily inactivated E. coli; UV radiation only marginally affected E. coli concentration. The relationship between insolation and E. coli density is complicated by relative lake level, wave height, and turbidity, all of which are often products of wind vector. Continuous importation and nighttime replenishment of E. coli were evident. These findings (i) suggest that solar inactivation is an important mechanism for natural reduction of indicator bacteria in large freshwater bodies and (ii) have implications for management strategies of nontidal waters and the use of E. coli as an indicator organism.  相似文献   

2.
AIMS: To investigate the influence of suspension media on the survival of Escherichia coli M23 exposed to nonthermal, lethal stresses. METHODS AND RESULTS: Populations of E. coli M23 suspended in minimal medium (MM) or in different nutrient-rich broths were exposed to water activity 0.90 and/or pH 3.5 and inactivation was determined by culture-based enumeration. In response to the osmotic or acid challenges, E. coli M23 displayed enhanced survival in MM rather than in complex broth. That trend was reversed when populations were exposed to low water activity in combination with low pH. Comparison of microbial survival in three complex media indicated that even relatively small differences in composition influenced inactivation. In most media the combination of lethal stresses resulted in a synergism, which enhanced bacterial inactivation; however, an exception (tryptone soya broth) was observed. CONCLUSIONS: The suspension medium strongly influences the inactivation of E. coli M23 by osmotic and/or acid stresses. This should be considered when comparing studies of microbial survival that use different media and when broth-derived data are intended to represent specific environments (e.g. food matrices). SIGNIFICANCE AND IMPACT OF THE STUDY: The specific effects of synthetic media need to be appreciated when studying bacterial inactivation in conditions relevant to food-manufacturing regimes.  相似文献   

3.
Human disease caused by Escherichia coli O157:H7 is a function of the number of cells that are present at potential sites of infection and host susceptibility. Such infectious doses are a result, in part, of the quantity of cells that are ingested and that survive human host defenses, such as the low-pH environment of the stomach. To more fully understand the kinetics of E. coli O157:H7 survival in gastric fluid, individual E. coli O157:H7 strains were suspended in various media (i.e., saline, cooked ground beef [CGB], and CGB containing a commercial antacid product [CGB+A]), mixed at various proportions with simulated human gastric fluid (SGF), and then incubated at 37 degrees C for up to 4 h. The highest inactivation rate among nine E. coli O157:H7 strains was observed in saline. Specifically, the average survival rates in 100:1 and 10:1 proportions of SGF-saline were -1.344 +/- 0.564 and -0.997 +/- 0.388 log(10) CFU/h, respectively. In contrast, the average inactivation rate for 10 E. coli O157:H7 strains suspended in 10:1 SGF-CGB was -0.081 +/- 0.068, a rate that was 12-fold lower than that observed for SGF-saline. In comparison, the average inactivation rate for Shigella flexneri strain 5348 in 100:1 and 10:1 SGF-saline was -8.784 and -17.310, respectively. These latter inactivation rates were 7- to 17-fold higher than those for E. coli O157:H7 strains in SGF-saline and were 4-fold higher than those for E. coli O157:H7 strains in SGF-CGB. The survival rate of E. coli O157:H7 strain GFP80EC increased as the dose of antacid increased from one-half to twice the prescribed dose. A similar trend was observed for the matrix pH over the range of pH 1.6 to 5.7, indicating that pH is a primary factor affecting E. coli O157:H7 survival in SGF-CGB+A. These results can be used in risk assessment to define dose-response relationships for E. coli O157:H7 and to evaluate potential surrogate organisms.  相似文献   

4.
The inactivation of aerosolized Escherichia coli by ozone, cyclohexene, and ozonized cyclohexene was studied. The parameters for damage were loss of reproduction and introduction of breaks in the deoxyribonucleic acid (DNA). Aerosolization of E. coli in clean air at 80 percent relative humidity or in air containing either ozone or cyclohexene hardly affected survival; however, some breaks per DNA molecule were induced, as shown by sucrose gradient sedimentation of the DNA. Aerosolization of E. coli in air containing ozonized cyclohexene at 80 percent relative humidity decreased the survival by a factor of 10(3) or more after 1 h of exposure and induced many breaks in the DNA.  相似文献   

