首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Inhibition of the yeast F(0)F(1)-ATP synthase by the regulatory peptides IF1 and STF1 was studied using intact mitochondria and submitochondrial particles from wild-type cells or from mutants lacking one or both peptides. In intact mitochondria, endogenous IF1 only inhibited uncoupled ATP hydrolysis and endogenous STF1 had no effect. Addition of alamethicin to mitochondria readily made the mitochondrial membranes permeable to nucleotides, and bypassed the kinetic control exerted on ATP hydrolysis by the substrate carriers. In addition, alamethicin made the regulatory peptides able to cross mitochondrial membranes. At pH 7.3, F(0)F(1)-ATPase, initially inactivated by either endogenous IF1 or endogenous STF1, was completely reactivated hours or minutes after alamethicin addition, respectively. Previous application of a membrane potential favored the release of endogenous IF1 and STF1. These observations showed that IF1 and STF1 can fully inhibit ATP hydrolysis at physiological concentrations and are sensitive to the same effectors. However, ATP synthase has a much lower affinity for STF1 than for IF1, as demonstrated by kinetic studies of ATPase inhibition in submitochondrial particles by externally added IF1 and STF1 at pHs ranging from 5.5 to 8.0. Our data do not support previously proposed effects of STF1, like the stabilization of the IF1-F(0)F(1) complex or the replacement of IF1 on its binding site in the presence of the proton-motive force or at high pH, and raise the question of the conditions under which STF1 could regulate ATPase activity in vivo.  相似文献   

3.
At low concentrations, diethylstilbestrol (DES) is shown to be a potent F0-directed inhibitor of the F0F1-ATPase of rat liver mitochondria. In analogy to other F0-directed inhibitors, DES inhibits both the ATPase and ATP-dependent proton-translocation activities of the purified and membrane bound enzyme. When added at low concentrations with dicyclohexylcarbodiimide (DCCD), a covalent inhibitor, DES acts synergistically to inhibit ATPase activity of the complex. At higher concentrations, DES restores DCCD-inhibited ATPase activity. However, there is no restoration of ATP-dependent proton translocation. Under these conditions DCCD remains covalently bound to the F0F1-ATPase complex and F1 remains bound to Fo. Significantly, when the F0F1-ATPase is inhibited by the Fo-directed inhibitor venturicidin rather than DCCD, DES is also able to restore ATPase activity. In contrast, DES is unable to restore ATPase activity to F0F1 preparations inhibited by the Fo-directed inhibitors oligomycin or tricyclohexyltin. However, combinations of [DES + DCCD] or [DES + venturicidin] can restore ATPase activity to F0F1 preparations inhibited by either oligomycin or tricyclohexyltin. Results presented here indicate that the F0 moiety of the rat liver mitochondrial proton ATPase contains a distinct binding site for DES. In addition, they suggest that at saturating concentrations simultaneous occupancy of the DES binding site and sites for either DCCD or venturicidin promote "uncoupled" ATP hydrolysis.  相似文献   

4.
Rhodamine 123 accumulates in the mitochondria of living cells and exhibits selective anticarcinoma activity. The biochemical basis of toxicity was investigated by testing the effect of the dye on isolated rat liver mitochondria. Much lower concentrations of rhodamine 123 were required to inhibit ADP-stimulated respiration and ATP synthesis in well-coupled energized mitochondria than were required to inhibit uncoupled respiration and uncoupler-stimulated ATP hydrolysis. The amount of rhodamine 123 associated with the mitochondria was several-fold greater under energized as compared to non-energized conditions, which may explain why coupled functions appeared to be more sensitive than uncoupled functions to inhibition at low concentrations of rhodamine 123. It was concluded that the site of rhodamine 123 inhibition is most likely the F0F1 ATPase complex and possibly electron transfer reactions as well.  相似文献   

