首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to examine effects of tunicamycin (TM), which inhibits core glycosylation of the beta-subunit, on functional expression of the Na(+)-K+ pump in primary cultures of embryonic chick skeletal muscle. Measurements were made of specific-[3H]-ouabain binding, ouabain-sensitive 86Rb uptake, resting membrane potential (Em), and electrogenic pump contribution to Em (Ep) of single myotubes with intracellular microelectrodes. Growth of 4-6-day-old skeletal myotubes in the presence of TM (1 microgram/ml) for 21-24 hr reduced the number of Na(+)-K+ pumps to 60-90% of control. Na(+)-K+ pump activity, the level of resting Em and Ep were also reduced significantly by TM. In addition, TM completely blocked the hyperpolarization of Em induced in single myotubes by cooling to 10 degrees C and then re-warming to 37 degrees C. Effects of tunicamycin were compared with those of tetrodotoxin (TTX; 2 x 10(-7) M for 24 hr), which blocks voltage-dependent Na+ channels. TM produced significantly greater decreases in ouabain-binding and Em than did TTX, findings that indicate that reduced Na(+)-K+ pump expression was not exclusively secondary to decreased intracellular Na+, the primary regulator of pump synthesis in cultured muscle. Similarly, effects of TM were significantly greater than those of cycloheximide, which inhibits protein synthesis by 95%. These findings demonstrate that effects were not due to inhibition of protein synthesis. We conclude that glycosylation of the Na(+)-K+ pump beta-subunit is required for full physiological expression of pump activity in skeletal muscle.  相似文献   

2.
1. The acute effects of veratridine on membrane potential (Em) and Na-K pump activity in cultured skeletal muscle were examined. 2. At a concentration of 10(-4) M, veratridine caused depolarization of Em and a decrease in Na-K pump activity. At concentrations of 10(-5) and 10(-6) M, veratridine caused oscillations of Em and an increase in Na-K pump activity compared to untreated, control cells. The oscillations consisted of depolarization to about -40 mV followed by hyperpolarization to about -90 mV; the level of hyperpolarization was higher at 37 than at 23 degrees C. 3. Veratridine-induced oscillations could be prevented by pretreatment with tetrodotoxin (10(-6) M) and blocked or prevented by ouabain, which depolarizes Em of cultured myotubes. In contrast, depolarization of Em to -60 mV by excess K+ did not alter the amplitude or frequency of the oscillations. 4. The results demonstrate that veratridine-induced increase in Na influx both depolarizes cultured myotubes and increases the activity of the Na-K pump, which repolarizes Em to levels higher than control. This sequence accounts for veratridine-induced oscillations in Em. High concentrations of veratridine cause only depolarization of Em and inhibition of Na-K pump activity.  相似文献   

3.
[3H]Acetylcholine efflux and Na+-K+ ATPase ion pump activity were measured concomitantly in rat cortical synaptosomes. Ouabain (500 microM), strophanthidin (500 microM), and parachloromercuribenzene sulfonate (500 microM) each inhibited ouabain-sensitive 86Rb uptake and elevated [3H]acetylcholine release independently of the external calcium concentration. Veratridine (10 microM), electrical field stimulation (60 V, 60 Hz, 5-ms pulse duration), or the calcium ionophore A23187 (10 micrograms/ml) also inhibited ouabain-sensitive 86Rb uptake and released [3H]acetylcholine, but via a calcium-dependent process. Veratridine-induced [3H]acetylcholine release and ion pump inhibition were correlated over a wide range of drug concentrations and both effects were blocked by pre-treatment with tetrodotoxin (1 microM). The rate of [3H]acetylcholine efflux from superfused synaptosomes was increased within 15 s of exposure to ouabain, strophanthidin, veratridine, A23187, or field stimulation, while ouabain-sensitive 86Rb uptake was significantly decreased within a similar interval. These results suggest that [3H]acetylcholine release is due at least in part to inhibition of Na+-K+ ATPase.  相似文献   

