首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stephens DJ 《EMBO reports》2003,4(2):210-217
Transport between the endoplasmic reticulum (ER) and Golgi is mediated by the sequential action of the COPII and COPI coat complexes. COPII subunits are recruited to the ER membrane where they mediate the selection of cargo for transport to the Golgi, and also membrane deformation and vesicle formation. New ER exit sites can be generated by lateral growth and medial fission (in Pythium sp.) or by de novo formation (in Pichia pastoris) but it is not known how mammalian ER exit sites form. Here, time-lapse imaging of COPII-coated structures in live mammalian cells reveals that the number of ER export sites increases greatly during interphase by de novo formation. These results show the fusion of pre-existing ER export sites and the fission of larger structures. These three mechanisms of de novo formation, fusion and fission probably cooperate to regulate the size of these sites in mammalian cells.  相似文献   

2.
The selective export of proteins and lipids from the endoplasmic reticulum (ER) is mediated by the coat protein complex II (COPII) that assembles onto the ER membrane. In higher eukaryotes, COPII proteins assemble at discrete sites on the membrane known as ER exit sites (ERES). Here, we identify Sec16 as the protein that defines ERES in mammalian cells. Sec16 localizes to ERES independent of Sec23/24 and Sec13/31. Overexpression, and to a lesser extent, small interfering RNA depletion of Sec16, both inhibit ER-to-Golgi transport suggesting that Sec16 is required in stoichiometric amounts. Sar1 activity is required to maintain the localization of Sec16 at discrete locations on the ER membrane, probably through preventing its dissociation. Our data suggest that Sar1-GTP-dependent assembly of Sec16 on the ER membrane forms an organized scaffold defining an ERES.  相似文献   

3.
Golgi inheritance during mammalian cell division occurs through the disassembly, partitioning, and reassembly of Golgi membranes. The mechanisms responsible for these processes are poorly understood. To address these mechanisms, we have examined the identity and dynamics of Golgi proteins within mitotic membranes using live cell imaging and electron microscopy techniques. Mitotic Golgi fragments, seen in prometaphase and telophase, were found to localize adjacent to endoplasmic reticulum (ER) export domains, and resident Golgi transmembrane proteins cycled rapidly into and out of these fragments. Golgi proteins within mitotic Golgi haze-seen during metaphase-were found to redistribute with ER markers into fragments when the ER was fragmented by ionomycin treatment. The temperature-sensitive misfolding mutant ts045VSVG protein, when localized to the Golgi at the start of mitosis, became trapped in the ER at the end of mitosis in cells shifted to 40 degrees C. Finally, reporters for Arf1 and Sar1 activity revealed that Arf1 and Sar1 undergo sequential inactivation during mitotic Golgi breakdown and sequential reactivation upon Golgi reassembly at the end of mitosis. Together, these findings support a model of mitotic Golgi inheritance that involves inhibition and subsequent reactivation of cellular activities controlling the cycling of Golgi components into and out of the ER.  相似文献   

4.
Protein export from the endoplasmic reticulum (ER) is mediated by the accumulation of COPII proteins such as Sar1, Sec23/24 and Sec13/31 at specialized ER export sites (ERES). Although the distribution of COPII components in mammalian and yeast systems is established, a unified model of ERES dynamics has yet to be presented in plants. To investigate this, we have followed the dynamics of fluorescent fusions to inner and outer components of the coat, AtSec24 and AtSec13, in three different plant model systems: tobacco and Arabidopsis leaf epidermis, as well as tobacco BY-2 suspension cells. In leaves, AtSec24 accumulated at Golgi-associated ERES, whereas AtSec13 showed higher levels of cytosolic staining compared with AtSec24. However, in BY-2 cells, both AtSec13 and AtSec24 labelled Golgi-associated ERES, along with AtSec24. To correlate the distribution of the COPII coat with the dynamics of organelle movement, quantitative live-cell imaging analyses demonstrated that AtSec24 and AtSec13 maintained a constant association with Golgi-associated ERES, irrespective of their velocity. However, recruitment of AtSec24 and AtSec13 to ERES, as well as the number of ERES marked by these proteins, was influenced by export of membrane cargo proteins from the ER to the Golgi. Additionally, the increased availability of AtSec24 affected the distribution of AtSec13, inducing recruitment of this outer COPII coat component to ERES. These results provide a model that, in plants, protein export from the ER occurs via sequential recruitment of inner and outer COPII components to form transport intermediates at mobile, Golgi-associated ERES.  相似文献   