5.
AIM: To estimate the survival of enteropathogenic Escherichia coli after passage through the stomach of young and elderly people. METHODS AND RESULTS: Using enterohaemorrhagic E. coli O157 and a non-pathogenic laboratory strain, inactivation in a pH range between 1.5 and 4.0 was experimentally quantified. Gastric pH and transport have previously been studied in human volunteers following consumption of a solid meal. Combining all these findings, time series of surviving bacteria were mathematically predicted and subsequently, the predictions were validated with in vitro experiments using a pH-controlled fermentor. On average, 20-80% of ingested E. coli are estimated to arrive in the small intestine without inactivation by low pH. The mean overall gastric passage was similar for young and elderly subjects. CONCLUSIONS: The tested E. coli strains can survive the human stomach with a high probability. SIGNIFICANCE AND IMPACT OF THE STUDY: Survival of E. coli under conditions of changing pH in the stomach may be predicted by batch experiments at constant pH. The effectiveness of the gastric acid barrier strongly depends on buffering effects of food.  相似文献   

6.
In order to elucidate the mechanism of sensitization of E. coli B/r cells to X-irradiation by 2'-chloro-2'-deoxythymidine (2'Cl-TdR), the survival curves of the cells in which 2'Cl-TdR was incorporated into DNA were obtained following X-irradiation under various conditions. The marked sensitization of E. coli cells by 2'Cl-TdR to the killing action of X-rays was observed, when E. coli cells labelled with 2'Cl-TdR were exposed to X-rays in the absence of oxygen as well as in the presence of oxygen. The sensitization factor calculated from inactivation constants from survival curves irradiated in the absence of O2 was about a half of that obtained in the presence of O2. Under the conditions where 2'Cl-TdR was not incorporated into the DNA of E. coli cells, the presence of 2'Cl-TdR in the cell suspension fluid at the time of irradiation caused no sensitization of the cells to X-irradiation. The sensitization factor for 2'Cl-TdR obtained under N2O was almost same as that obtained under N2. It was also observed that the sensitization factor obtained in the presence of glycerol at a concentration of 1 mol dm-3 under N2 was similar to that obtained in the absence of glycerol. These results indicated that the direct effect of ionizing radiation on DNA was closely associated with the sensitization of E. coli B/r cells by 2'Cl-TdR and that the radical at the C-2' position of the deoxyribose moiety in DNA produced by X-irradiation was transformed into lethal damage for E. coli cells even in the absence of O2. However, this transformation occurred more efficiently in the presence of O2 than in the absence of O2.  相似文献   

7.
DNA from the radiation-resistant bacterium Deinococcus radiodurans was isolated and used to generate a cosmid library. This cosmid library was grown in Escherichia coli and radiation-resistant E. coli were isolated. Following exposure to 1000 Gy the radiation-resistant transformants exhibited a survival of approximately 10(-1) instead of the 10(-11) exhibited by the nontransformed E. coli. Smaller fragments of DNA were subcloned from the radiation-resistant E. coli; these fragments bestow similar levels of radiation resistance (ratio of slopes = 6.8) to native E. coli upon transfection.  相似文献   

8.
The bactericidal radiation dosages at specific wavelengths in the ultraviolet (UV)-visible spectrum are not well documented. Such information is important for the development of new monochromatic bactericidal devices to be operated at different wavelengths. In this study, radiation dosages required to cause mortality of an Escherichia coli strain, ATCC 25922, at various wavelengths between 250 and 532 nm in the UV and visible spectrum were determined. Radiation at 265 nm in the UV region was most efficient in killing the E. coli cells and 100% mortality was achieved at a dose of 1.17 log mJ/cm(2). In the visible spectrum, the radiation dosages required for a one-log reduction of the E. coli cell density at 458 and 488 nm were 5.5 and 6.9 log mJ/cm(2), respectively. However, at 515 and 532 nm, significant killing was not observed at radiation dosage up to 7 log mJ/cm(2). Based on the cell survival data at various radiation dosages between 250 and 488 nm, a predictive equation for the survival of E. coli cells is derived, namely log(S/S(0)) = -(1.089 x 10(7) e(-0.0633lambda))D. The symbols, S(0), S, lambda, and D, represent initial cell density, cell density after irradiation, wavelength of the radiation and radiation dosage, respectively. The proportion of the surviving E. coli cells decreases exponentially with the increase in radiation dosage at a given wavelength. In addition, the radiation dose required for killing a certain fraction of the E. coli cells increases exponentially as the wavelength of radiation increases.  相似文献   