4.
1. We measured changes in resting membrane potential (Em) and Na-K pump activity, assayed by ouabain-sensitive 86Rb uptake, in response to carbamylcholine (CCh) and its continued presence in single rat skeletal myotubes in culture. 2. CCh caused immediate depolarization from control Em (-80 to -85 mV) to near 0 followed by repolarization of varying degrees depending on the age of the culture and temperature of the recording medium; repolarization of Em was most apparent by culture age 8-9 days in vitro (DIV), Em reaching values as high as -60 mV by 5-10 min after peak depolarization at 37 degrees C. 3. Input resistance, which decreased during CCh depolarization, increased only slightly during the initial phase of repolarization and then remained essentially unchanged during the major component of membrane repolarization in the presence of CCh. 4. Ouabain, given before CCh, prevented repolarization of Em and, when given after repolarization had begun, reversed it and caused Em to return to about -7 mV. 5. Na-K pump activity was decreased in myotubes in which Em did not repolarize or did so only slightly, and was increased by over 40-50% in myotubes whose Em repolarized by 40-60 mV, even though CCh was still present in the medium. Inhibition of pump activity in non repolarizing myotubes was related to Na influx, inhibition being reversed to stimulation when CCh was administered to myotubes in Na-free medium. 6. Repeated (three or four times) or prolonged (up to 60-min) administration of CCh to myotubes in which repolarization was hardly expressed (age 6-7 DIV) caused increases both in the amount of repolarization and in 86Rb uptake, both being related to the number or duration of CCh exposures. 7. We conclude that repolarization of Em following CCh-induced depolarization of cultured rat skeletal myotubes depends to a large extent on an increase in activity of the electrogenic Na-K pump.  相似文献   

5.
Skeletal myotubes responded to passive stretch by increased amino acid uptake (as measured with [3H]α-aminoisobutyric acid), increased incorporation of amino acids into total cellular protein and myosin heavy chains, and increased accumulation of total cellular protein and myosin heavy chains. These alterations were preceded by an increase in the uptake of ouabain-sensitive rubidium-86 (86Rb+), a potassium tracer used to measure membrane sodium pump activity (Na+K+ATPase). This stretch-induced stimulation of 86Rb+ uptake resulted from a 60-70% increase in the Vmax of the Na pump with little change in the Km. [3H] ouabain binding studies showed no stretch-induced change in the number of membrane Na pumps, indicating that stretch activates the Na pumps that are already present on the cell surface. Since the stretch-induced increases in amino acid transport and amino acid incorporation into proteins were inhibited by ouabain, Na pump activation may be involved in stretch-induced cell growth of skeletal muscle cells by hypertrophy.  相似文献   

6.
In this report, we elucidate the role of Na(+)-K+ pump in the regulation of polyamine spermidine (Spd) transport in murine leukemia (L 1210) cells in culture. Ouabain, known to bind extracellularly to the alpha-subunit of the Na(+)-K+ pump, inhibits the pump activity. The L 1210 cells were found to possess ouabain binding sites at 7.5 fmol/10(6) cells. Ouabain significantly inhibited the Spd uptake in a dose-dependent manner. The maximum inhibition of Spd uptake by ouabain was observed beyond 200 microM. Spd transport was inversely correlated with the [3H]ouabain binding to L 1210 cells: an increase in the saturation of ouabain binding to L 1210 cells resulted in a decrease of the Spd uptake process. Treatment of L 1210 cells with protein kinase C activator phorbol esters increased the Spd transport and, also, ouabain-sensitive 86Rb+ uptake, a measure of the activity of the Na(+)-K+ pump. H-7, a protein kinase C inhibitor, significantly inhibited the ouabain-sensitive 86Rb+ uptake by L 1210 cells. Phorbol esters stimulated the level, but not the rate, of 22Na+ influx. Addition of H-7 to L 1210 cells inhibited the 22Na+ influx process. A concomitant phorbol ester-induced increase in 22Na+ influx, [14C]Spd uptake, together with the functioning of Na(+)-K+ pump, indicates the role of the "Na+ cycle" in the regulation of the polyamine transport process.  相似文献   

