首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
金龟子绿僵菌原生质体的制备和再生及其羟化酶活性研究   总被引:1,自引:0,他引:1  
对金龟子绿僵菌(Metarhizium anisopliae)原生质体的制备和再生的影响因素进行实验,并在此基础上考察了甾体底物对原生质体羟化酶的诱导作用。结果表明,原生质体制备的合适条件是:42 h的菌丝体用纤维素酶(10 mg/mL)和蜗牛酶(5 mg/mL)的混合酶在含有0.8 mol/L甘露醇的pH 5.8磷酸缓冲液中,28℃震荡(80 r/min)酶解3 h,原生质体产量可达到6.12×10~7/mL,在含有0.6 mol/L KCl的双层马铃薯培养基上再生率达到7.79%。经过6 h底物诱导的菌丝体制备的原生质体细胞色素P450的表达量比没经过诱导的菌丝体制备的原生质体高约40%,证明该菌羟化酶系统的可诱导性。由于没有细胞壁的阻碍经过底物诱导的原生质体能够高效的将底物转化为产物,且副产物相对较少。  相似文献   

2.
原生质体的制备与再生是双孢蘑菇进行遗传转化的基础,通过研究得到制备双孢蘑菇原生质体的最佳条件是:取培养15d的菌丝振荡培养7d,溶壁酶浓度为1mg/mL的0.6mol/L KCl酶解液、温度30℃、45r/min条件下摇培10h,经过富集精制后的原生质体(4×10 6/mL)可进行瞬时转化。利用Ab-eGFP进行转化,在20min、24h、48h后可观察到GFP荧光,并且在24h和48h可恢复细胞壁增殖,瞬时转化后亦可复壁增殖。研究结果为双孢蘑菇原生质体的稳定遗传转化及后续利用原生质体建立CRISPR-Cas9基因组编辑系统等提供一定的理论依据。  相似文献   

3.
Mycelial protoplast isolation and regeneration of Lentinus lepideus   总被引:14,自引:0,他引:14  
Kim BK  Kang JH  Jin M  Kim HW  Shim MJ  Choi EC 《Life sciences》2000,66(14):1359-1367
Generation of fungal protoplast is essential for fusion and transformation systems. Protoplast fusion offers great potential for the improvement of industrially important microorganisms. To establish conditions for the protoplast isolation and regeneration of the mycelia of Lentinus lepideus, various enzymes and osmotic stabilizers were examined. To investigate suitable medium for the culture of L. lepideus, the mycelia were grown in ten different media at 28 degrees C for 10 days. Among them potato dextrose agar (PDA) medium was found to be the best for colony growth. When Novozym 234, cellulase and beta-glucuronidase were added to the mycelia in combination or alone, Novozym 234 alone at the concentration of 10 mg/ml was the most effective for the protoplast yield. Purified spherical protoplasts of the mycelia were osmotically hypersensitive and further incubation of the mycelia with the lytic enzyme resulted in the older parts of the hyphae swollen. When we applied various osmotic stabilizers at the fixed concentration of 0.6 M on the protoplasts, the yields of protoplasts were increased until 4-hr incubation. However application of sucrose or MgSO4 led to further protection of protoplasts after that time and reached a plateau on 5- and 7-hr incubations, respectively. The suitable incubation time and optimal pH with the lytic enzyme for the maximum release of protoplasts were 6 hrs of incubation and pH 5, respectively. When we examined various osmotic stabilizers for the regeneration of the protoplast, the complete medium containing 0.6 M sucrose induced highest hyphal growth with regeneration frequency of 3.28%.  相似文献   

4.
Important parameters in the regeneration of protoplasts are viability, the capacity to synthesize cell walls and the retention of properties of the parent cell. Mycelial protoplasts of Trichoderma longibrachiatum (Trichoderma reesei) have been regenerated. Factors influencing the regeneration of protoplasts of T. longibrachiatum QM 9414 were found to be, the nature of osmotic stabilizer, the concentration of osmotic stabilizer, pH, temperature, and the composition of regeneration medium. With glucose-mineral regeneration medium, the optimum conditions for protoplasts regeneration were 0.5 M KCl, pH 6.0 and temperature 30°C. With Czapek-Dox medium, the optimum conditions were 0.7 M mannitol, pH 6.0 and temperature 30°C. Maximum regeneration frequency of T. longibrachiatum protoplasts were obtained using glucose-mineral medium.  相似文献   