5.
A gene coding for yeast 15-kDa protein, a regulatory factor of mitochondrial F1F0-ATPase, was isolated. The cloned gene was disrupted in vitro and mutant strains that did not contain the 15-kDa protein were constructed by transformation of yeast cells with the disrupted gene. The ATP-synthesizing activity of the mutant mitochondria was the same as that of wild-type cells, suggesting that the 15-kDa protein is not required for mitochondrial oxidative phosphorylation. Collapse of the membrane potential induced ATP-hydrolyzing activity of F1F0-ATPase of the mutant mitochondria but not of normal mitochondria. Activation of the enzyme was also observed during incubation of submitochondrial particles from mutant cells, but not of those from wild-type cells. Thus, it is inferred that the 15-kDa protein supports the action of an intrinsic ATPase inhibitor of the ATP-hydrolyzing activity of the enzyme upon de-energization of mitochondrial membranes.  相似文献   

6.
The principal function of Saccharomyces cerevisiae Cdc13p is to provide a loading platform to recruit complexes that provide end protection and telomere replication. We isolated the Saccharomyces castellii Cdc13p homolog (scasCdc13p) and characterized the in vitro DNA binding features of the purified recombinant scasCdc13p. The full-length scasCdc13p binds specifically to G-rich single-stranded telomeric DNA, and not to double-stranded DNA or the C-rich strand. Moreover, the minimal binding site for scasCdc13p is the octamer 5'-GTGTCTGG-3' of the S.castellii telomeric sequence. The scasCdc13p displayed a high affinity binding, where four individual nucleotide residues were found to be of most importance for the sequence specificity. Nonetheless, scasCdc13p binds the telomeric repeats from various other species, including the human. In spite of considerable divergence in telomere repeat length and sequence between these species, a conserved Cdc13p binding motif was detected. Among the budding yeasts this conserved Cdc13p binding site overlaps the Rap1p binding site. Together, these data implicate scasCdc13p as a telomere end-binding protein with a potential role in the regulation of telomere maintenance in vivo. Moreover, the results suggest that Rap1p and Cdc13p act together to preserve the conserved core present within the otherwise highly divergent btelomeric sequences among a wide variety of yeasts.  相似文献   

7.
An important antitumour effect of SYD-1 (3-[4-chloro-3-nitrophenyl]-1,2,3-oxadiazolium-5-olate) has been shown. We now report the effects of this mesoionic compound on mitochondrial metabolism. SYD-1 (1.5 micromol mg(-1) protein) dose-dependently inhibited the respiratory rate by 65% and 40% in state 3 using sodium glutamate and succinate, respectively, as substrates. Phosphorylation efficiency was depressed by SYD-1, as evidenced by stimulation of the state 4 respiratory rate, which was more accentuated with glutamate ( approximately 180%) than with succinate ( approximately 40%), with 1.5 micromol mg(-1) protein of SYD-1. As a consequence of the effects on states 3 and 4, the RCC and ADP/O ratios were lowered by SYD-1 using both substrates, although this effect was stronger with glutamate. The formation of membrane electrical potential was inhibited by approximately 50% (1.5 micromol SYD-1mg(-1) protein). SYD-1 interfered with the permeability of the inner mitochondrial membrane, as demonstrated by assays of mitochondrial swelling in the presence of sodium acetate and valinomycin +K(+). SYD-1 (1.5 micromol mg(-1) protein) inhibited glutamate completely and succinate energized-mitochondrial swelling by 80% in preparations containing sodium acetate. The swelling of de-energized mitochondria induced by K(+) and valinomycin was inhibited by 20% at all concentrations of SYD-1. An analysis of the segments of the respiratory chain suggested that the SYD-1 inhibition site goes beyond the complex I and includes complexes III and IV. Glutamate dehydrogenase was inhibited by 20% with SYD-1 (1.5 micromol mg(-1) protein). The hydrolytic activity of complex F(1)F(o) ATPase in intact mitochondria was greatly increased ( approximately 450%) in the presence of SYD-1. Our results show that SYD-1 depresses the efficiency of electron transport and oxidative phosphorylation, suggesting that these effects may be involved in its antitumoural effect.  相似文献   