7.
Cyclic AMP stimulation of Na-K pump activity in quiescent swiss 3T3 cells   总被引:3,自引:0,他引:3  
Recently, we have found that an increase in the intracellular level of cAMP acts as a mitogenic signal for Swiss 3T3 cells (Rozengurt et al., Proc. Natl. Acad, Sci. USA, 78:4392, 1981). The results presented in this paper demonstrate that addition of cAMP-elevating agents to confluent and quiescent cultures of Swiss 3T# causes a marked increase in the rate of 86Rb+ uptake but has no effect on the rate of cation efflux. The stimulation of ion uptake is mediated by the Na-K pump as shown by the ouabain sensitivity of the 86Rb+ fluxes. The increase in Na-K pump activity occurs whether cAMP is generated endogenously by stimulation of adenylate cyclase activity by cholera toxin, adenosine agonists, or PGE1 or added exogenously as 8BrcAMP. The stimulatory effect of these compounds on 86Rb+ uptake is potentiated by inhibitors of cyclic nucleotide phosphodiesterase activity. Cholera toxin stimulates the Na-K pump in a dose-dependent manner; half-maximal effect is achieved at 0.7 ng/ml. The stimulation of ouabain-sensitive 86Rb+ uptake by cAMP-elevating agents reaches a maximum after 2-3 h of incubation. This contrasts with the rapid (within minutes) stimulation of the Na-K pump caused by serum and other mitogenic agents. Further, cAMP-elevating agents fail to increase Na+ influx into 3T3 cells whereas serum causes a marked increase in Na+ influx, under identical experimental conditions. These findings suggest that the stimulation of Na-K pump activity caused by increased cAMP levels contrasts mechanistically with the rapid control of pump activity by serum which is primarily mediated by increased Na+ entry into the cells.  相似文献   

8.
The relationships between Na/K pump activity and adenosine triphosphate (ATP) production were determined in isolated rat brain synaptosomes. The activity of the enzyme was modulated by altering [K+]e, [Na+]i, and [ATP]i while synaptosomal oxygen uptake and lactate production were measured simultaneously. KCl increased respiration and glycolysis with an apparent Km of about 1 mM which suggests that, at the [K+]e normally present in brain, 3.3-4 mM, the pump is near saturation with this cation. Depolarization with 6-40 mM KCl had negligible effect on ouabain-sensitive O2 uptake indicating that at the voltages involved the activity of the Na/K ATPase is largely independent of membrane potential. Increases in [Na+]i by addition of veratridine markedly enhanced glycoside-inhibitable respiration and lactate production. Calculations of the rates of ATP synthesis necessary to support the operation of the pump showed that greater than 90% of the energy was derived from oxidative phosphorylation. Consistent with this: (a) the ouabain-sensitive Rb/O2 ratio was close to 12 (i.e., Rb/ATP ratio of 2); (b) inhibition of mitochondrial ATP synthesis by Amytal resulted in a decrease in the glycoside-dependent rate of 86Rb uptake. Analyses of the mechanisms responsible for activation of the energy-producing pathways during enhanced Na and K movements indicate that glycolysis is predominantly stimulated by increase in activity of phosphofructokinase mediated via a rise in the concentrations of adenosine monophosphate [AMP] and inorganic phosphate [Pi] and a fall in the concentration of phosphocreatine [PCr]; the main moving force for the elevation in mitochondrial ATP generation is the decline in [ATP]/[ADP] [Pi] (or equivalent) and consequent readjustments in the ratio of the intramitochondrial pyridine nucleotides [( NAD]m/[NADH]m). Direct stimulation of pyruvate dehydrogenase by calcium appears to be of secondary importance. It is concluded that synaptosomal Na/K pump is fueled primarily by oxidative phosphorylation and that a fall in [ATP]/[ADP][Pi] is the chief factor responsible for increased energy production.  相似文献   