5.
S. Solís, M.E. FLORES AND C. HUITRON. 1996. Protoplast release in pectinolytic strain mutants of Aspergillus sp. CH-Y-1043 (A13) and Aspergillus flavipes ATCC-16795 (F7) is described. Optimum yield of protoplasts A13 was obtained in a lapse of 1 h when commercially lytic enzymes of Trichoderma harzanium (2 mg ml−1) were added in 0.05 mol 1−1 citrate-phosphate buffer pH 5.0 containing 0.7 mol 1−1 KCl and 10 mg ml−1 BSA. Best results in F7 were obtained when the protoplasting system of A13 was supplemented with 10 mg ml−1 Aureobasidium sp. lytic enzymes. Isolated protoplasts in A13 and F7 were capable of a high regeneration frequency of 87% and 53% when 0.7 mol 1−1 KCl and sorbitol were used as osmotic stabilizers. Endo-P, Exo-P and pectin lyase production were not modified during the process of regeneration.  相似文献   

6.
Protoplasts isolated from 4-day-old hypocotyls of various species of Brassica (Brassica napus, B. campestris and B. oleracea ) produced callus with high efficiency in media containing casein hydrolysate and high concentrations of the auxin 2,4-D (4.5 μM). Cell division began after 24 h and 60% of the cells had divided after 48 h. In contrast, protoplasts isolated from stem and mesophyll of plants grown in vitro or in the greenhouse began to divide after a delay of 3–5 days. In these cases 40–50% of the cells had divided after 5 days as compared to 70% for hypocotyl protoplasts. To obtain a high frequency of regeneration, rapidly growing calli were transferred to media having a high cytokinin:auxin ratio as early as possible, usually 3 weeks after protoplast isolation. The average regeneration frequency for calli obtained from mesophyll protoplasts was 50%, while as many as 70% of the calli derived from hypocotyl protoplasts of B. napus regenerated plantlets on a medium containing zeatin (9.1 μM) and IAA (0.6 μM). On the same medium regeneration of Brassica oleracea was obtained. A low percentage of calli (1%) from Brassica campestris formed shoots when cultured on a combination of zeatin (4.6 μM), BA (4.4 μM) and IAA (0.6 μM).  相似文献   

7.
The regeneration of Candida glycerinogenes protoplasts is a major step following genetic manipulations such as fusion and DNA-mediated transformation. An investigation of protoplast formation and cytological examination was used to gain further insight into the loss of protoplast viability in osmotically stabilized support media. Protoplasts with the highest regeneration frequency (98.6% protoplasts/mL) were isolated, using lysozyme dissolved in 1M sorbitol osmoticum. The commercial enzyme preparations, osmotic stabilisers, and growth phase were effective in raising the protoplast yield. Sodium chloride was effective for protoplast preparation; however, sugars and sugar alcohols were better for protoplast regeneration. Sorbitol at a concentration of 1 M was used in regeneration agar for further studies. Regeneration of colonies from protoplasts was maximal (11 ~ 15%) when protoplasts were incorporated in cooled agar containing 0.5% glucose, supplemented with 1M sorbitol as osmotic stabilizer. C. glycerinogenes strain was highly sensitive to zeocin, so transformation of protoplasts and PEG-mediated was achieved with an improved transformation system, using plasmid pURGAP-gfp containing zeocin gene driven by a PCgGAP promoter from C. glycerinogenes to express gfp gene and be transformed into the 5.8S rDNA site of C. glycerinogenes in order to test the system for studying the yeast osmoregulation. We developed an efficient method for transformation of C. glycerinogenes, and parameters involved in transformation efficiency were optimized. Expressions of gfp at different levels were conducted under osmotic stress containing NaCl, KCl, sorbitol or glycerol for the recombinant strains. These improved procedures for protoplast isolation, regeneration and transformation proved to be useful applications in genetic studies for other Candida species and industrial yeast.  相似文献   

