首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Molecular dynamics simulations of protein tyrosine phosphatase 1B (PTP1B) complexed with the phosphorylated peptide substrate DADEpYL and the free substrate have been conducted to investigate 1) the physical forces involved in substrate-protein interactions, 2) the importance of enzyme and substrate flexibility for binding, 3) the electrostatic properties of the enzyme, and 4) the contribution from solvation. The simulations were performed for 1 ns, using explicit water molecules. The last 700 ps of the trajectories was used for analysis determining enthalpic and entropic contributions to substrate binding. Based on essential dynamics analysis of the PTP1B/DADEpYL trajectory, it is shown that internal motions in the binding pocket occur in a subspace of only a few degrees of freedom. In particular, relatively large flexibilities are observed along several eigenvectors in the segments: Arg(24)-Ser(28), Pro(38)-Arg(47), and Glu(115)-Gly(117). These motions are correlated to the C- and N-terminal motions of the substrate. Relatively small fluctuations are observed in the region of the consensus active site motif (H/V)CX(5)R(S/T) and in the region of the WPD loop, which contains the general acid for catalysis. Analysis of the individual enzyme-substrate interaction energies revealed that mainly electrostatic forces contribute to binding. Indeed, calculation of the electrostatic field of the enzyme reveals that only the field surrounding the binding pocket is positive, while the remaining protein surface is characterized by a predominantly negative electrostatic field. This positive electrostatic field attracts negatively charged substrates and could explain the experimentally observed preference of PTP1B for negatively charged substrates like the DADEpYL peptide.  相似文献   

2.
Prasad S  Mitra S 《Biochemistry》2002,41(49):14499-14508
The role of protein structural flexibility and substrate dynamics in catalysis by cytochrome P450 enzymes is an area of current interest. We have addressed these in cytochrome P450(cam) (P450(cam)) and its Y96A mutant with camphor and its related compounds using fluorescence spectroscopy. Previously [Prasad et al. (2000) FEBS Lett. 477, 157-160], we provided experimental support to dynamic fluctuations in P450(cam), and substrate access into the active site region via the channel next to the flexible F-G helix-loop-helix segment. In the investigation described here, we show that the dynamic fluctuations in the enzyme are substrate dependent as reflected by tryptophan fluorescence quenching experiments. The orientation of tryptophan relative to heme (kappa(2)) for W42 obtained from time-resolved tryptophan fluorescence measurements show variation with type of substrate bound to P450(cam) suggesting regions distant from heme-binding site are affected by physicochemical and steric characteristics/protein-substrate interactions of P450(cam) active site. We monitored substrate dynamics in the active site region of P450(cam) by time-resolved substrate anisotropy measurements. The anisotropy decay of substrates bound to P450(cam) indicate that mobility of substrates is modulated by physicochemical and steric characteristics/protein-substrate interactions of local active site structure, and provides an understanding of factors controlling observed hydroxylated products for substrate bound P450(cam) complexes. The present study shows that P450(cam) local and peripheral structural flexibility and heterogeneity along with substrate mobility play an important role in regulating substrate binding orientation during catalysis and accommodating diverse range of substrates within P450(cam) heme pocket.  相似文献   

3.
The effector-regulated allosteric mechanism of yeast chorismate mutase (YCM) was studied by normal mode analysis and targeted molecular dynamics. The normal mode analysis shows that the conformational change between YCM in the R state and in the T state can be represented by a relatively small number of low-frequency modes. This suggests that the transition is coded in the structure and is likely to have a low energetic barrier. Quantitative comparisons (i.e. frequencies) between the low-frequency modes of YCM with and without effectors (modeled structures) reveal that the binding of Trp increases the global flexibility, whereas Tyr decreases global flexibility. The targeted molecular dynamics simulation of substrate analog release from the YCM active site suggests that a series of residues are critical for orienting and "recruiting" the substrate. The simulation led to the switching of a series of substrate-release-coupled salt-bridge partners in the ligand-binding domain; similar changes occur in the transition between YCM R-state and T-state crystal structures. Thus, the normal mode analysis and targeted molecular dynamics results provide evidence that the effectors regulate YCM activity by influencing the global flexibility. The change in flexibility is coupled to the binding of substrate to the T state and release of the product from the R state, respectively.  相似文献   