9.
The role of Na-K ATPase in the determination of resting membrane potential (Em) as a function of extracellular K ion concentration was investigated in cultured rat myotubes. The Em of control myotubes at 37 degrees C varied as a function of (K+)0 with a slope of about 58-60 mV per ten-fold change in (K+)0. Inhibition of the Na-K pump with ouabain or by reduced temperature revealed that this relation consists of two components. One, between (K+)0 of 10 and 100 mM, remains unchanged by alterations in enzyme activity; The second, between (K+)0 of 1 and 10 mM, is related to the amount of Na-K pump activity, the slope decreasing as pump activity decreases. Indeed, with complete inhibition of the Na-K pump, Em does not change over the range of (K+)0 1 to 10 mM. Measurements of 86Rb efflux and input resistance of individual myotubes showed that membrane permeability does not change as (K+)0 increases from 1 to 10 mM but increases as (K+)0 increases further. Monensin, which increases Na ion permeability, increases Em at values of external K+ below 10 mM, and is without effect at higher values of K+ concentration. The effect of monensin is blocked by ouabain. Tetrodotoxin, which blocks voltage-dependent Na+ channels, decreases Em at low (2-10 mM) K+. We conclude that changes in Em as a function of extracellular K+ concentration in the physiological range are not adequately explained by the diffusion potential hypothesis of Em, and that other theories (electrogenic pump, surface-absorption) must be considered.  相似文献   

10.
Serum stimulates embryonic avian skeletal muscle growth in vitro and the growth-related processes of amino acid transport and protein synthesis. Serum also stimulates myotube Na pump activity (measured as ouabain-sensitive rubidium-86 uptake) for at least 2 h after serum addition. Serum-stimulated growth depends on this Na pump activity since ouabain added at the same time as serum totally inhibits the growth responses. The relationship of myotube growth, Na pump activity, and transmembrane potential was studied to determine whether serum-stimulated Na pump activation and growth are coupled by long-term membrane hyperpolarization. When myotube amino acid transport and protein synthesis are prestimulated by serum, ouabain was found to have little inhibitory effect, indicating that the already stimulated growth-related processes are not tightly coupled to continued Na pump activity. Serum-stimulated protein synthesis is tightly coupled to Na pump activity, but only during the first 5-10 min after serum addition. When myotube transmembrane potentials were measured using the lipophilic cation tetraphenylphosphonium, serum at concentrations that stimulate myotube growth and Na pump activity was found to have little effect on the cell's transmembrane potential. Furthermore, partial depolarization of the myotubes with 12- to 55-mM extracellular potassium does not prevent serum stimulation of myotube growth. Monensin was found to hyperpolarize the myotubes, but causes myotube atrophy. These results indicate that although Na pump activity is associated with initiation of serum-stimulated myotube growth, continued Na pump activity is not essential, and there is little relationship between myotube growth and the myotube's transmembrane potential.  相似文献   

11.
The phenotype of a ouabain-resistant Aedes albopictus cell line has been partially characterized. Treatment of ouabain-sensitive cells with 0.005-1.0 mM ouabain resulted in an 80% reduction in the uptake of 86rubidium (86Rb+), an ion with an affinity for the K+ pump binding site; ouabain-resistant cells showed only a 40% reduction with 1.0 mM ouabain. When ouabain-sensitive cells were incubated in the presence of ouabain (0.1 mM) for one and one-half to three hours, the molar ratio of intracellular Na+/K+ rose from 0.2 to 4.2. In ouabain-resistant cells, a similar treatment had very little effect. Based on [3H] ouabain-binding studies, ouabain-resistant cells were estimated to have 60% fewer binding sites per cell than ouabain-sensitive cells. The spontaneous mutation rate from ouabain sensitivity to ouabain resistance was calculated to be 1-6 x 10(-8) mutations/cell/generation, a value similar to that reported for mammalian cells at the analogous locus.  相似文献   