8.
Here we report a fast, simple purification for thermophilic F1F0 ATP synthase (TF1F0) that utilizes a cocktail of stabilizing reagents and the detergent n-dodecyl beta-D-maltoside to yield enzyme with an ATPase activity of 41 micromol/min/mg, 2.5-fold higher than that previously reported. ATPase activity was 80% inhibited by the F0-reactive reagent dicyclohexylcarbodiimide, indicating that F1-F0 interactions were largely intact. To measure ATP-driven proton pumping activity, purified TF1F0 was incorporated into liposomes, and the ATP-induced change in internal pH was measured using the fluorescent probe pyranine. In the presence of valinomycin, a maximum ATP-driven deltapH of 0.8 units was obtained. To measure ATP synthesis activity, TF1F0 was incorporated into liposomes with the light-dependent proton pump bacteriorhodopsin. Proteoliposomes were illuminated to generate an electrochemical gradient, after which ADP and inorganic phosphate were added to initiate ATP synthesis. A steady state ATP synthesis activity of 490 nmol/min/mg was achieved after an initial approximately 30-min lag phase.  相似文献   

9.
利用ADP和放射性磷直接合成ATP的方法,研究了无机磷(Pi)和叠氮钠对猪心线粒体ATP合成酶(F1FO-ATPase)ATP合成活性的影响.结果发现无机磷除作为合成ATP的底物参与F1FO-ATPase的合成反应外,还对F1FO-ATPase的合成活性呈现抑制作用,在1 mmol/L ADP存在时,随着Pi浓度由0.01~10 mmol/L增加,抑制合成作用越来越强.与叠氮钠在低浓度时(小于1 mmol/L)只抑制ATP水解,不影响ATP合成的观点不同.实验结果显示0.1 mmol/L叠氮钠表观激活F1FO-ATPase的ATP合成活性,且激活程度与反应体系中所加Pi的浓度呈负相关.当固定Pi浓度(0.1 mmol/L)后,随着叠氮钠浓度的增加表观激活程度也在变化,叠氮钠与磷浓度相等时表观激活程度最大,直至叠氮钠浓度接近0.5 mmol/L时,开始呈现表观抑制现象,叠氮钠浓度高于1 mmol/L之后,就出现解偶联现象.  相似文献   

10.
Preincubation of submitochondrial particles with ADP in the presence of Mg2+ results in the complete inhibition of ATPase which is slowly reactivated in the assay mixture containing ATP and the ATP regenerating system. Significantly, the rate of activation increases as the concentration of ADP in the preincubation mixture rises from 1 microM to 20 microM and reaches a constant value at higher ADP concentrations. The first-order rate constant for the activation process in the assay mixture is ATP-dependent at any level of inhibitory ADP. The data obtained strongly suggest that two ADP-specific inhibitory sites and one ATP-specific hydrolytic site are present in F1-F0 ATPase. Taking into account the (3 alpha.3 beta).gamma.delta.epsilon structure of F1, it is concluded that the synchronous discharge of ADP from two inhibitory sites during the activation occurs after ATP binds to the ATPase catalytic site.  相似文献   

11.
This report investigated FgSit1, which encodes a putative ferrichrome transporter of Fusarium graminearum. The identity of the deduced amino acid sequence of FgSit1 with the amino acid sequence of ScArn1p, an FC-Fe(3+) transporter of Saccharomyces cerevisiae, was 51%; both the growth defect related to the Deltafet3Deltaarn1-4 strain of S. cerevisiae in an iron-depleted condition and the FC-Fe(3+) uptake activity were recovered upon the introduction of FgSit1 into the Deltafet3Deltaarn1-4 strain. Although ScArn1p was found in the late endosomal compartment in S. cerevisiae, FgSit1 was found on the plasma membrane in S. cerevisiae; when FgSit1 was expressed exogenously in S. cerevisiae, it showed greater FC-Fe(3+) uptake activity than did ScArn1p. Additionally, in F. graminearum FC-Fe(3+) uptake activity in the Deltafgsit1 strain was found to be one-fourth that of the wild-type. However, Fe(3+) uptake activity in the Deltafgsit1 strain was 5-fold higher than that of wild-type; the gene expression of FgFtr1, a putative iron transporter, was induced by the deletion of FgSit1, but was not induced by the deletion of FgSit2. Taken together, these results strongly suggest that FgSit1 encodes a putative FC-Fe(3+) transporter that mediates FC-Fe(3+) uptake using a different mechanism than ScArn1p and plays an important role in the regulation of cellular iron availability in F. graminearum.  相似文献   