4.
To gain insight into the mobility of the occupied ligand-binding pocket of the Rhizomucor miehei lipase we have conducted a rigorous molecular dynamics analysis. The covalently attached inhibitor, ethylhexylphosphonate, was employed as a mimic of the putative tetrahedral intermediate in the esterolytic reaction. Our results show that in this lipase, ligand recognition is influenced by the flexibility of the binding pocket, a feature that is common to many other enzymes. Several regions around the active site were found to move significantly to adapt to the inhibitor. These motions are correlated to the flexibility of the inhibitor. In particular, the hexyl chain of the inhibitor shows considerable mobility, and adjacent residues in the binding cleft accommodate to this flexibility. Pronounced fluctuations in the binding pocket induced by the flexibility of the inhibitor are observed in the hinge region F79-S82, the active site loop region W88-V95 and the protein regions P209-F215/H257-Y260. The flexibility in the regions F79-S82 and H257-Y260, where the shorter ethyl chain is located, indicates that additional space in this binding cleft region is available for accommodating a larger moiety. Fluctuations in the region W88-V95 and P209-F215 are due to the relatively short flexible hexyl carbon chain. This part of the binding pocket could be stiffened by the presence of a longer carbon chain. Though the inhibitor is covalently attached through the phosphonate moiety, interaction of the remainder of the molecule and the enzyme are determined by hydrophobic interactions, where the Van der Waals energies are approximately 25% lower than the electrostatic contributions.  相似文献   

5.
The relation between conformational dynamics and chemistry in enzyme catalysis recently has received increasing attention. While, in the past, the mechanochemical coupling was mainly attributed to molecular motors, nowadays, it seems that this linkage is far more general. Single-molecule fluorescence methods are perfectly suited to directly evidence conformational flexibility and dynamics. By labeling the enzyme SlyD, a member of peptidyl-prolyl cis-trans isomerases of the FK506 binding protein type with an inserted chaperone domain, with donor and acceptor fluorophores for single-molecule fluorescence resonance energy transfer, we directly monitor conformational flexibility and conformational dynamics between the chaperone domain and the FK506 binding protein domain. We find a broad distribution of distances between the labels with two main maxima, which we attribute to an open conformation and to a closed conformation of the enzyme. Correlation analysis demonstrates that the conformations exchange on a rate in the 100 Hz range. With the aid from Monte Carlo simulations, we show that there must be conformational flexibility beyond the two main conformational states. Interestingly, neither the conformational distribution nor the dynamics is significantly altered upon binding of substrates or other known binding partners. Based on these experimental findings, we propose a model where the conformational dynamics is used to search the conformation enabling the chemical step, which also explains the remarkable substrate promiscuity connected with a high efficiency of this class of peptidyl-prolyl cis-trans isomerases.  相似文献   

6.
Modeling protein flexibility constitutes a major challenge in accurate prediction of protein-ligand and protein-protein interactions in docking simulations. The lack of a reliable method for predicting the conformational changes relevant to substrate binding prevents the productive application of computational docking to proteins that undergo large structural rearrangements. Here, we examine how coarse-grained normal mode analysis has been advantageously applied to modeling protein flexibility associated with ligand binding. First, we highlight recent studies that have shown that there is a close agreement between the large-scale collective motions of proteins predicted by elastic network models and the structural changes experimentally observed upon ligand binding. Then, we discuss studies that have exploited the predicted soft modes in docking simulations. Two general strategies are noted: pregeneration of conformational ensembles that are then utilized as input for standard fixed-backbone docking and protein structure deformation along normal modes concurrent to docking. These studies show that the structural changes apparently "induced" upon ligand binding occur selectively along the soft modes accessible to the protein prior to ligand binding. They further suggest that proteins offer suitable means of accommodating/facilitating the recognition and binding of their ligand, presumably acquired by evolutionary selection of the suitable three-dimensional structure.  相似文献   

7.
Correlated enzymatic conformational fluctuations are shown to contribute to the rate of enhancement achieved during catalysis. Cytidine deaminase serves as a model system. Crystallographic temperature factor data for this enzyme complexed with substrate analog, transition-state analog, and product are available, thereby establishing a measure of atomic scale conformational fluctuations along the (approximate) reaction coordinate. First, a neural network-based algorithm is used to visualize the decreased conformational fluctuations at the transition state. Second, a dynamic diffusion equation along the reaction coordinate is solved and shows that the flux velocity through the associated enzymatic conformation space is greatest at the transition state. These results suggest (1) that there are both dynamic and energetic restrictions to conformational fluctuations at the transition state, (2) that enzymatic catalysis occurs on a fluctuating potential energy surface, and (3) a form for the potential energy. The Michaelis-Menten equations are modified to describe catalysis on this fluctuating potential energy profile, leading to enhanced catalytic rates when fluctuations along the reaction coordinate are appropriately correlated. This represents a dynamic tuning of the enzyme for maximally effective transformation of the ES complex into EP.  相似文献   