9.
Cells cope with radiation damage through several mechanisms: (1) increased DNA repair activity, (2) scavenging and inactivation of radiation-induced radical molecules, and (3) entry into a G0-like quiescent state. We have investigated a chromosomal rearrangement to elucidate further the molecular and genetic mechanisms underlying these phenomena. A mutant of Escherichia coli JM83 (phi 80dlacZ delta M15) was isolated that demonstrated significantly increased resistance to both ionizing and ultraviolet radiation. Surviving fractions of mutant and wild-type cells were measured following exposure to standardized doses of radiation. Increased radioresistance was directly related to a chromosomal alteration near the bacteriophage phi 80 attachment site (attB), as initially detected by the LacZ- phenotype of the isolate. Southern hybridization of chromosomal DNA from the mutant and wild-type E. coli JM83 strains indicated that a deletion had occurred. We propose that the deletion near the attB locus produces the radioresistant phenotype of the E. coli JM83 LacZ- mutant, perhaps through the alteration or inactivation of a gene or its controlling element(s).  相似文献   

10.
N G Seleva 《Radiobiologiia》1986,26(2):153-157
A study was made of the influence of irradiation conditions on the yield of the photoreactivable damages in radiosensitive mutants of E. coli cells (E. coli WP2). Pyrimidine dimers were shown to occur in exrA- and recA- mutants irradiated under anoxic conditions, the survival of these mutants being modified depending on cell genotype. The processes of direct excitation of the molecules were involved in the formation of the damages observed. It can be assumed that the lesser oxygen effect observed in exrA- and partially in recA- mutants of E. coli WP2 cells is associated with a contribution of the photoreactivable damages to a lethal effect of ionizing radiation.  相似文献   

11.
Ivy is a lysozyme inhibitor that protects Escherichia coli against lysozyme-mediated cell wall hydrolysis when the outer membrane is permeabilized by mutation or by chemical or physical stress. In the current work, we have investigated whether Ivy is necessary for the survival or growth of E. coli MG1655 and Pseudomonas aeruginosa PAO1 in hen egg white and in human saliva and breast milk, which are naturally rich in lysozyme and in membrane-permeabilizing components. Wild-type E. coli was able to grow in saliva and breast milk but showed partial inactivation in egg white. The knockout of Ivy did not affect growth in breast milk but slightly increased sensitivity to egg white and caused hypersensitivity to saliva, resulting in the complete inactivation of 10(4) CFU ml(-1) of bacteria within less than 5 hours. The depletion of lysozyme from saliva completely restored the ability of the ivy mutant to grow like the parental strain. P. aeruginosa, in contrast, showed growth in all three substrates, which was not affected by the knockout of Ivy production. These results indicate that lysozyme inhibitors like Ivy promote bacterial survival or growth in particular lysozyme-rich secretions and suggest that they may promote the bacterial colonization of specific niches in the animal host.  相似文献   

12.
光复活对紫外线照射大肠杆菌后突变率的影响   总被引:1,自引:1,他引:0  
通过改变UV照射时间、照射后的操作速度、光复活时的温度、时间和光强度,以光复活和暗处理后细胞存活数的比值为依据,研究了不同条件下E.coli受UV照射后的光复活效应。并以E.coli对5μg/ml链霉素抗性突变率为指标,比较了不同剂量UV照射后光复活和暗处理对E.coli突变率的影响。结果表明:光复活效应在温度10℃时最明显,且与照射时间、照射后的操作速度、光复活时间和光强度成正相关;在中、低剂量UV照射后,暗处理较光复活后E.coli对链霉素抗性突变率明显高,而在高剂量下,光复活则显著高于暗处理后的突变率。  相似文献   

13.
A strong lethal interaction was observed between various monochromatic wavelengths (254, 334, 365, and 405 nm) in the repair-proficient E. coli K-12 strain AB 1157, except in the case of preexposure to 405-nm radiation which resulted in a protection against the inactivation resulting from subsequent exposure to 365-or 254-nm radiations. The results may be tentatively explained by assuming two classes of DNA lesions and two classes of damage to repair (reversible and inrreversible) whose proportions vary according to wavelength.  相似文献   