12.
1. The oligomycin-sensitive ATPase activity of submitochondrial particles of the glycerol-grown "petite-negative" yeast: Schizosaccharomyces pombe is markedly stimulated by incubation at 40 degrees C and by trypsin activations are treatment. Both increased in Triton-X 100 extracts of the submitochondrial particles. 2. A trypsin-sensitive inhibitory factor of mitochondrial ATPase with properties similar to that of beef heart has been extracted and purified from glycerol-grown and glucose-grown S. pombe wild type, from the nuclear pleiotropic respiratory-deficient mutant S. pombe M126 and from Saccharomyces cerevisiae. 3. ATPase activation by heat is more pronounced in submitochondrial particles isolated from glycerol-grown than from glucose-grown S. pombe. An activation of lower extent is observed in rat liver mitochondrial particles but is barely detectable in the "petite-positive" yeast: S. cerevisiae. No activation but inhibition by heat is observed in the pleitotropic respiratory-deficient nuclear mutant S. pombe M126. 4. The inhibition of S. pombe ATPase activity by low concentrations of dicyclohexylcarbodiimide dissapears at inhibitor concentrations above 25 muM. In Triton-extract of submitochondrial particles net stimulation of ATPase activity is observed at 100 muM dicyclohexylcarbodiimide. The pattern of stimulation of ATPase activity by dicyclohexylcarbodiimide in different genetic and physiological conditions parallels that produced by heat and trypsin. A similar mode of action is therefore proposed for the three agents: dissociation or inactivation of an ATPase inhibitory factor. 5. We conclude that "petite-positive" and "petite-negative" yeasts contain an ATPase inhibitor factor with properties similar to those of the bovine mitochondrial ATPase inhibitor. The expression of the ATPase inhibitor, measured by ATPase activation by heat, trypsin or high concentrations of dicyclohexylcarbodiimide, is sensitive to alterations of the hydrophobic membrane environment and dependent on both physiological state and genetic conditions of the yeast cells.  相似文献   

13.
Petite-positive Saccharomyces yeasts can be roughly divided into the sensu stricto, including Saccharomyces cerevisiae, and sensu lato group, including Saccharomyces castellii; the latter was recently studied for transmission and the organisation of its mitochondrial genome. S. castellii mitochondrial molecules (mtDNA) carrying point mutations, which confer antibiotic resistance, behaved in genetic crosses as the corresponding point mutants of S. cerevisiae. While S. castellii generated spontaneous petite mutants in a similar way as S. cerevisiae, the petites exhibited a different inheritance pattern. In crosses with the wild type strains a majority of S. castellii petites was neutral, and the suppressivity in suppressive petites was never over 50%. The two yeasts also differ in organisation of their mtDNA molecules. The 25,753 bp sequence of S. castellii mtDNA was determined and the coding potential of both yeasts is similar. However, the S. castellii intergenic sequences are much shorter and do not contain sequences homologous to the S. cerevisiae biologically active intergenic sequences, as ori/rep/tra, which are responsible for the hyper-suppressive petite phenotype found in S. cerevisiae. The structure of one suppressive S. castellii mutant, CA38, was also determined. Apparently, a short direct intergenic repeat was involved in the generation of this petite mtDNA molecule.  相似文献   