8.
Modeling of protein binding site flexibility in molecular docking is still a challenging problem due to the large conformational space that needs sampling. Here, we propose a flexible receptor docking scheme: A dihedral restrained replica exchange molecular dynamics (REMD), where we incorporate the normal modes obtained by the Elastic Network Model (ENM) as dihedral restraints to speed up the search towards correct binding site conformations. To our knowledge, this is the first approach that uses ENM modes to bias REMD simulations towards binding induced fluctuations in docking studies. In our docking scheme, we first obtain the deformed structures of the unbound protein as initial conformations by moving along the binding fluctuation mode, and perform REMD using the ENM modes as dihedral restraints. Then, we generate an ensemble of multiple receptor conformations (MRCs) by clustering the lowest replica trajectory. Using ROSETTA LIGAND , we dock ligands to the clustered conformations to predict the binding pose and affinity. We apply this method to postsynaptic density‐95/Dlg/ZO‐1 (PDZ) domains; whose dynamics govern their binding specificity. Our approach produces the lowest energy bound complexes with an average ligand root mean square deviation of 0.36 Å. We further test our method on (i) homologs and (ii) mutant structures of PDZ where mutations alter the binding selectivity. In both cases, our approach succeeds to predict the correct pose and the affinity of binding peptides. Overall, with this approach, we generate an ensemble of MRCs that leads to predict the binding poses and specificities of a protein complex accurately.  相似文献   

9.
Hyaluronate lyase enzymes degrade hyaluronan, the main polysaccharide component of the host connective tissues, predominantly into unsaturated disaccharide units, thereby destroying the normal connective tissue structure and exposing the tissue cells to various endo- and exogenous factors, including bacterial toxins. The crystal structures of Streptococcus pneumoniae hyaluronate lyase with tetra- and hexasaccharide hyaluronan substrates bound in the active site were determined at 1.52- and 2.0-A resolution, respectively. Hexasaccharide is the longest substrate segment that binds entirely within the active site of these enzymes. The enzyme residues responsible for substrate binding, positioning, catalysis, and product release were thereby identified and their specific roles characterized. The involvement of three residues in catalysis, Asn(349), His(399), and Tyr(408), is confirmed, and the details of proton acceptance and donation within the catalytic machinery are described. The mechanism of processivity of the enzyme is analyzed. The flexibility (allosteric) behavior of the enzyme may be understood in terms of the results of flexibility analysis of this protein, which identified two modes of motion that are also proposed to be involved in the hyaluronan degradation process. The first motion describes an opening and closing of the catalytic cleft located between the alpha- and beta-domains. The second motion demonstrates the mobility of a binding cleft, which may facilitate the binding of the negatively charged hyaluronan to the enzyme.  相似文献   

10.
In general, biological macromolecules require significant dynamical freedom to carry out their different functions, including signal transduction, metabolism, catalysis and gene regulation. Effectors (ligands, DNA and external milieu, etc) are considered to function in a purely dynamical manner by selectively stabilizing a specific dynamical state, thereby regulating biological function. In particular, proteins in presence of these effectors can exist in several dynamical states with distinct binding or enzymatic activity. Here, we have reviewed the efficacy of ultrafast fluorescence spectroscopy to monitor the dynamical flexibility of various proteins in presence of different effectors leading to their biological activity. Recent studies demonstrate the potency of a combined approach involving picosecond-resolved Förster resonance energy transfer, polarisation-gated fluorescence and time-dependent stokes shift for the exploration of ultrafast dynamics in biomolecular recognition of various protein molecules. The allosteric protein–protein recognition following differential protein–DNA interaction is shown to be a consequence of some ultrafast segmental motions at the C-terminal of Gal repressor protein dimer with DNA operator sequences OE and OI. Differential ultrafast dynamics at the C-terminal of λ-repressor protein with two different operator DNA sequences for the protein–protein interaction with different strengths is also reviewed. We have also systemically briefed the study on the role of ultrafast dynamics of water molecules on the functionality of enzyme proteins α-chymotrypsin and deoxyribonuclease I. The studies on the essential ultrafast dynamics at the active site of the enzyme α-chymotrypsin by using an anthraniloyl fluorescent extrinsic probe covalently attached to the serine-195 residue for the enzymatic activity at homeothermic condition has also been reviewed. Finally, we have highlighted the evidence that a photoinduced dynamical event dictates the molecular recognition of a photochromic ligand, dihydroindolizine with the serine protease α-chymotrypsin and with a liposome (L-α-phosphatidylcholine).  相似文献   