8.
Over 2 × 107/ml protoplasts were obtained from mycelia of hyper lignolytic fungus (nomenclatured as strain IZU-154) by treatment with the lytic enzyme NovoZym 234 in the presence of 0.05 M maleic acid buffer (pH 5.6) containing 0.6 M MgSO4. The protoplasts regenerated at more than 10% of frequency on solid 2% agar medium containing 0.6 M sucrose as an osmotic stabilizer overlaid with 0.5% agar containing the stabilizer. In the determination of the lignolytic activities of 50 regenerants from protoplasts, 2 strains which degraded more than 56% of the lignin during incubation for 30 d and showed activity higher than the parent were found. The regeneration from protoplasts of this fungus was suggested to be useful for the breeding of strains having higher lignolytic activity than this fungus.  相似文献   

9.
The isolation and regenration of prostoplasts from Lipomyces starkeyi have been optimised. Snail enzyme (12 mg·ml−1) proved to be the most effective lytic enzyme although treatment with Novozym 234, Cellulase CP and β-glucanase also resulted in protoplast formation. Magnesium sulphate (0.55 M) was shown to be the best fro protoplast isolation. Exponential phase cells were most susceptible to the lytic enzyme, stationary phase cells appeared to be resistant. 2-Mercaptoethanol or dithiothreitol did not enahance the isolation of protoplasts in this yeast. The optimum pH for protoplast isolation was 5.8. Ultrastructural observations were made on cells during lytic digestion and revealed that the cell wall and capsule are stripped away from the protoplast.Protoplast synthesised new cell wall material when cultured on osmotically stabilised medium, regeneration was not oberved in liquid medium. Optimum regeneration occured when protoplasts were embedded in a thin layer of minimal medium osmotically stabilised with mannitol (0.6M) and solidified with 1.5–2.0% agar. A basal layer of medium was also stabilised with mannitol (0.6 M) but contained 3% agar. The lytic enzyme used for protoplast isolation did not appear to effect the regeneration of protoplasts.  相似文献   

10.
银耳原生质体分离与再生条件优化研究*   总被引:1,自引:0,他引:1  
谢宝贵  朱虎 《菌物学报》2003,22(4):574-578
应用正交设计,研究不同菌株(Tr01、Tr21)、材料(芽孢、菌丝体、子实体)、溶壁酶浓度和酶解温度对原生质体产量的影响。实验结果表明,实验材料对原生质体产量影响最大,以芽孢为材料原生质体产量可达到2.75×107个/ml,而菌丝体和子实体的原生质体产量仅为2.5×106个/ml 和1.0×106个/ml;在35℃下酶解,原生质体产量高;溶壁酶浓度在1%~3%范围内对原生质体产量影响不大;不同菌株原生质体产量差异不显著。本实验还研究了稳渗剂浓度对原生质体再生率的影响,结果表明,0.5 mol/L~0.7 mol/L的KCl 对原生质体再生没有显著差异,再生率最高可达32.3%。  相似文献   

11.
Protoplasts of uniform size were prepared from mononucleated conidiospores of Sporotrichum thermophile. Conidia were preincubated in glucose yeast extract medium at 45 C for 4 h. The conidia were collected resuspended in buffer containing 0.6 M KCl (as stabilizer), and incubated with Novozyme SP249 and Cellulase CP at 37 C for 6 h. The protoplasts were separated from cell wall fragments and intact conidia by centrifugation over 50% sucrose. The purified protoplasts were regenerated in glucose yeast extract broth after 7 h of incubation at 45 C.  相似文献   

