首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The abilities of two kinds of water-soluble diarylamines, disodium 4-chloro-2,2'-iminodibenzoate (CCA) and disodium 4-chloro-3',6'-dimethyl-2,2'-iminodibenzoate (CCM), to protect lipids, membranes and biological tissues from oxidative damages have been studied. The experimental systems studied include the oxidations of methyl linoleate micelles and soybean phosphatidylcholine (Pc) liposomal membranes in aqueous dispersions, oxidative hemolysis of rabbit erythrocytes, and the in vivo oxidative damages of biological tissues all induced by free radicals generated from an azo radical initiator. The two diarylamines functioned as moderate chain-breaking antioxidants and retarded the above oxidations.  相似文献   

2.
The oxidation of soybean phosphatidylcholine (PC) liposomes initiated with a lipid-soluble azo compound within the liposomal membranes has been studied in the absence and presence of membrane-bound vitamin E and water-soluble bile pigments. In the absence of vitamin E, lipid peroxidation proceeded linearly and without delay. Low micromolar amounts of bilirubin ditaurine (BR-DT, a model compound of conjugated bilirubin) or biliverdin (BV) inhibited the oxidation of PC significantly and in a concentration-dependent way. In contrast, neither taurine, ascorbic acid nor reduced glutathione inhibited significantly under these conditions. Both bile pigments were consumed during their protective action. Vitamin E incorporated into the liposomal membranes suppressed the oxidation initially almost completely, thereby producing an induction period. In the combined presence of vitamin E and either of the two bile pigments at 10 microM each, this induction period was increased by at least 200%. In contrast, when 10 microM vitamin E was combined with an equimolar concentration of reduced glutathione, the induction period increased by only about 30%. BR-DT and BV both spared the consumption of vitamin E during the oxidation of PC liposomes. These results demonstrate that conjugated bilirubin and BV located in the aqueous phase can directly scavenge lipid radicals to some extent. Furthermore, both bile pigments can act synergistically with membrane-bound vitamin E to prevent lipid peroxidation initiated in the lipid phase, most likely through regeneration of the vitamin from its chromanoxyl radical.  相似文献   

3.
A water-soluble azo compound, 2,2′-azobis(2-amidinopropane) dihydrochloride, a well-known free radical initiator, was administered intraperitoneally to mice to study the toxicological effects on biological tissues in vivo and their inhibition by chain-breaking antioxidants. It caused damage to biological tissues without biotransformation. No specific target organ was observed. The most striking fine structural changes were the degeneration, swelling, and disruption of the endothelium lining cells of the capillaries in various organs. Furthermore, the death of lymphocytes in the lymphoid tissues and the fatty degeneration of the liver and kidneys have also been observed. Water-soluble chain-breaking antioxidants, such as 2-carboxy-2,5,7,8-tetramethyl-6-chromanol (a vitamin E analogue), uric acid, cysteine, and glutathione suppressed the above damage, whereas vitamin C was ineffective.  相似文献   

4.
The oxidation of human low density lipoprotein (LDL) initiated by free radical initiator and its inhibition by vitamin E and water-soluble antioxidants have been studied. It was found that the kinetic chain length was considerably larger than 1, suggesting that LDL was oxidized by a free radical chain mechanism. Vitamin E acted as a lipophilic chain-breaking antioxidant. Water-soluble chain-breaking antioxidants such as ascorbic acid and uric acid suppressed the oxidation of LDL initiated by aqueous radicals but they could not scavenge lipophilic radicals within LDL to break the chain propagation. Ascorbic acid acted as a synergistic antioxidant in conjunction with vitamin E.  相似文献   