14.
Mitochondrial translation of the Saccharomyces cerevisiae Atp6p subunit of F(1)-F(0) ATP synthase is regulated by the F(1) ATPase. Here we show normal expression of Atp6p in HeLa cells depleted of the F(1) β subunit. Instead of being translationally down-regulated, HeLa cells lacking F(1) degrade Atp6p, thereby preventing proton leakage across the inner membrane. Mammalian mitochondria also differ in the way they minimize the harmful effect of unassembled F(1) α subunit. While yeast mutants lacking β subunit have stable aggregated F(1) α subunit in the mitochondrial matrix, the human α subunit is completely degraded in cells deficient in F(1) β subunit. These results are discussed in light of the different properties of the proteins and environments in which yeast and human mitochondria exist.  相似文献   

15.
Miconazole [( 1-[2-(2,4 dichlorophenyl)-2-(2,4 dichlorophenyl)methoxy]ethyl]-1 H-imidazole) completely inhibited growth of Saccharomyces cerevisiae and Candida albicans on glycerol at 10 microM . 50 microM was needed to achieve the same effect during growth on glucose. Miconazole inhibited competitively the mitochondrial ATPase of S. cerevisiae with a Ki of 1 microM. F1 activity of the enzyme was not affected. Mutants resistant to miconazole were isolated. The ATPase of these mutants was resistant to 10 microM miconazole. Higher concentrations of miconazole inhibited the ATPase of the plasma membrane. The inhibition of the S. cerevisiae enzyme was competitive with a Ki of 50 microM. The results point to the mitochondrial ATPase as the primary target of miconazole action at least during growth on non-fermentable carbon sources.  相似文献   

16.
We have measured the inhibitory potencies of local anesthetics (procaine, lidocaine, tetracaine and dibucaine) on ATP-mediated H+-translocation, Ca2+-transport and ATPase activity in membrane vesicles from Mycobacterium phlei. Procaine and lidocaine up to 1 mM concentration did not inhibit ATP-dependent H+-translocation, Ca2+-transport and ATPase activity. However, tetracaine and dibucaine at 0.2 mM concentration caused dissipation of the proton gradient, measured by the reversal of the quenching of fluorescence of quinacrine, and inhibition of active Ca2+-transport. Tetracaine (1 mM) inhibited membrane-bound ATPase activity without affecting solubilized F1-ATPase activity. Studies show that these local anesthetics do not prevent the inactivation of F0-F1 ATPase by dicyclohexylcarbodiimide (DCCD). Binding of [14C]DCCD to F0-proteolipid component remained unchanged in the presence of tetracaine indicating that DCCD and tetracaine do not share common binding sites on the F0-proteolipid sector. The inhibition of H+-translocation and membrane-bound ATPase activity by tetracaine was substantially additive in the presence of vanadate.  相似文献   