11.
Cuticle-degrading serine protease Ver112, which derived from a nematophagous fungus Lecanicillium psalliotae, has been exhibited to have high cuticle-degrading and nematicidal activities. We have performed molecular dynamics (MD) simulation based on the crystal structure of Ver112 to investigate its dynamic properties and large-scale concerted motions. The results indicate that the structural core of Ver112 shows a small fluctuation amplitude, whereas the substrate binding sites, and the regions close to and opposite the substrate binding sites experience significant conformational fluctuations. The large concerted motions obtained from essential dynamics (ED) analysis of MD trajectory can lead to open or close of the substrate binding sites, which are proposed to be linked to the functional properties of Ver112, such as substrate binding, orientation, catalytic, and release. The significant motion in the loop regions that is located opposite the binding sites are considered to play an important role in modulating the dynamics of the substrate binding sites. Furthermore, the bottom of free energy landscape (FEL) of Ver112 are rugged, which is mainly caused by the fluctuations of substrate binding regions and loops located opposite the binding site. In addition, the mechanism underlying the high flexibility and catalytic activity of Ver112 was also discussed. Our simulation study complements the biochemical and structural studies, and provides insight into the dynamics-function relationship of cuticle-degrading serine protease Ver112.  相似文献   

12.
It is well known that enzyme flexibility is critical for function. This is due to the observation that the rates of intramolecular enzyme motions are often matched to the rates of intermolecular events such as substrate binding and product release. Beyond this role in progression through the reaction cycle, it has been suggested that enzyme dynamics may also promote the chemical step itself. Dihydrofolate reductase (DHFR) is a model enzyme for which dynamics have been proposed to aid in both substrate flux and catalysis. The G121V mutant of DHFR is a well studied form that exhibits a severe reduction in the rate of hydride transfer yet there remains dispute as to whether this defect is caused by altered structure, dynamics, or both. Here we address this by presenting an NMR study of the G121V mutant bound to reduced cofactor and the transition state inhibitor, methotrexate. NMR chemical shift markers demonstrate that this form predominantly adopts the closed conformation thereby allowing us to provide the first glimpse into the dynamics of a catalytically relevant complex. Based on (15)N and (2)H NMR spin relaxation, we find that the mutant complex has modest changes in ps-ns flexibility with most affected residues residing in the distal adenosine binding domain rather than the active site. Thus, aberrant ps-ns dynamics are likely not the main contributor to the decreased catalytic rate. The most dramatic effect of the mutation involves changes in μs-ms dynamics of the F-G and Met20 loops. Whereas loop motion is quenched in the wild type transition state inhibitor complex, the F-G and Met20 loops undergo excursions from the closed conformation in the mutant complex. These excursions serve to decrease the population of conformers having the correct active site configuration, thus providing an explanation for the G121V catalytic defect.  相似文献   

13.
The protein stabilizing effects of the small molecule osmolyte, trimethylamine N-oxide, against chemical denaturant was investigated by NMR spin-relaxation measurements and model-free analysis. In the presence of 0.7 M guanidine hydrochloride increased picosecond-nanosecond dynamics are observed in the protein ribonuclease A. These increased fluctuations occur throughout the protein, but the most significant increases in flexibility occur at positions believed to be the first to unfold. Addition of 0.35 M trimethylamine N-oxide to this destabilized form of ribonuclease results in significant rigidification of the protein backbone as assessed by (1)H-(15)N order parameters. Statistically, these order parameters are the same as those measured in native ribonuclease indicating that TMAO reduces the amplitude of backbone fluctuations in a destabilized protein. These data suggest that TMAO restricts the bond vector motions on the protein energy landscape to resemble those motions that occur in the native protein and points to a relation between stability and dynamics in this enzyme.  相似文献   