12.
The relation between active transepithelial Na transport across rabbit ileum and 42K exchange from the serosal solution across the basolateral membranes has been explored. Although 42K influx across the basolateral membranes is inhibited by ouabain and by complete depletion of cell Na, it is not affected when transepithelial Na transport is abolished (i.e. in the presence of an Na-free mucosal solution) or stimulated (i.e. when glucose or alanine is added to the mucosal solution). We are unable to detect any relation between the ouabain-sensitive Na-K exchange mechanism responsible for the maintenance of intracellular Na and K concentrations and active transcellular Na transport. In addition, the maintenance of cell volume (water content) does not appear to be dependent upon transepithelial Na transport or the ouabain- sensitive Na-K exchange pump. Although the results of these studies cannot be considered conclusive, they raise serious questions regarding the role of the Na-K exchange pump, located at the basolateral membranes, in active transepithelial Na transport and the maintenance of cell volume.  相似文献   

13.
Angiotensin peptides (AI, AII, AIII) increased the rate of Na+ accumulation by smooth muscle cells (SMC) cultured from rat aorta. The stimulatory effect of AII on Na+ uptake was observed when Na+ exodus via the Na+/K+ pump was blocked either by ouabain or by the removal of extracellular K+. AII was at least ten times more potent than AIII and about 100 times more potent than AI in stimulating Na+ uptake. Saralasin had little effect on Na+ uptake by itself but almost completely blocked the increase caused by AII. The stimulation of net Na+ entry by AI, but not AII, was prevented by protease inhibitors. The stimulation of Na+ uptake was almost completely blocked by amiloride. Tetrodotoxin, which prevented veratridine from increasing Na+ uptake, had no effect on the response to AII. Angiotensin increased the rate of ouabain-sensitive 86Rb+ uptake (Na+/K+ pump activity) but had no effect on ouabain-sensitive ATPase activity in frozen-thawed SMC or in microsomal membranes isolated from cultured SMC. The stimulation of ouabain-sensitive 86Rb+ uptake by AII was blocked by saralasin. Omitting Na+ from the external medium prevented AII from increasing 86Rb+ uptake. AII had no effect on cell volume or cyclic AMP levels in the cultured SMC. These results suggest that angiotensin peptides activate an amiloride-sensitive Na+ transporter which supplies the Na+/K+ pump with more Na+, its rate-limiting substrate.  相似文献   

14.
Addition of (Arg) vasopressin to quiescent cultures of Swiss 3T3 cells rapidly stimulates an ouabain-sensitive 86Rb uptake. In contrast the hormone has no significant effect on the rate of efflux of this cation from preloaded cells. The stimulation of 86Rb uptake is cycloheximide-insensitive, occurs within minutes of hormone addition and results from an increase in the Vmax of the uptake system. Vasopressin stimulates ion uptake in a concentration-dependent fashion (1-100 ng/ml); oxytocin also stimulated the Na-K pump but at significantly higher concentrations. The stimulation of the Na-K pump by vasopressin is apparently mediated by an increase in Na entry into the cells, since the hormone (1) strikingly shifts the concentration dependence on Na+ of the Na-K pump, (2) increases 22Na uptake, and (3) increases intracellular Na contents when the efflux of this ion is blocked by ouabain. Since vasopressin is a potent mitogen for Swiss 3T3 cells, the results provide further evidence in support of a possible role of monovalent ion fluxes in signalling the initiation of growth stimulation.  相似文献   

