首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biotin synthase, the enzyme which catalyzes the last step of the biosynthesis of biotin, contains only (2Fe-2S)(2+) clusters when isolated under aerobic conditions. Previous results showed that reduction by dithionite or photoreduced deazaflavin converts the (2Fe-2S)(2+) to (4Fe-4S)(2+,+). However, until now, no detailed investigation concerning the fate of the (2Fe-2S)(2+) during reduction under assay conditions (NADPH, flavodoxin, flavodoxin reductase) has been realized. Here, we show by M?ssbauer spectroscopy on a partially purified fraction overexpressing the enzyme that, in the presence of a S(2)(-) source and Fe(2+), there is conversion of the predominant (2Fe-2S)(2+) clusters into a 1:1 mixture of (2Fe-2S)(2+) and (4Fe-4S)(2+). No change in this cluster composition was observed in the presence of the physiological reducing system. When the reaction was allowed to proceed by addition of the substrate dethiobiotin, the (4Fe-4S)(2+) was untouched whereas the (2Fe-2S)(2+) was degraded into a new species. This is consistent with the hypothesis that the reduced (4Fe-4S) cluster is involved in mediating the cleavage of AdoMet and that the (2Fe-2S)(2+) is the sulfur source for biotin.  相似文献   

2.
Escherichia coli NADPH-sulfite reductase is a complex hemoflavoprotein with an alpha 8 beta 4 subunit structure. The beta-subunits each contain one siroheme and a tetranuclear iron-sulfur center (Fe4S4). Isolated beta-monomers can catalyze the 6-electron reduction of sulfite to sulfide. We have studied the beta-monomers with M?ssbauer and EPR spectroscopy. The data show conclusively that the siroheme and the Fe4S4 cluster are strongly exchange-coupled. This is proven by the observations that (a) the two chromophores share a single electronic spin and (b) the addition of 1 electron to oxidized sulfite reductase changes the environments of 5 iron atoms. Spin-sharing is demonstrated in oxidized and 2-electron-reduced sulfite reductase and strongly implicated in 1-electron-reduced material. Thus, sulfite reductase provides the first example of an active site where a heme and an iron-sulfur cluster are closely linked as a functional unit, probably via a common bridging ligand.  相似文献   

3.
M?ssbauer studies of the hemoprotein subunit (SiR) of E. coli sulfite reductase have shown that the siroheme and the [4Fe-4S] cluster are exchange-coupled. Here we report M?ssbauer studies of SiR complexed with either CO or CN- and of SiR in the presence of the chaotropic agent dimethyl sulfoxide (Me2SO). The spectra of one-electron-reduced SiR X CN show that all five iron atoms reside in a diamagnetic environment; the ferroheme X CN complex is low spin and the [4Fe-4S] cluster is in the 2+ oxidation state. Titration with ferricyanide affords a CN- complex of oxidized SiR in which the siroheme iron is low spin ferric, with the cluster remaining in the 2+ state. At low temperatures, paramagnetic hyperfine interactions are observed for the iron sites of the cluster, suggesting that it is exchange-coupled to the heme iron. Reduction of one-electron-reduced SiR X CN and SiR X CO yields complexes with "g = 1.94"-type EPR signals showing that the second electron is accommodated by the iron-sulfur cluster. The fully reduced complexes yield well resolved M?ssbauer spectra which were analyzed in the spin Hamiltonian formalism. The analysis shows that the cluster subsites are equivalent in pairs, one pair having properties reminiscent of ferric sites whereas the other pair has features more typical of ferrous sites. The M?ssbauer spectra of oxidized SiR kept in 60% (v/v) Me2SO are virtually identical with those observed for SiR in standard buffer, implying that the coupling is maintained in the presence of the chaotrope. Fully reduced SiR displays an EPR signal with g values of g = 2.53, 2.29, and 2.07. In 60% Me2SO, this signal vanishes and a g = 1.94 signal develops; this transition is accompanied by a change in the spin state of the heme iron from S = 1 (or 2) to S = O.  相似文献   

4.
Biotin synthase, the enzyme that catalyzes the last step of the biosynthesis of biotin, contains only [2Fe-2S](2+) clusters when isolated under aerobic conditions. Previous results showed that reconstitution with an excess of FeCl(3) and Na(2)S under reducing and anaerobic conditions leads to either [4Fe-4S](2+), [4Fe-4S](+), or a mixture of [4Fe-4S](2+) and [2Fe-2S](2+) clusters. To determine whether any of these possibilities or other different cluster configuration could correspond to the physiological in vivo state, we have used (57)Fe M?ssbauer spectroscopy to investigate the clusters of biotin synthase in whole cells. The results show that, in aerobically grown cells, biotin synthase contains a mixture of [4Fe-4S](2+) and [2Fe-2S](2+) clusters. A mixed [4Fe-4S](2+):[2Fe-2S](2+) cluster form has already been observed under certain in vitro conditions, and it has been proposed that both clusters might each play a significant role in the mechanism of biotin synthase. Their presence in vivo is now another argument in favor of this mixed cluster form.  相似文献   