14.
Cytochrome P450 BM3 (CYP102A1) mutant M11 is able to metabolize a wide range of drugs and drug‐like compounds. Among these, M11 was recently found to be able to catalyze formation of human metabolites of mefenamic acid and other nonsteroidal anti‐inflammatory drugs (NSAIDs). Interestingly, single active‐site mutations such as V87I were reported to invert regioselectivity in NSAID hydroxylation. In this work, we combine crystallography and molecular simulation to study the effect of single mutations on binding and regioselective metabolism of mefenamic acid by M11 mutants. The heme domain of the protein mutant M11 was expressed, purified, and crystallized, and its X‐ray structure was used as template for modeling. A multistep approach was used that combines molecular docking, molecular dynamics (MD) simulation, and binding free‐energy calculations to address protein flexibility. In this way, preferred binding modes that are consistent with oxidation at the experimentally observed sites of metabolism (SOMs) were identified. Whereas docking could not be used to retrospectively predict experimental trends in regioselectivity, we were able to rank binding modes in line with the preferred SOMs of mefenamic acid by M11 and its mutants by including protein flexibility and dynamics in free‐energy computation. In addition, we could obtain structural insights into the change in regioselectivity of mefenamic acid hydroxylation due to single active‐site mutations. Our findings confirm that use of MD and binding free‐energy calculation is useful for studying biocatalysis in those cases in which enzyme binding is a critical event in determining the selective metabolism of a substrate. Proteins 2016; 84:383–396. © 2016 Wiley Periodicals, Inc.  相似文献   

15.
We characterize the conformational dynamics and substrate selectivity of the signal recognition particle (SRP) using a thermodynamic free energy cycle approach and microsecond timescale molecular dynamics simulations. The SRP is a central component of the co-translational protein targeting machinery that binds to the N-terminal signal peptide (SP) of nascent proteins. We determined the shift in relative conformational stability of the SRP upon substrate binding to quantify allosteric coupling between SRP domains. In particular, for dipeptidyl aminopeptidase, an SP that is recognized by the SRP for co-translational targeting, it is found that substrate binding induces substantial changes in the SRP toward configurations associated with targeting of the nascent protein, and it is found that the changes are modestly enhanced by a mutation that increases the hydrophobicity of the SP. However, for alkaline phosphatase, an SP that is recognized for post-translational targeting, substrate binding induces the reverse change in the SRP conformational distribution away from targeting configurations. Microsecond timescale trajectories reveal the intrinsic flexibility of the SRP conformational landscape and provide insight into recent single molecule studies by illustrating that 10-nm lengthscale changes between FRET pairs occur via the rigid-body movement of SRP domains connected by the flexible linker region. In combination, these results provide direct evidence for the hypothesis that substrate-controlled conformational switching in the SRP provides a mechanism for discriminating between different SPs and for connecting substrate binding to downstream steps in the protein targeting pathway.  相似文献   

16.
Proteins are dynamic entities in cellular solution with functions governed essentially by their dynamic personalities. We review several dynamics studies on serine protease proteinase K and HIV-1 gp120 envelope glycoprotein to demonstrate the importance of investigating the dynamic behaviors and molecular motions for a complete understanding of their structure–function relationships. Using computer simulations and essential dynamic (ED) analysis approaches, the dynamics data obtained revealed that: (i) proteinase K has highly flexible substrate-binding site, thus supporting the induced-fit or conformational selection mechanism of substrate binding; (ii) Ca2+ removal from proteinase K increases the global conformational flexibility, decreases the local flexibility of substrate-binding region, and does not influence the thermal motion of catalytic triad, thus explaining the experimentally determined decreased thermal stability, reduced substrate affinity, and almost unchanged catalytic activity upon Ca2+ removal; (iii) substrate binding affects the large concerted motions of proteinase K, and the resulting dynamic pocket can be connected to substrate binding, orientation, and product release; (iv) amino acid mutations 375 S/W and 423 I/P of HIV-1 gp120 have distinct effects on molecular motions of gp120, facilitating 375 S/W mutant to assume the CD4-bound conformation, while 423 I/P mutant to prefer for CD4-unliganded state. The mechanisms underlying protein dynamics and protein–ligand binding, including the concept of the free energy landscape (FEL) of the protein–solvent system, how the ruggedness and variability of FEL determine protein’s dynamics, and how the three ligand-binding models, the lock-and-key, induced-fit, and conformational selection are rationalized based on the FEL theory are discussed in depth.  相似文献   