5.
Effect of phytyl side chain of vitamin E on its antioxidant activity   总被引:6,自引:0,他引:6  
Inhibition of the oxidation of methyl linoleate and soybean phosphatidylcholine in homogeneous solution and in aqueous dispersion by four chain-breaking antioxidants, vitamin E (alpha-tocopherol), 2,2,5,7,8-pentamethyl-6-chromanol, 2,6-di-tert-butyl-4-methylphenol, and stearyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate, was studied to examine the effect of the phytyl side chain of vitamin E on its antioxidant activity. These four antioxidants exerted similar antioxidative activities. They were also effective as antioxidants in protecting the oxidation of soybean phosphatidylcholine liposomes in water dispersion. However, when they were incorporated into dimyristoyl phosphatidylcholine liposomes, only 2,2,5,7,8-pentamethyl-6-chromanol and 2,6-di-tert-butyl-4-methylphenol could suppress the oxidation of soybean phosphatidylcholine liposomes dispersed in the same aqueous system. It was concluded that the antioxidative properties of vitamin E and its model without the phytyl side chain are quite similar within micelles and liposomes as well as in homogeneous solution but that the phytyl side chain enhances the retainment of vitamin E in liposomes and suppresses the transfer of vitamin E between liposomal membranes.  相似文献   

6.
The mechanism of lipid peroxidation and the ways in which the rate of this reaction can be reduced by small quantities of certain specific chemicals, called antioxidants, are described. The types and roles of the different antioxidants found in living systems are considered. Vitamin E (alpha-tocopherol) has long been recognized as an important lipid-soluble, chain-breaking antioxidant. It has an unexpectedly high reactivity towards peroxyl radicals, which can be understood only after detailed consideration of its structure. It is the major antioxidant of its class in human blood and its effectiveness in plasma is greatly improved by a synergistic interaction with water-soluble reducing agents such as ascorbic acid. Experiments designed to locate vitamin E within phospholipid bilayers and to discover the origin of the different biopotencies of stereoisomers of alpha-tocopherol are also described.  相似文献   

7.
Oxidations of soybean phosphatidylcholine liposomes in an aqueous dispersion initiated by free radicals generated initially either in the aqueous phase or in the lipid phase were efficiently suppressed by vitamin E in the membranes. Vitamin E was consumed linearly with time and, when the inhibition period was over the oxidation proceeded rapidly at a rate similar to that in the absence of vitamin E. L-Cysteine was also effective by itself in scavenging radicals in the aqueous region, but it was consumed more rapidly than vitamin E. On the other hand, cysteine could not scavenge the radicals efficiently in a lipid region. Nevertheless, when vitamin E was incorporated into liposomes, the addition of cysteine in the aqueous phase prolonged the inhibition period and it reduced the rate of decay of vitamin E markedly even when the radicals were generated initially in the lipid bilayer. Furthermore, it was found by an electron spin resonance study that chromanoxyl radical disappeared quite rapidly when it was mixed with cysteine and that the spin adduct of cysteine radical was observed in the presence of alpha-(4-pyridyl-N-oxide)-N-tert-butyl nitrone. It was concluded that L-cysteine located in an aqueous region could regenerate vitamin E by reacting with vitamin E radical formed in a lipid region and show a synergistic antioxidant effect, although its efficiency of vitamin E regeneration was lower than that by vitamin C.  相似文献   

8.
Antioxidants in relation to lipid peroxidation   总被引:14,自引:0,他引:14  
The role of antioxidants in lipid peroxidation is reviewed. Specifically, the rate and mechanism of inhibition of lipid peroxidation by water-soluble and lipid-soluble, chain-breaking antioxidants have been discussed.  相似文献   

9.
The fluorescent polyunsaturated parinaric acid incorporated in LDL particles is highly sensitive to the concentration of peroxyl radicals in the aqueous medium, undergoing rapidly oxidative degradation, as detected by a quenching of fluorescence, without delay after radical generation in solution. Ascorbate, cysteine, and urate suppress the parinaric acid fluorescence decay promoted by peroxyl radicals generated at a constant rate (thermal decomposition of 2,2'-azo-bis(2-amidino-propane hydrochloride)) in a concentration-dependent manner. The chain-breaking efficiencies of these antioxidants are evaluated from the time interval (inhibition period) of parinaric acid protection from oxidative degradation. The results correlate with the inhibition periods of LDL oxidation as monitored by O2 consumption. Therefore, the sensitive and simple parinaric acid assay can be used as a semiquantitative screening test for the detection of potentially important water-soluble chain-breaking antioxidants. Conversely to O2 consumption, the absence of any initial lag phase of probe degradation attests to the sensitivity of the assay. An improved methodology based on second-derivative spectroscopy to follow the formation of conjugated diene isomers directly in the preparation without the need for lipid extraction also confirms the sensitivity of this assay. To assess the usefulness of parinaric acid assay, strong chain-breaking activities of caffeic and chlorogenic acids are reported.  相似文献   