12.
Cells of the osmotolerant yeast Saccharomyces rouxii were transformed to protoplasts in good yield (85%) by digesting cell walls with snail-gut enzyme in the presence of 10 mM dithioerythritol, 0.1 M sodium phosphate buffer (pH 6.8), and 2.0 M KCl. The requirement for 2.0 M KCl compares with that for S. bisporus var. mellis (another osmotolerant species) and contrasts with the 0.3 to 0.8 M KCl concentrations used in the preparation of most yeast protoplasts. Short digestions (60 min or less) produced mostly spheroplasts; longer incubations (90 min or more) yielded mostly protoplasts as judged by electron micrographs. These protoplasts could be transferred to 1.0 M KCl or 2.0 M sorbitol without lysing, but lysis was pronounced in 0.5 M KCl or 1.0 M mannitol and complete in 0.02 M KCl. Protoplasts were separated from isolated cell wall remnants and debris by centrifugation on a linear gradient of Ficoll 400 (35 to 17.5%, wt/vol) containing 2.0 M KCl. Both crude and fractionated protoplast preparations contained vesicles which were identified with the periplasmic bodies of whole cells. Some of the periplasmic bodies were connected to protoplasts by fine pedicels; others appeared free. Independent degeneracy of periplasmic bodies was occasionally observed. beta-Fructofuranosidase (EC 3.2.1.26) activity is cryptic (physically) in cells of S. rouxii in contrast to the expressed enzyme (periplasmic space) of other Saccharomyces species. This enzyme remains cryptic in protoplast preparations of S. rouxii but is expressed upon lysis. The same specific activities were found per unit cell or protoplast. The possible association of the cryptic enzyme with periplasmic bodies is discussed.  相似文献   

13.
This paper describes an enzymatic method for yielding protoplasts from the microalga Chlorella protothecoides. Four kinds of commercially available enzymes were tested. The enzymatic digestion was optimal with 2% cellulase R-10 and 1% snailase prepared in 25 mM Tris buffer (pH 6.0) containing 0.6 M D-mannitol, and the protoplast density could reach the peak after treatment at 30°C for 16 h. Nearly all liberated protoplasts were green in the presence of 0.01% phenosafranin, indicating their high viability. The regeneration rate was about 70% when 0.6 M D-mannitol was used as an osmotic stabilizer in the regeneration medium. This protocol will find useful applications in genetic studies of this algal species.  相似文献   

14.
振荡培养48h的赭丝膜伞(Cortinariusrussus)菌丝体经0.5%流基乙醇预处理后,离心法收集,以06mol/LMgSO_4作高渗稳定剂,PH5.8,采用纤维素酶、离析酶和浸解酶联合处理,在三个温度(24℃、31℃、35℃)下经11~16h反应均可获得较高的原生质体产量,最高产量达8×10~7个/g鲜重菌丝。分离得到的原生质体表现了快速的再生能力,在MMNC固体培养基上可达到20%以上的再生频率。文章较详细地研究了酶系组成、酶解温度和时间、菌丝菌龄等多个因素对C。russus原生质体分离及再生的影响。  相似文献   

15.
Pullulan Elaboration by Aureobasidium pullulans Protoplasts   总被引:1,自引:1,他引:0       下载免费PDF全文
Protoplasts of Aureobasidium pullulans are capable of producing pullulan. Biosynthesis of the polymer pullulan required induction with kinetics similar to those of whole cells. The protoplasts also produced a heteropolysaccharide component containing mannose, glucose, and galactose. The relative proportions of the pullulan and heteropolysaccharide fractions were a function of glucose concentration, with the pullulan content of the total polysaccharide rising from 20% at 2.5 mM glucose to 45% at 20 mM glucose. Elaboration of pullulan by both cells and protoplasts was sensitive to 0.6 M KCl, which was present as the osmotic stabilizer in protoplast experiments. The presence of KCl resulted in a shift in the pH optimum to a more acidic value. The molecular weight of the protoplast-derived pullulan was sharply reduced from the molecular weight of the whole-cell-derived product. Exposure of the protoplasts to proteolytic enzymes had no effect on polysaccharide elaboration.  相似文献   

16.
菌核青霉2246(Penicillium sclerotiorum)能够将人参皂苷Rg1转化为人参皂苷F1.以此菌为出发菌株,进行原生质体制备和再生的研究,确定原生质体的最佳形成条件:菌丝体培养24 h,用5 mg/mL溶壁酶、5mg/mL纤维素酶和5 mg/mL蜗牛酶的混合酶液进行酶解,以0.8 mol/L的KCI作为渗透压稳定剂,31℃水浴振摇2h.并对形成的原生质体进行亚硝基胍复合紫外线照射诱变,结果得到1株转化率显著提高、遗传性能稳定的诱变株( NU-1),其转化率由16.7%提高到30.5%.  相似文献   