5.
Cargo selection and export from the endoplasmic reticulum is mediated by the COPII coat machinery that includes the small GTPase Sar1 and the Sec23/24 and Sec13/31 complexes. We have analyzed the sequential events regulated by purified Sar1 and COPII coat complexes during synchronized export of cargo from the ER in vitro. We find that activation of Sar1 alone, in the absence of other cytosolic components, leads to the formation of ER-derived tubular domains that resemble ER transitional elements that initiate cargo selection. These Sar1-generated tubular domains were shown to be transient, functional intermediates in ER to Golgi transport in vitro. By following cargo export in live cells, we show that ER export in vivo is also characterized by the formation of dynamic tubular structures. Our results demonstrate an unanticipated and novel role for Sar1 in linking cargo selection with ER morphogenesis through the generation of transitional tubular ER export sites.  相似文献   

6.
We cloned a novel prolyl 4-hydroxylase (PH; EC 1.14.11.2) homolog cDNA from tobacco (Nicotiana tabacum) BY-2 cells based on expression sequence tag information. Like other PHs, this tobacco PH polypeptide has two conserved histidine residues, and it comprises 286 amino acids with a calculated molecular mass of 32 kDa. Interestingly, this protein and homologs in Arabidopsis and rice have predicted transmembrane sequences in their N-terminal regions. This PH homolog was expressed in BY-2 cells as a His-tagged protein, and the expressed protein showed PH activity. Incubation of membranes with high salt, urea, and protease with or without detergents indicated that this protein is an integral membrane protein with a type II configuration. Its membrane-anchored nature is specific for plants because no integral membrane PH has been found in animals. A membrane fractionation study and immunocytochemical studies indicate that this protein localizes in both the endoplasmic reticulum (ER) and Golgi apparatus. Analysis of this protein fused to green fluorescent protein indicated that basic amino acids in the cytoplasmic, N-terminal region of the PH play a role in its export from the ER.  相似文献   

7.
The biogenesis of endoplasmic reticulum (ER) exit sites (ERES) involves the formation of phosphatidylinositol-4 phosphate (PI4) and Sec16, but it is entirely unknown how ERES adapt to variations in cargo load. Here, we studied acute and chronic adaptive responses of ERES to an increase in cargo load for ER export. The acute response (within minutes) to increased cargo load stimulated ERES fusion events, leading to larger but less ERES. Silencing either PI4-kinase IIIα (PI4K-IIIα) or Sec16 inhibited the acute response. Overexpression of secretory cargo for 24 h induced the unfolded protein response (UPR), upregulated COPII, and the cells formed more ERES. This chronic response was insensitive to silencing PI4K-IIIα, but was abrogated by silencing Sec16. The UPR was required as the chronic response was absent in cells lacking inositol-requiring protein 1. Mathematical model simulations further support the notion that increasing ERES number together with COPII levels is an efficient way to enhance the secretory flux. These results indicate that chronic and acute increases in cargo load are handled differentially by ERES and are regulated by different factors.  相似文献   

8.
The current model for cell-to-cell movement of plant viruses holds that transport requires virus-encoded movement proteins that intimately associate with endoplasmic reticulum membranes. We have examined the early stages of the integration into endoplasmic reticulum membranes of a double-spanning viral movement protein using photocross-linking. We have discovered that this process is cotranslational and proceeds in a signal recognition particle-dependent manner. In addition, nascent chain photocross-linking to Sec61alpha and translocating chain-associated membrane protein reveal that viral membrane protein insertion takes place via the translocon, as with most eukaryotic membrane proteins, but that the two transmembrane segments of the viral protein leave the translocon and enter the lipid bilayer together.  相似文献   

9.
Suzuki T  Lennarz WJ 《Glycobiology》2002,12(12):803-811
When glycoproteins formed in the endoplasmic reticulum (ER) are misfolded, they are generally translocated into the cytosol for ubiquitination and are subsequently degraded by the proteasome. This system, the so-called ER-associated glycoprotein degradation, is important for eukaryotes to maintain the quality of glycoproteins generated in the ER. It has been established in yeast that several distinct proteins are involved in this translocation and degradation processes. Small glycopeptides formed in the ER are exported to the cytosol in a similar manner. This glycopeptide export system is conserved from yeast to mammalian cells, suggesting its basic biological significance for eukaryotic cells. These two export systems (for misfolded glycoproteins and glycopeptides) share some properties, such as a requirement for ATP and involvement of Sec61p, a central membrane protein presumably forming a dislocon channel for export of proteins. However, the machinery of glycopeptide export is poorly understood. In this study, various mutants known to have an effect on export/degradation of misfolded glycoproteins were examined for glycopeptide export activity with a newly established assay method. Surprisingly, most of the mutants were found not to exhibit a defect in glycopeptide export. The only gene that was found to be required on efficient export of both types of substrates was PMR1, the gene encoding the medial-Golgi Ca(2+)/Mn(2+)-ion pump. These results provide evidence that although the systems involved in export of misfolded glycoproteins and glycopeptides share some properties, they have exhibited distinct differences.  相似文献   