10.
The antioxidative and free radical scavenging effects of four ecdysteroids, 20-hydroxyecdysone (E1), 25-deoxy-11,20-dihydroxyecdysone (E2), 24-(2-hydroxyethyl)-20-hydroxyecdysone (E3), and 20-hydroxyecdysone-20,22-monoacetonide (E4), isolated from the Chinese herb Serratula strangulata have been investigated in vitro. These ecdysteroids could protect human erythrocytes against oxidative hemolysis induced by a water-soluble azo initiator 2,2'-azobis(2-amidinopropane hydrochloride) (AAPH). They could also inhibit the peroxidation of rat liver microsomes induced by hydroxyl radicals, as monitored by the formation of thiobarbituric acid reactive substances (TBARS), and prevent radical-induced decrease of membrane fluidity as determined by fluorescence polarization. They reacted with galvinoxyl radicals in homogeneous solution, and the pseudo-first-order rate constants were determined spectrophotometrically by following the disappearance of galvinoxyl radicals. Compounds E1 and (or) E3 were the most active in both antioxidative and radical-scavenging reactions.  相似文献   

11.
We previously reported that lipid-soluble quercetin, not water-soluble dihydroquercetin, protects human red blood cells against oxidative damage. The objectives of this study were to determine if an antihemolytic effect could be produced by other lipid-soluble antioxidants and if anti-inflammatory activity played a role in antihemolysis by quercetin. This study compared three lipid-soluble polyphenols, muscadine, curcumin and quercetin, and three lipid- (α-tocopherol and α-tocotrienol) or water-soluble (ascorbic acid) vitamins. Among the tested polyphenols, muscadine was the most potent in inhibiting superoxide and 2,2-azobis(2-amidinopropane) dihydrochloride (AAPH)-generated peroxyl radicals, whereas ascorbic acid was the most potent inhibitor of hydrogen peroxide. Activities of the polyphenols after lipid extractions showed that curcumin inhibited superoxide production to a greater extent than quercetin and muscadine. All blood cells were tested 20 min after incubation with the selected compounds. All the polyphenols caused inhibition of N-formyl-l-methionyl-l-leucyl-l-phenylalanine-induced neutrophil oxidative bursts. Quercetin, but not other polyphenols, significantly reduced AAPH-induced oxidative hemolysis. No significant effect on neutrophil oxidative burst or oxidative hemolysis was found with any of the tested vitamins. These results suggest that quercetin enhances the resistance of membrane to destruction by free radicals. This effect of quercetin is not directly mediated through antioxidative or anti-inflammatory actions. Antioxidant or anti-inflammatory potency may not be used as a simple criterion to select polyphenols for cell protection benefits.  相似文献   

12.
SUMMARY

An involvement of free radicals in thrombosis has been suggested previously. In order to further explore the role of free radicals and antioxidants in thrombosis, we have measured preventive (enzymes of the glutathione redox cycle) and chain-breaking antioxidants (vitamin E and C) in whole blood, platelets, neutrophils (PMNLs), heart and lung following collagen and adrenaline induced thrombosis in mice. A significant decrease in platelet glutathione (GSH) level (54%) and glutathione reductase activity was observed after thrombosis. In addition, GSH content in whole blood was also found to be reduced. In PMNLs, an increase in glutathione peroxidase activity and a four-fold elevation in vitamin C content was observed following thrombosis. However, levels of vitamin E and total thiol groups remained unchanged in both the cells and tissues. The results further suggest involvement of free radicals and PMNLs in thrombosis.  相似文献   