17.
A simple and efficient protocol for plant regeneration from protoplasts of the potted plant Kalanchoe blossfeldiana Poelln. is reported. Mesophyll protoplasts were isolated from axenic leaves after a preculture. The enzymatic digestion of the tissue with a solution containing 0.4% Cellulase Onozuka R-10 and 0.2% Driselase yielded 6.0 × 105 protoplasts per gram fresh weight after density gradient purification. Protoplasts were cultured in the dark at an initial density of 1 × 105 protoplasts per milliliter in a liquid medium with 320 mM mannitol, 130 mM sucrose, 2.3 μM 2,4-dichlorophenoxy acetic acid (2,4-D), 5.4 μM 1-naphthaleneacetic acid (NAA) and 2.2 μM 6-benzyladenine (BA). Cell wall regeneration was observed within 4 days of culture and cell division began after 5–7 days. When cultured in a liquid medium with 5.4 μM NAA and 8.9 μM BA, protoplast-derived colonies proliferated until small visible calli, and adventitious buds appeared after transfer to photoperiod conditions. Developed shoots were rooted on a solid medium supplemented with 0.6 μM indole-3-acetic acid (IAA) and successfully established under greenhouse conditions. The process required 4 months from isolation to rooted plants and the best conditions found gave a plant regeneration efficiency of 6.4 plants per 1 × 105 protoplasts. This is the first protocol reported for plant regeneration from protoplasts for a Crassulaceae family species.  相似文献   

18.
Preparation and regeneration of mycelial protoplasts from Alternaria eichhorniae were examined. A commercially available muralytic enzyme, Novozym 234, was used for isolation of protoplasts. The mycelial age and the pH of the stabilized buffer affected the formation of protoplasts. The maximum production of protoplasts (3,9 × 108/g fresh weight mycelia) was obtained from 24-h-old mycelia digested with Novozym 234 (20 mg/ml) in a stabilized buffer of pH 6.4 and incubated in the dark at 30°C on a rotary shaker (90 r.p.m.) for 6 h. Morphological characteristics of the protoplasts varied and depended on the age of the mycelia used in protoplast production. Moreover, mycelial age had a highly significant influence (P = 0.0001) on the frequency of protoplast regeneration.  相似文献   

19.
To clarify the mechanisms of cell wall construction, we used a proteomic approach to investigate the proteins secreted into cell wall spaces during cell wall regeneration from the protoplasts of Arabidopsis suspension-cultured cells. We focused on cell wall proteins loosely bound to the cell wall architecture and extractable with 1 M KCl solutions from: (i) native suspension cultured cells; (ii) protoplasts that had been allowed to regenerate their cell walls for 1 h; and (iii) protoplasts allowed to regenerate their cell walls for 3 h. We adopted a non-destructive extraction procedure without disrupting cellular integrity, thereby avoiding contamination from cytoplasmic proteins. Using two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) and matrix-assisted laser desorption ionization-time-of-flight/mass spectrometry (MALDI-TOF/MS), we separated, mapped and identified 71 proteins derived from the native cell wall, and 175 and 212 proteins derived from the 1 and 3 h regenerated protoplasts, respectively. Quite different sets of proteins with differing status of their post-translational modifications, including phosphorylation and glycosylation, were identified in the three protein fractions. This indicated dynamic in muro changes in the cell wall proteins during cell wall regeneration in the protoplasts. The analysis revealed a set of enzymes specifically involved in cell wall expansion and construction in suspension-cultured cells. This approach has also determined a set of cell wall proteins that had not been predicted to be localized in cell wall spaces.  相似文献   

20.
An effective method of preparing osmotically-labile protoplasts from Haematococcus pluvialis was established. Microalgal cells grown semi-synchronously under weak blue light was most effective in obtaining viable protoplasts with Proteinase K (0.06%) treatment in the presence of 0.2 M sorbitol/mannitol. The frequency of the osmotically-sensitive cells reached maximum in as short as 15 min protease treatment at 35°C. Protoplast formation was also verified from structural changes of the algal cells under microscopic observation. Protoplast regeneration was successfully carried out by stepwise reduction of sorbitol/mannitol concentrations from 0.2 M to 0.05 M followed by incubation on a plate under various osmotic condition. This stepwise reduction of the osmosis enabled the protoplasts to regenerate the algal cell wall with significantly improved yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号