17.
para-Hydroxybenzoate hydroxylase is a flavoprotein monooxygenase that catalyzes a reaction in two parts: reduction of the enzyme cofactor, FAD, by NADPH in response to binding p-hydroxybenzoate to the enzyme, then oxidation of reduced FAD by oxygen to form a hydroperoxide, which oxygenates p-hydroxybenzoate to form 3,4-dihydroxybenzoate. These diverse reactions all occur within a single polypeptide and are achieved through conformational rearrangements of the isoalloxazine ring and protein residues within the protein structure. In this review, we examine the complex dynamic behavior of the protein that enables regulated fast and specific catalysis to occur. Original research papers (principally from the past 15 years) provide the information that is used to develop a comprehensive overview of the catalytic process. Much of this information has come from detailed analysis of many specific mutants of the enzyme using rapid reaction technology, biophysical measurements, and high-resolution structures obtained by X-ray crystallography. We describe how three conformations of the enzyme provide a foundation for the catalytic cycle. One conformation has a closed active site for the conduct of the oxygen reactions, which must occur in the absence of solvent. The second conformation has a partly open active site for exchange of substrate and product, and the third conformation has a closed protein structure with the isoalloxazine ring rotated out to the surface for reaction with NADPH, which binds in a surface cleft. A fundamental feature of the enzyme is a H-bond network that connects the phenolic group of the substrate in the buried active site to the surface of the protein. This network serves to protonate and deprotonate the substrate and product in the active site to promote catalysis and regulate the coordination of conformational states for efficient catalysis.  相似文献   

18.
Lipoxygenases form a heterogeneous family of lipid peroxidizing enzymes, which have been implicated in the synthesis of inflammatory mediators, in cell development and in the pathogenesis of various diseases with major health and political relevance (atherosclerosis, osteoporosis). The crystal structures of various lipoxygenase-isoforms have been reported, and X-ray coordinates for enzyme-ligand complexes are also available. Although the 3D-structures of plant and animal lipoxygenase-isoforms are very similar, recent small-angle X-ray scattering data suggested a higher degree of motional flexibility of mammalian isozymes in aqueous solutions. To explore the molecular basis for these differences we performed dynamic fluorescence measurements that allowed us to study temperature-induced conformational changes arising from three-dimensional fluctuations of the protein matrix. For this purpose, we first investigated the impact of elevated temperature on activity, secondary structure, tertiary structure dynamics and conformational alterations. Applying fluorescence resonance energy transfer we also tested the membrane binding properties of the two lipoxygenase-isoforms, and compared their binding parameters. Taken together, our results indicate that the rabbit 12/15-lipoxygenase is more susceptible to temperature-induced structural alterations than the soybean enzyme. Moreover, the rabbit enzyme exhibits a higher degree of conformational flexibility of the entire protein molecule (global flexibility) and offers the possibility of augmented substrate movement at the catalytic center (local flexibility).  相似文献   

19.
Protein-coated agarose surfaces for attachment of cells   总被引:1,自引:0,他引:1  
Plastic dishes were coated with an agarose layer. The layer was modified by covalently binding proteins to it, using the CNBr-method. Cells were seeded on the dishes and the number of attached cells was evaluated. The specificity of the attachment was demonstrated by showing that cells, carrying specific membrane-bound immunoglobulins, attached only to the corresponding anti-immunoglobulins. This indicated that the method could be used for cell sorting. The attachment of cells to proteins was influenced by the amount of bound protein, incubation time, temperature and the degree of trypsinization. Most attached cells were viable for several days and when dying they detached. Detailed morphological and cytochemical analyses of the dynamics of attachment and cytoplasmic spreading on the chemically well-defined surfaces were possible using the new method.  相似文献   

20.
We analyze the encounter of a peptide substrate with the native HIV-1 protease, the mechanism of substrate incorporation in the binding cleft, and the dissociation of products after substrate hydrolysis. To account for the substrate, we extend a coarse-grained model force field, which we previously developed to study the flap opening dynamics of HIV-1 protease on a microsecond timescale. Molecular and Langevin dynamics simulations show that the flaps need to open for the peptide to bind and that the protease interaction with the substrate influences the flap opening frequency and interval. On the other hand, release of the products does not require flap opening because they can slide out from the binding cleft to the sides of the enzyme. Our data show that in the protease-substrate complex the highest fluctuations correspond to the 17- and 39-turns and the substrate motion is anticorrelated with the 39-turn. Moreover, the active site residues and the flap tips move in phase with the peptide. We suggest some mechanistic principles for how the flexibility of the protein may be involved in ligand binding and release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号