13.
S Minamisawa  E Komuro  E Niki 《Life sciences》1990,47(24):2207-2215
Cigarette smoke has been found to induce the hemolysis of rabbit erythrocytes. The particulate phase had more profound effect than the gas phase. Neither free radical scavengers such as ascorbic acid, uric acid and water-soluble vitamin E analogue nor antioxidant enzymes such as catalase and superoxide dismutase suppressed the cigarette smoke-induced hemolysis, suggesting that free radicals, hydrogen peroxide, and superoxide were not the active species.  相似文献   

14.
Endogenous antioxidants such as the lipid-soluble vitamin E protect the cell membranes from oxidative damage. Glutathione seems to be able to regenerate alpha-tocopherol via a so-called free radical reductase. The transient protection by reduced glutathione (GSH) against lipid peroxidation in control liver microsomes is not observed in microsomes deficient in alpha-tocopherol. Introduction of antioxidant flavonoids, such as 7-monohydroxyethylrutoside, fisetin or naringenin, into the deficient microsomes restored the GSH-dependent protection, suggesting that flavonoids can take over the role of alpha-tocopherol as a chain-breaking antioxidant in liver microsomal membranes.  相似文献   

15.
Dioleoyl phosphatidylcholine (PC) liposomes were ozonized and the ozonized liposomes were tested for their lytic potency on human red blood cells (RBC). Ozonation of PC liposomes generated approximately 1 mole equivalent of hydrogen peroxide (H2O2) and 2 mole equivalents of aldehydes, based on the moles of ozone consumed. The time necessary for 50% hemolysis induced by ozonized liposomes (a convenient measure of hemolytic activity) was found to depend on the extent of ozonation of the PC liposomes, indicating the formation and accumulation of hemolytic agents during ozonation. Hemolysis was also observed when RBC were incubated with nonanal, the expected product of the ozonation of oleic acid, the principle unsaturated fatty acid in the liposomes. Hydrogen peroxide, another product of PC ozonation, did not induce hemolysis; however, a combination of H2O2 and nonanal was significantly more hemolytic than nonanal alone. A ratio of 1:2 H2O2/nonanal (the ratio observed in the ozonized liposomes) provided hemolytic activity comparable to that observed with ozonized dioleoyl PC. Among different antioxidants tested, ascorbate, catalase, and glutathione peroxidase partially inhibited hemolysis induced by ozonized liposomes and by H2O2/nonanal mixtures, but they were not protective against the nonanal-induced hemolysis. Identification of H2O2 and aldehydes as cytotoxic chemical species generated from the ozonation of unsaturated fatty acids may have an important bearing on the in vivo toxicity of ozone on the lung as well as on extrapulmonary tissues.  相似文献   

16.
Rat liver microsomal lipids in hexane solution were exposed to the lipid-soluble radical initiator, azobis-isobutyronitrile (AIBN), and the antioxidant activities of alpha-tocopherol and beta-carotene have been compared. Lipid peroxidation was monitored both by conjugated diene formation at 233 nm, and by malondialdehyde (MDA) formation in the thiobarbituric acid assay at 535 nm. Diene formation was continuous for at least 120 min in the presence of 85 micrograms/ml lipid and 4 mM AIBN. Both alpha-tocopherol and beta-carotene acted as chain-breaking antioxidants, suppressing lipid peroxidation and producing an induction period at concentrations as low as 0.5 and 8 microM, respectively. When both of these lipid-soluble antioxidants were present together, the oxidation was strongly suppressed and the induction period was the sum of the individual antioxidants, alpha-Tocopherol and beta-carotene also inhibited MDA generation. In the presence of 170 micrograms/ml lipid and 8 mM AIBN, beta-carotene exhibited an IC50 of 1.1 microM and inhibited completely at 15 microM. Using beta-carotene, an induction period was observed, although much less pronounced than with alpha-tocopherol. Furthermore, beta-carotene inhibited MDA production in a concentration-dependent manner and exhibited an IC50 of 50 microM. In addition, added beta-carotene delayed the radical-initiated destruction of the endogenous alpha-tocopherol and gamma-tocopherol in this system.  相似文献   