15.
The growth of an epithelial canine kidney line (MDCK) was reversibly arrested by gradually lowering the serum concentration in the medium over a 3-day period. The cells were demonstrably quiescent by autoradiography after an additional 24 hours in serum-free media. Addition of fresh serum produced DNA synthesis after an 18-hour lag period. The quiescent cells then grew to confluency retaining their transport capacities as seen by the formation of “domes”. This system allows for measurement of monovalent ion fluxes and its relationship to growth regulation. The addition of fresh serum to quiescent MDCK cells increased the uptake of 86Rb, a measure of Na-K pump activity. This stimulation was mediated by increased uptake of Na into the cells. Serum-stimulated DNA synthesis was blocked by the addition of ouabain in concentrations that inhibit the Na-K pump. Serum appears to stimulate growth in epithelial cells by increasing the amount of intracellular Na available to the Na-K pump. Monovalent ion transport may play a role in the regulation of epithelial cell proliferation.  相似文献   

16.
Addition of D-aspartate, a substrate for the high-affinity transport of acidic amino acid transmitters, to suspensions of rat brain synaptosomes increased the rate of O2 consumption, uptake of 86Rb, and transport of 2-[3H]deoxyglucose. Stimulation of all three processes was abolished in the presence of ouabain. D-Aspartate had no effect on respiration in the medium in which NaCl was replaced by choline chloride. The ratio of the ouabain-sensitive increase in 86Rb uptake to that in O2 consumption was 12 to 1, which gives a calculated 86Rb(K+)/ATP of 2. It is concluded that electrogenic, high-affinity transport of sodium-D-aspartate into synaptosomes stimulates the activity of the Na+/K+ pump through an increase in [Na+]i.  相似文献   

17.
To study the properties of the Na extrusion mechanism, giant muscle fibers from barnacle (Balanus nubilus) were internally perfused with solutions containing tracer 22Na. In fibers perfused with solutions containing adenosine 5'-triphosphate (ATP) and 30 mM Na, the Na efflux into 10 mM K seawater was approximately 25-30 pmol/cm2.s; 70% of this efflux was blocked by 50-100 microM ouabain, and approximately 30% was blocked by removal of external K. The ouabain-sensitive and K-dependent Na effluxes were abolished by depletion of internal ATP and were sigmoid-shaped functions of the internal Na concentration ([Na]i), with half-maxima at [Na]i approximately or equal to 20 mM. These sigmoid functions fit the Hill equation with Hill coefficients of approximately 3.5. Ouabain depolarized ATP-fueled fibers by 1.5-2 mV ([Na]i greater than or equal to 30 mM) but had very little effect on the membrane potential of ATP-depleted fibers; ATP depletion itself caused a 2-2.5- mV depolarization. When fueled fibers were treated with 3,4- diaminopyridine or Ba2+ (to reduce the K conductance and increase membrane resistance), application of ouabain produced a 4-5 mV depolarization. These results indicate that an electrogenic, ATP- dependent Na-K exchange pump is functional in internally perfused fibers; the internal perfusion technique provides a convenient method for performing transport studies that require good intracellular solute control.  相似文献   

18.
We have characterized the physiological and biochemical properties of the Na(+)/K(+) pump and its molecular expression in L8 rat muscle cells. Pump properties were measured by [(3)H]ouabain binding and (86)Rb uptake. Scatchard plot analysis of specific ouabain binding indicated the presence of a single family of binding sites with a B(max) of approximately 135 fmol/ mg P and a K(D) of 3.3 x 10(-8). (86)Rb uptake due to specific pump activity was found to be 20% of the total in L8 cells. The results indicated lower affinity of L8 cells for ouabain and lower activity of the pump than that reported for chick or rat skeletal muscle in primary culture. Both the alpha(1) and beta(1) protein and mRNA isoforms were expressed in myoblasts and in myotubes, while the alpha(2), alpha(3), and beta(2) isoforms were not detectable. We attempted to overcome low physiological expression of the Na(+)/K(+) pump by employing a vector expressing an avian high affinity alpha subunit. This allowed identification of the transfected subunit separate from that endogenously expressed in L8 cells. Successful transfection into L8 myoblasts and myotubes was recognized by anti-avian alpha subunit monoclonal antibodies. Fusion index, Na(+)/K(+) pump activity, and the level of the transmembrane resting potential were all significantly greater in transfected L8 (tL8) cells than in non-tL8. The total amount of alpha subunit (avian and rat) in tL8 cells was greater than that (only rat) in non-tL8 cells. This relatively high abundance of the Na(+)/K(+) pump in transfected cells may indicate that avian and rat alpha subunits hybridize to form functional pump complexes.  相似文献   