17.
Mitochondrial H+ -ATPase complex, purified by the lysolecithin extraction procedure, has been resolved into a "membrane" (NaBr-F0) and a "soluble" fraction by treatment with 3.5 M sodium bromide. The NaBr-F0 fraction is completely devoid of beta, delta, and epsilon subunits of the F, ATPase and largely devoid of alpha and gamma subunits of F1, where F0 is used to denote the membrane fraction and F1, coupling factor 1. This is confirmed by complete loss of ATPase and Pi-ATP exchange activities. The addition of F1 (400 micrograms X mg-1 F0) results in complete restoration of oligomycin sensitivity without any reduction in the F1-ATPase activity. Presumably, this is due to release of ATPase inhibitor protein from the F1-F0 complex consequent to sodium bromide extraction. Restoration of Pi-ATP exchange and H+ -pumping activities require coupling factor B in addition to F1-ATPase. The oligomycin-sensitive ATPase and 32Pi-ATP exchange activities in reconstituted F1-F0 have the same sensitivity to uncouplers and energy transfer inhibitors as in starting submitochondrial particles from the heavy layer of mitochondria and F1-F0 complex. The data suggest that the altered properties of NaBr-F0 observed in other laboratories are probably inherent to their F1-F0 preparations rather than to sodium bromide treatment itself. The H+ -ATPase (F1-F0) complex of all known prokaryotic (3, 8, 9, 10, 21, 32, 34) and eukaryotic (11, 26, 30, 33, 35-37) phosphorylating membranes contain two functionally and structurally distinct entities. The hydrophilic component F1, composed of five unlike subunits, shows ATPase activity that is cold labile as well as uncoupler- and oligomycin-insensitive. The membrane-bound hydrophobic component F0, having no energy-linked catalytic activity of its own, is indirectly assayed by its ability to regain oligomycin sensitive ATPase and Pi-ATP exchange activities on binding to F1-ATPase (33). The purest preparations of bovine heart mitochondrial F0 show seven or eight major components in polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate or SDS-PAGE (1, 2, 12, 14), ranging from 6 to 54 ku in molecular weight (12). The precise structure and polypeptide composition of mitochondrial F0 is not known. The F0 preparations from bovine heart reported so far have been derived from H+ -ATPase preparations isolated in the presence of cholate and deoxycholate (11, 33, 36, 37).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
The effects of lauryl dimethylamine oxide on the Rhodospirillum rubrum H+-ATPase have been studied. This detergent activates Mg2+-dependent ATP hydrolysis in the isolated R. rubrum F0-F1 34-fold, whereas the Ca2+-ATPase activity is only slightly modified. ATPase activation by lauryl dimethylamine oxide enhances the effect on ATP hydrolysis exerted by free Mg2+ ions. Concentrations of free Mg2+ in the range of 0.025 mM favor activation while higher concentrations inhibit ATPase activity by approximately 70%. Steady-state kinetic analysis shows that lauryl dimethylamine oxide induces a complex kinetic behavior for Mg-ATP in the chromatophores, similar to the untreated F0-F1 complex. The initial rate value for Mg-ATP unisite catalysis was found to be 6.3 times higher (3.5 X 10(-3) mol Pi per mol R. rubrum F0-F1 per second) in the presence than in the absence of detergent, where the initial rate was 5.5 X 10(-4) mol Pi per mol R. rubrum F0-F1 per second. These experiments show that lauryl dimethylamine oxide shifts the cation requirement for ATP-hydrolysis of the isolated R. rubrum H+-ATPase from Ca2+ to Mg2+ and that it activates both multisite and unisite catalysis. Results are discussed in relation to the possibility of a regulatory role by Mg2+ ions on ATP hydrolysis expressed through subunit interactions.  相似文献   

19.
20.
1. The isolation of the mitochondrial ATPase F1 and its beta-subunit from commercial baker's yeast (Saccharomyces cerevisiae) is described. 2. The molecular weight determined by ultracentrifugation is 340000 +/- 30000. Gel chromatography indicates a molecular weight of 300000 +/- 20000. 3. Fluorimetric titration of the isolated enzyme with aurovertin reveals two binding sites per molecule. The isolated beta-subunit binds aurovertin in a 1 : 1 stoicheiometry. It is concluded that the ATPase molecule contains two aurovertin-binding beta-subunits. 4. The stabilizing agent methanol influences both the measured Kd and the concentration of binding sites for aurovertin. These results fit a model in which both F1 and aurovertin are distributed between aqueous and methanol phases. 5. The effect of methanol on the ATPase activity can be described in terms of the model proposed by Recktenwald and Hess (Recktenwald, D. and Hess, B. (1977) FEBS Lett. 76, 25-28). It is proposed that methanol enhances the affinity of the regulatory site for ATP, but at higher concentrations prevents the interaction between the regulatory and catalytic sites. 6. Since HSO(-3), a typical effector of the assumed regulatory site of F1, has no effect on the binding of aurovertin, it is concluded that the binding site of aurovertin is not correlated with the regulatory site. 7. The inhibition of ATPase activity by aurovertin is slowly (t 1/2 = 70 s) induced during turnover conditions. 8. From the effect of methanol on the inhibition of ATPase activity by aurovertin it is concluded that under turnover conditions the conformation is such that the aurovertin-binding sites have a 6-fold higher affinity for methanol than under resting conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号