17.
We studied the relationship between the site of production of oxygen radicals and their effect on a rat thymocyte functional activity, the glucose transport, measured using a radioactive analogue of glucose, 2-deoxy-glucose. We compared the effects of a hydrophilic thermolabile azo compound, mimicking a radical attack outside the cell, with the lipid-soluble cumene hydroperoxide, which initiates lipid peroxidation in cell membranes. Our results show that a low grade oxidative stress stimulated glucose uptake rapidly, independently of the site of radical generation. In the presence of the azocompound, glucose uptake increased smoothly, attaining its maximum extent within 1 h. In thymocytes treated with cumene hydroperoxide the rate of glucose transport increased suddenly and remained constant over 1 h. The effects of the radical donors on TBARS production and protein sulfhydryl groups content were also evaluated. In thymocytes treated with the azo derivative no lipid peroxidation was observed, but a slow decrease of protein thiol groups occurred; after the addition of cumene hydroperoxide sulfhydryl groups did not change and TBARS increased significantly. The water-soluble antioxidant Trolox was able to remove the glucose uptake increase induced by the hydrophilic initiator and to delay the loss of membrane integrity.  相似文献   

18.
Vitamin E (α-tocopherol) is a major lipid-soluble chain-breaking antioxidant in humans and mammals and plays an important role in normal development and physiology. The localization of α-tocopherol within the highly unsaturated phospholipid bilayer of cell membranes provides a means of controlling lipid oxidation at the initiation site. Mitochondria are the site for major oxidative processes and are important in fat oxidation and energy production, but a side effect is leakage of reactive oxygen species. Thus, incorporation of α-tocopherol and other antioxidants into mitochondria and other cellular compartments is important in order to maintain oxidative stability of the membrane-bound lipids and prevent damage from the reactive oxygen species. Many studies regarding mitochondrial disease and dysfunction have been performed in relation to deficiency of vitamin E and other antioxidants, whereas relatively sparse information is available regarding the eventual beneficial effects of antioxidant-enriched mitochondria in terms of health and function. This may be due to the fact that only little scientific information is available concerning the effect of supranutritional supplementation with antioxidants on their incorporation into mitochondria and other cellular membranes. The purpose of this review is therefore to briefly summarize experimental data performed with dietary vitamin E treatments in relation to the deposition of α-tocopherol in mitochondria and microsomes.  相似文献   

19.
The concentration of lipid-soluble, chain-breaking antioxidants in human plasma and in erythrocyte ghosts have been determined for the first time by an inhibited-autoxidation method. The results are very similar to the concentrations of vitamin E measured for the same blood components by the HPLC method. It is concluded that vitamin E, which is largely present as alpha-tocopherol, is the only significant lipid-soluble, chain-breaking type of antioxidant present in human blood. The concentration of vitamin E in the plasma lipids divided by the concentration of vitamin E in the ghost membrane lipids is approximately a constant despite the large differences in vitamin E-intake and in plasma lipid concentrations in different individuals. Vitamin E/lipid ratios for plasma and ghosts were larger for subjects taking a supplement of alpha-tocopherol acetate of 100 IU per week, compared to nonsupplemented subjects (based on data from a limited number of subjects). A larger supplement of 2800 IU per week did not significantly increase the vitamin E/lipid ratios.  相似文献   

20.
Chen G  Djuric Z 《FEBS letters》2001,505(1):151-154
It has been questioned whether carotenoids can act as antioxidants in biological membranes. Biological membranes can be modeled for studies of lipid peroxidation using unilamellar liposomes. Both carotenoid depletion and lipid peroxidation were increased with increasing oxygen tension in unilamellar liposomes. Carotenoids in such liposomes were found to be very sensitive to degradation by free radicals generated from iron and 2,2'-azobis(2-amidinopropane) dihydrochloride, but they were not protective against lipid peroxidation. Lycopene and beta-carotene were more sensitive to free radical attack than lutein, zeaxanthin, and beta-cryptoxanthin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号