14.
Thymineless Death in Escherichia coli: Inactivation and Recovery   总被引:4,自引:3,他引:1       下载免费PDF全文
The effects of chloramphenicol (CAP) on the progress of thymineless death (TLD), nalidixic acid (NA) inactivation, ultraviolet (UV) irradiation, and mitomycin C (MC) inactivation were studied in Escherichia coli B, B(s-1), B(s-3), B(s-12), and B/r. This was done before, during, and after inactivation. During the progress of inactivation, it was found that at 10 to 20 mug of CAP per ml, up to 50% of the UV-sensitive bacteria survived TLD and about 10% survived NA. In E. coli B/r, at these concentrations of CAP, about 10 to 15% of the cells survived TLD and about 20 to 25% survived NA. Concentrations of CAP greater than 25 mug/ml actually increased the sensitivity of E. coli B, B(s-1), B(s-3), and B(s-12) to inactivation by either TLD or NA; at 150 mug of CAP per ml, the sensitivity of E. coli B/r to inactivation also increased. When E. coli B cells were incubated in CAP prior to inactivation, the longer the preincubation the longer onset of TLD was delayed; NA inactivation was also affected in that the rate of inactivation after CAP incubation was greatly decreased. Preincubation of E. coli B/r with CAP had much less effect on the progress of inactivation. After thymineless death, incubation in CAP plus thymine led to a rapid and almost complete recovery of E. coli B and B(s-12). Lesser recoveries were observed after inactivation due to UV, NA, or MC inactivation. E. coli B(s-1) and B/r did not recover viability after any mode of inactivation, and E. coli B(s-3) and B(s-12) recovered from UV to about 20% of the initial titer. It was suggested that protein synthesis, in particular proteins involved in deoxyribonucleic synthesis, was a determining factor in these inactivating and recovery events.  相似文献   

15.
Two enteric pathogens, Campylobacter jejuni and Yersinia enterocolitica serogroup O:3, together with Escherichia coli, were investigated for susceptibility to UV radiation at 254 nm. The UV dose required for a 3-log reduction (99.9% inactivation) of C. jejuni, Y. enterocolitica, and E. coli was 1.8, 2.7, and 5.0 mWs/cm2, respectively. Using E. coli as the basis for comparison, it appears that C. jejuni and Y. enterocolitica serogroup O:3 are more sensitive to UV than many of the pathogens associated with waterborne disease outbreaks and can be easily inactivated in most commercially available UV reactors. No association was found between the sensitivity of Y. enterocolitica to UV and the presence of a 40- to 50-megadalton virulence plasmid.  相似文献   

16.
Two enteric pathogens, Campylobacter jejuni and Yersinia enterocolitica serogroup O:3, together with Escherichia coli, were investigated for susceptibility to UV radiation at 254 nm. The UV dose required for a 3-log reduction (99.9% inactivation) of C. jejuni, Y. enterocolitica, and E. coli was 1.8, 2.7, and 5.0 mWs/cm2, respectively. Using E. coli as the basis for comparison, it appears that C. jejuni and Y. enterocolitica serogroup O:3 are more sensitive to UV than many of the pathogens associated with waterborne disease outbreaks and can be easily inactivated in most commercially available UV reactors. No association was found between the sensitivity of Y. enterocolitica to UV and the presence of a 40- to 50-megadalton virulence plasmid.  相似文献   

17.
beta-D-Galactopyranosylmethyl-p-nitrophenyltriazene (beta-GalMNT), a specific inhibitor of beta-galactosidase, was isolated as crystals by HPLC and its chemical and physicochemical characteristics were examined. Aspergillus oryzae beta-galactosidase was inactivated by the compound. We studied the inhibition mechanism in detail. The inhibitor was hydrolyzed by the enzyme to p-nitroaniline and an active intermediate (beta-galactopyranosylmethyl carbonium or beta-galactopyranosylmethyldiazonium), which inactivated the enzyme. The efficiency of inactivation of the enzyme (the ratio of moles of inactivated enzyme to moles of beta-GalMNT hydrolyzed by the enzyme) was 3%; the efficiency of Escherichia coli beta-galactosidase was 49%. In spite of the low efficiency, the rate of inactivation of A. oryzae enzyme was not very different from that of the E. coli enzyme, because the former hydrolyzed beta-GalMNT faster than the latter did. A. oryzae beta-galactosidase was also inactivated by p-chlorophenyl, p-tolyl, and m-nitrophenyl derivatives of beta-galactopyranosylmethyltriazene. However, E. coli beta-galactosidase was not inactivated by these triazene derivatives. The results showed that the inactivation of A. oryzae and E. coli beta-galactosidases by beta-GalMNT was an enzyme-activated and active-site-directed irreversible inactivation. The possibility of inactivation by intermediates produced nonenzymatically was ruled out for E. coli, but not for the A. oryzae enzyme.  相似文献   