10.
ABSTRACT

Macroautophagy/autophagy can enable cancer cells to withstand cellular stress and maintain bioenergetic homeostasis by sequestering cellular components into newly formed double-membrane vesicles destined for lysosomal degradation, potentially affecting the efficacy of anti-cancer treatments. Using 13C-labeled choline and 13C-magnetic resonance spectroscopy and western blotting, we show increased de novo choline phospholipid (ChoPL) production and activation of PCYT1A (phosphate cytidylyltransferase 1, choline, alpha), the rate-limiting enzyme of phosphatidylcholine (PtdCho) synthesis, during autophagy. We also discovered that the loss of PCYT1A activity results in compromised autophagosome formation and maintenance in autophagic cells. Direct tracing of ChoPLs with fluorescence and immunogold labeling imaging revealed the incorporation of newly synthesized ChoPLs into autophagosomal membranes, endoplasmic reticulum (ER) and mitochondria during anticancer drug-induced autophagy. Significant increase in the colocalization of fluorescence signals from the newly synthesized ChoPLs and mCherry-MAP1LC3/LC3 (microtubule-associated protein 1 light chain 3) was also found on autophagosomes accumulating in cells treated with autophagy-modulating compounds. Interestingly, cells undergoing active autophagy had an altered ChoPL profile, with longer and more unsaturated fatty acid/alcohol chains detected. Our data suggest that de novo synthesis may be required to increase autophagosomal ChoPL content and alter its composition, together with replacing phospholipids consumed from other organelles during autophagosome formation and turnover. This addiction to de novo ChoPL synthesis and the critical role of PCYT1A may lead to development of agents targeting autophagy-induced drug resistance. In addition, fluorescence imaging of choline phospholipids could provide a useful way to visualize autophagosomes in cells and tissues.  相似文献   

11.
12.
The de novo formation of organochlorines was observed in a municipalsewage treatment plant. Due to this formation, the amount of organically boundhalogens (AOX) increased 15-fold inside the sewage treatment plant. Per day,more than 6 kg of organically-bound chlorine were produced. Thisformation is not based on a metabolism of present organochlorines, it is a denovo formation out of inorganic chloride and organic substrates. The AOXtriggerconcentration in sewage sludge in Germany is 500 mgkg–1 and was sometimes exceeded by a factor of 10. Noknown anthropogenic organohalogens were found which could explain the elevatedAOX concentrations. Instead many chlorinated compounds could be identifiedwhichwere not known to be of anthropogenic origin. The compound with the highestconcentration was the 3,4-dichlorophenylacetic acid (3,4-CPAc). In one case,more than 1 g kg–1 of this compound was detected.A slaughterhouse that emits phenylacetic acid is probably the origin of thatformation. In model experiments phenylacetic acid was chlorinated with HOCl butchlorinated phenylacetic acids other than 3,4-CPAc were found. Therefore it canbe excluded that the chlorination in the sewage treatment plant takes place byan abiotic reaction with hypochlorite that might have been introduced there. Weassume that the occurring microorganisms are responsible for the de novoformation in the sewage treatment plant. The obtained knowledge could also beuseful to understand natural chlorination processes.  相似文献   

13.
The organization of endoplasmic reticulum export complexes   总被引:12,自引:3,他引:12       下载免费PDF全文
Export of cargo from the ER occurs through the formation of 60-70nm COPII-coated vesicular carriers. We have applied serial-thin sectioning and stereology to quantitatively characterize the three-dimensional organization of ER export sites in vivo and in vitro. We find that ER buds in vivo are nonrandomly distributed, being concentrated in regional foci we refer to as export complexes. The basic organization of an export complex can be divided into an active COPII-containing budding zone on a single ER cisterna, which is adjacent to budding zones found on distantly connected ER cisternae. These budding foci surround and face a central cluster of morphologically independent vesicular-tubular elements that contain COPI coats involved in retrograde transport. Vesicles within these export complexes contain concentrated cargo molecules. The structure of vesicular-tubular clusters in export complexes is particularly striking in replicas generated using a quick-freeze, deep-etch approach to visualize for the first time their three-dimensional organization and cargo composition. We conclude that budding from the ER through recruitment of COPII is confined to highly specialized export complexes that topologically restrict anterograde transport to regional foci to facilitate efficient coupling to retrograde recycling by COPI.  相似文献   

14.
The functionality of the secretory pathway relies on the efficient transfer of cargo molecules from their site of synthesis in the endoplasmic reticulum (ER) to successive compartments within the pathway. Although transport mechanisms of secretory proteins have been studied in detail in various non-plant systems, it is only recently that our knowledge of secretory routes in plants has expanded dramatically. This review focuses on exciting new findings concerning the exit mechanisms of cargo proteins from the plant ER and the role of ER export sites in this process.  相似文献   