19.
The number and activity of ouabain-sensitive Na/K ATPase pumps expressed by many cell types in vitro, including human retinal pigment epithelial cells (RPE), have been shown to decline with increasing culture density. Cell proliferation also declined as cultures became dense so it was unclear if pump number was modulated by cell proliferation or culture confluency. By exposing RPE cultures to various feeding regimens, using culture medium containing or lacking serum, it was possible to produce RPE cultures with a range of culture densities and growth rates. These were analyzed for proliferative activity by quantifying [3H]thymidine incorporation and for Na/K ATPase pump number by measuring specific [3H]ouabain binding. The results suggest that pump number is modulated by culture density and, further, that the density-dependent regulation of pump number requires serum. Although density-dependent modulation of culture growth is also serum requiring, cell proliferation and pump number did not appear to be related; cultures of similar density which differed significantly in growth rate had similar numbers of pumps. The view that elevated numbers of pumps were not necessarily found in proliferating cells was further supported by qualitative examination of radioautographs of cells dually labeled with [3H]thymidine and [3H]ouabain. Cycling cells which had [3H]thymidine-labeled nuclei did not have notably higher labeling with [3H]ouabain. However, [3H]ouabain labeling, as an indicator of pump site number and distribution, did vary among cells in an RPE population and also within individual cells. This latter observation suggests that unpolarized RPE cells in sparse cultures may have regionally different requirements for ionic regulation.  相似文献   

20.
The cation-transporting activity and Na,K-ATPase activity of CV-1 cell recipients of the mouse ouabain resistance gene (ouaR6, or OR6 cells; see Levenson, R., Racaniello, V., Albritton, L., and Housman, D. (1984) Proc. Natl. Acad. Sci. U. S. A. 81, 1489-1493) have been further characterized. OR6 cells grown in strophanthidin (a cardiac aglycon which may be removed rapidly from the Na,K-ATPase) possess both ouabain-sensitive and -insensitive 86Rb+ uptake activities. The ouabain-sensitive 86Rb+ uptake activity of these cells (OR6-S cells) exhibits the same Ki for ouabain as that of the CV-1 parent cells (Ki(app) = 3 x 10(-7) M ouabain), but accounts for only approximately 30% of total 86Rb+ uptake into Na+-loaded OR6-S cells, compared to 80% for CV-1 cells. Most of the ouabain-resistant 86Rb+ uptake in OR6-S cells is dependent on internal Na+ and is insensitive to furosemide, suggesting that it is due to an ouabain-resistant Na,K pump. In OR6-S cell lysates, 50% of Na+-dependent ATPase activity is insensitive to 1 mM ouabain, compared to less than 5% in CV-1 cell lysates. In addition, purified plasma membranes from OR6-S cells contain a 100-kDa protein which is transiently phosphorylated by ATP in an Na+-dependent, K+-sensitive manner, like the alpha subunit of the CV-1 Na,K-ATPase and the canine renal Na,K-ATPase, but which is unaffected by preincubation in 1 mM ouabain. All of these data suggest that OR6-S cells possess a ouabain-insensitive Na,K pump with characteristics similar to the ouabain-sensitive pump of CV-1 parent cells. Since the mouse ouabain resistance gene does not encode either subunit of the Na,K-ATPase, these results suggest that the ouabain resistance gene product may modify the ouabain sensitivity of the endogenous CV-1 Na,K pump.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号