5.
The ferredoxin from Chromatium vinosum (CvFd) exhibits sequence and structure peculiarities. Its two Fe4S4(SCys)4 clusters have unusually low potential transitions that have been unambiguously assigned here through NMR, EPR, and M?ssbauer spectroscopy in combination with site-directed mutagenesis. The [4Fe-4S]2+/1+ cluster (cluster II) whose coordination sphere includes a two-turn loop between cysteines 40 and 49 was reduced by dithionite with an E degrees ' of -460 mV. Its S = 1/2 EPR signal was fast relaxing and severely broadened by g-strain, and its M?ssbauer spectra were broad and unresolved. These spectroscopic features were sensitive to small perturbations of the coordination environment, and they were associated with the particular structural elements of CvFd, including the two-turn loop between two ligands and the C-terminal alpha-helix. Bulk reduction of cluster I (E degrees ' = -660 mV) was not possible for spectroscopic studies, but the full reduction of the protein was achieved by replacing valine 13 with glycine due to an approximately 60 mV positive shift of the potential. At low temperatures, the EPR spectrum of the fully reduced protein was typical of two interacting S = 1/2 [4Fe-4S]1+ centers, but because the electronic relaxation of cluster I is much slower than that of cluster II, the resolved signal of cluster I was observed at temperatures above 20 K. Contact-shifted NMR resonances of beta-CH2 protons were detected in all combinations of redox states. These results establish that electron transfer reactions involving CvFd are quantitatively different from similar reactions in isopotential 2[4Fe-4S] ferredoxins. However, the reduced clusters of CvFd have electronic distributions that are similar to those of clusters coordinated by the CysIxxCysIIxxCysIII.CysIVP sequence motif found in other ferredoxins with different biochemical properties. In all these cases, the electron added to the oxidized clusters is mainly accommodated in the pair of iron ions coordinated by CysII and CysIV.  相似文献   

6.
We have studied the Fe protein (Av2) of the Azotobacter vinelandii nitrogenase system with M?ssbauer and EPR spectroscopies and magnetic susceptometry. In the oxidized state the protein exhibits M?ssbauer spectra typical of diamagnetic [4Fe-4S]2+ clusters. Addition of Mg.ATP or Mg.ADP causes a pronounced decline in the quadrupole splitting of the M?ssbauer spectra of the oxidized protein. Our studies show that reduced Av2 in the native state is heterogeneous. Approximately half of the molecules contain a [4Fe-4S]1+ cluster with electronic spin S = 1/2 and half contain a [4Fe-4S]1+ cluster with spin S = 3/2. The former yields the characteristic g = 1.94 EPR signal whereas the latter exhibits signals around g = 5. The magnetization of reduced Av2 is dominated by the spin S = 3/2 form of its [4Fe-4S]1+ clusters. These results explain a long standing puzzle, namely why the integrated spin intensity of the g = 1.94 EPR signal is substantially less than 1 spin/4 Fe atoms. In 50% ethylene glycol, 90% of the clusters are in the spin S = 1/2 form whereas, in 0.4 M urea, 85% are in the S = 3/2 form. In 0.4 M urea, the EPR spectrum of reduced Av2 exhibits well defined resonances at g = 5.8 and 5.15, which we assign to the S = 3/2 system. The EPR and M?ssbauer studies yield a zero-field splitting of 2D approximately equal to -5 cm-1 for this S = 3/2 state.  相似文献   

7.
57Fe-enriched ribonucleotide reductase subunit B2 from Escherichia coli strain N6405/pSPS2 has been characterized by M?ssbauer and EPR spectroscopy in its native diferric state and in a new differous form. The native protein exhibits two M?ssbauer doublets in a 1:1 ratio with parameters that are in excellent agreement with those reported for the wild-type protein (Atkin, C. L., Thelander, L., Reichard, P., and Lang, G. (1983) J. Biol. Chem. 248, 7464-7472); in addition, our studies show the absence of adventitiously bound iron. The iron content in the present samples approached 4 per B2 subunit, and the tyrosyl radical content exceeded 1 per B2 subunit. The higher values are attributed to the use of a new epsilon 280 for the protein and more efficient methods for iron extraction. We thus propose that subunit B2 has two binuclear iron clusters, each associated with its own tyrosyl radical, in contradistinction from the prevailing model. Reduction of the native protein with dithionite or reconstitution of the apoprotein with Fe(II) afforded a protein complex with M?ssbauer parameters, delta EQ = 3.13 mm/s and delta = 1.26 mm/s at 4.2 K, and a low field EPR signal associated with an integer spin system. These spectral properties resemble those of methane monooxygenase in its diferrous form. Upon exposure to O2, the reduced subunit B2 readily converts to the diferric state and yields active enzyme.  相似文献   