15.
The vesicle-associated membrane proteins (Vamp(s)) function as soluble N-ethylmaleimide-sensitive factor attachment receptor proteins in the intracellular trafficking of vesicles. The membrane attachment of Vamps requires a carboxyl-terminal hydrophobic sequence termed an insertion sequence. Unlike other insertion sequence-containing proteins, targeting of the highly homologous Vamp1 and Vamp2 to the endoplasmic reticulum requires ATP and a membrane-bound receptor. To determine if this mechanism of targeting to the endoplasmic reticulum extends to other Vamps, we compared the membrane binding of Vamp1 and Vamp2 with the distantly related Vamp8. Similar to the other Vamps, Vamp8 requires both ATP and a membrane component to target to the endoplasmic reticulum. Furthermore, binding curves for the three Vamps overlap, suggesting a common receptor-mediated process. We identified a minimal endoplasmic reticulum targeting domain that is both necessary and sufficient to confer receptor-mediated, ATP-dependent, binding of a heterologous protein to microsomes. Surprisingly, this conserved sequence includes four positively charged amino acids spaced along an amphipathic sequence, which unlike the carboxyl-terminal targeting sequence in mitochondrial Vamp isoforms, is amino-terminal to the insertion sequence. Because Vamps do not bind to phospholipid vesicles, it is likely that these residues mediate an interaction with a protein, rather than bind to acidic phospholipids. Therefore, we suggest that a bipartite motif is required for the specific targeting and integration of Vamps into the endoplasmic reticulum with receptor-mediated recognition of specifically configured positive residues leading to the insertion of the hydrophobic tail into the membrane.  相似文献   

16.
Efficient export of vesicular stomatitis virus glycoprotein (VSV-G), a type I transmembrane protein, from the endoplasmic reticulum requires a di-acidic code (DXE) located in the cytosolic carboxyl-terminal tail (Nishimura, N., and Balch, W. E. (1997) Science 277, 556-558). Mutation of the DXE code by mutation to AXA did not prevent VSV-G recruitment to pre-budding complexes formed in the presence of the activated form of the Sar1 and the Sec23/24 complex, components of the COPII budding machinery. However, the signal was required at a subsequent concentration step preceding vesicle fission. By using green fluorescence protein-tagged VSV-G to image movement in a single cell, we found that VSV-G lacking the DXE code fails to be concentrated into COPII vesicles. As a result, the normal 5-10-fold increase in the steady-state concentration of VSV-G in downstream pre-Golgi intermediates and Golgi compartments was lost. These results demonstrate for the first time that inactivation of the DXE signal uncouples early cargo selection steps from concentration into COPII vesicles. We propose that two sequential steps are required for efficient export from the endoplasmic reticulum.  相似文献   

17.
The lumen of the endoplasmic reticulum (ER) differs from the cytosol in its content of ions and other small molecules, but it is unclear whether the ER membrane is as impermeable as other membranes in the cell. Here, we have tested the permeability of the ER membrane to small, nonphysiological molecules. We report that isolated ER vesicles allow different chemical modification reagents to pass from the outside into the lumen with little hindrance. In permeabilized cells, the ER membrane allows the passage of a small, charged modification reagent that is unable to cross the plasma membrane or the lysosomal and trans-Golgi membranes. A larger polar reagent of approximately 5 kDa is unable to pass through the ER membrane. Permeation of the small molecules is passive because it occurs at low temperature in the absence of energy. These data indicate that the ER membrane is significantly more leaky than other cellular membranes, a property that may be required for protein folding and other functions of the ER.  相似文献   

18.
It is shown by electron microscopy that, in maize root cells, there is close contact between the membrane of the endoplasmic reticulum and the plasmalemma. A qualitative preliminary comparison is conducted between these contacts and high-permeability intercellular contacts in animals.  相似文献   

19.
We have addressed how ribosome-nascent chain complexes (RNCs), associated with the signal recognition particle (SRP), can be targeted to Sec61 translocation channels of the endoplasmic reticulum (ER) membrane when all binding sites are occupied by nontranslating ribosomes. These competing ribosomes are known to be bound with high affinity to tetramers of the Sec61 complex. We found that the membrane binding of RNC-SRP complexes does not require or cause the dissociation of prebound nontranslating ribosomes, a process that is extremely slow. SRP and its receptor target RNCs to a free population of Sec61 complex, which associates with nontranslating ribosomes only weakly and is conformationally different from the population of ribosome-bound Sec61 complex. Taking into account recent structural data, we propose a model in which SRP and its receptor target RNCs to a Sec61 subpopulation of monomeric or dimeric state. This could explain how RNC-SRP complexes can overcome the competition by nontranslating ribosomes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号