18.
Incubation of purified Escherichia coli biodegradative threonine dehydratase with glyoxylate resulted in covalent binding of 1 mol of glyoxylate per mol of protein with concomitant loss of enzyme activity. The glyoxylate-binding site was identified as a heptapeptide representing amino acid residues Ser-33-Asn-Tyr-Phe-Ser-Glu-Arg-39 in the protein primary structure. Addition of glyoxylate to a culture of E. coli cells led to time-dependent enzyme inactivation. Immunoprecipitation with anti-dehydratase antibody of extract from [14C]glyoxylate-treated cells revealed labeled dehydratase polypeptide. These results are interpreted to mean that enzyme inactivation by glyoxylate in E. coli cells is associated with covalent protein modification.  相似文献   

19.
The photochemical stability of anomalous nucleic acid bases of the azatype, 5-azacytosine (I), 5-azacytidine (II), 6-azacytosine (III), 6-azacytidine (IV), 6-azathymine (V), 6-azauracil (VI), and 8-aza-adenine (VII) to U. V. light of the wavelength 254 nm differs from the U. V. stability of the normal constituents. Changes of the U.V. inactivation of Escherichia coli K12 C600, E. coli B, Bacillus cereus, as well as E. coli phages gamma cb2 and gamma b2b5 supplemented with azaderivatives prior to irradiation were investigated. It was found that I, II, III, IV, and VII are more, V and VI less sensitive to U. V. light compared with corresponding natural nucleic acid bases. Their changed U. V. sensitivities are reflected in the survival curves after U. V. -irradiation in as far as azabases are incorporated into the nucleic acids in vivo. This explains the increase in U.V. sensitivity of E. coli K12 C600, E. coli B, and B. cereus supplemented with I, II, III, IV, and VII and the decrease in U.V. sensitivity of Streptococcus faecalis supplemented with V (the latter information was taken from Gunther and Prusoff 1967). The lack of any significant influence on inactivation curves of E. coli K12 C600 by V and VI, and on E. coli phages gamma cb2 and gamma c2b5 by II, is discussed in terms of too small incorporation rates. No discrimination was put forward with respect to DNA and RNA incorporation.  相似文献   

20.
UV inactivation, photoreactivation, and dark repair of Escherichia coli and Cryptosporidium parvum were investigated with the endonuclease sensitive site (ESS) assay, which can determine UV-induced pyrimidine dimers in the genomic DNA of microorganisms. In a 99.9% inactivation of E. coli, high correlation was observed between the dose of UV irradiation and the number of pyrimidine dimers induced in the DNA of E. coli. The colony-forming ability of E. coli also correlated highly with the number of pyrimidine dimers in the DNA, indicating that the ESS assay is comparable to the method conventionally used to measure colony-forming ability. When E. coli were exposed to fluorescent light after a 99.9% inactivation by UV irradiation, UV-induced pyrimidine dimers in the DNA were continuously repaired and the colony-forming ability recovered gradually. When kept in darkness after the UV inactivation, however, E. coli showed neither repair of pyrimidine dimers nor recovery of colony-forming ability. When C. parvum were exposed to fluorescent light after UV inactivation, UV-induced pyrimidine dimers in the DNA were continuously repaired, while no recovery of animal infectivity was observed. When kept in darkness after UV inactivation, C. parvum also showed no recovery of infectivity in spite of the repair of pyrimidine dimers. It was suggested, therefore, that the infectivity of C. parvum would not recover either by photoreactivation or by dark repair even after the repair of pyrimidine dimers in the genomic DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号