8.
Putidamonooxin, the oxygenase of a 4-methoxybenzoate monooxygenase enzyme system, catalyzes the oxidative O-demethylation of the substrate 4-methoxybenzoate in conjunction with the NADH:putidamonooxin oxidoreductase. Putidamonooxin is a conjugated iron-sulfur protein which needs iron ions as cofactors for its enzymatic activity. Putiamonooxin was isolated from Pseudomonas putida, which was grown on a 57Fe-enriched culture medium. Thus putidamonooxin was enriched in vivo with 57Fe up to about 80%. During our M?ssbauer study of putidamonooxin a number of parameters have been varied: (a) the oxidation state of putidamonooxin (oxidized, reduced and aerobically reoxidized); (b) the substrate bound to putidamonooxin (4-methoxybenzoate, benzoate, 4-tert-butylbenzoate); (c) the temperature between 2.7 K and 245 K; (d) the applied magnetic field between 0 and 0.1 T and (e) the amount of iron cofactor. From our M?ssbauer results it is obvious that the iron-sulfur centers of putidamonooxin are [2 Fe-2S] clusters similar to those of the plant-type ferredoxins. Further, we have evidence for the existence of iron ions (one per [2 Fe-2S] cluster), which serve as cofactors for the dioxygen activation, functioning as the dioxygen binding site and mediating the electron flow from the [2 Fe-2S] cluster to dioxygen.  相似文献   

9.
Active beef heart aconitase contains a [4Fe-4S] cluster. One iron of the cluster, Fea, is labile and can be removed easily by oxidation in air to yield the [3Fe-4S]1+ cluster of inactive aconitase. We have previously shown that substrate binds to Fea. We have continued our M?ssbauer studies by further investigating the active and inactive forms of the enzyme. When active aconitase, [4Fe-4S]2+, is mixed with substrate, two species (substrates or intermediates bound to Fea) labeled S1 and S2 are obtained. With the nitroanalogs of citrate and isocitrate, thought to be transition state analogs, and fluorocitrate, species S2, but not S1, is observed, suggesting that S2 represents a carbanion transition state complex. We have prepared M?ssbauer samples by rapid mix/rapid freeze techniques. Using either citrate, isocitrate or cis-aconitate, the natural substrates, we have been able to detect at 0 degree C reaction intermediates in the 5-35 ms time range and, studying enzyme substrate interactions at subzero temperatures in a water/methanol/ethylene glycol solvent, we have observed new species when substrates were added at -60 degrees C. Details of these experiments are given, although in neither case can unique interpretations be offered at this time. We have also investigated reduced active aconitase ([4Fe-4S]1+; EPR at g = 1.94) in the presence of substrate with material selectively enriched with 57Fe in either Fea or the other three cluster sites. The spectra were analyzed with a spin Hamiltonian, and the results are discussed and interpreted in terms of three inequivalent Fe sites in the cluster. Finally, we have studied enzyme containing the reduced [3Fe-4S]0 cluster. There is no indication that citrate binds to the 3Fe cluster, and since no significant activity was observed, we conclude that aconitase containing a 3Fe cluster is not active in either oxidation state.  相似文献   

10.
The electronic and magnetic properties of the selenium-substituted 2[4Fe-4Se]2+/+ ferredoxin (Fd) from Clostridium pasteurianum have been investigated by EPR and M?ssbauer spectroscopy. The [4Fe-4Se]2+ clusters of oxidized Fd are diamagnetic and the M?ssbauer spectra are nearly identical to those of oxidized 2[4Fe-4S]2+ Fd. The addition of 2e- per molecule of Se-substituted Fd causes the simultaneous appearance of three EPR signals: one (g1,2,3 = 2.103, 1.940, 1.888) is reminiscent of [4Fe-4S]+ EPR spectra and accounts for 0.7 to 0.8 spin/molecule. The two others consist of a broad signal with g = 4.5, 3.5, and approximately 2 (0.7 to 0.8 spin/molecule) and of a narrow peak at g = 5.172 which is observed up to 60 K. Peculiar features are also present in the M?ssbauer spectra of 2[4Fe-4Se]+ Fd below 20 K: a subcomponent with lines near to +/- 4 mm/s and accounting for 20% of the total iron corresponds to two antiferromagnetically coupled sites in approximately a 3:1 ratio and displays fully developed paramagnetic hyperfine interactions at 4.2 K without any applied field. At 77 K, however, the reduced Se-substituted Fd yields a M?ssbauer spectrum similar to that of 2[4Fe-4S]+ Fd. The new EPR and M?ssbauer spectroscopic features of the 2[4Fe-4Se]+ Fd are attributed to S = 3/2 and S = 7/2 spin states which accompany the classical S = 1/2 state of [4Fe-4X]+ (X = S, Se) structures.  相似文献   

11.
The anaerobic degradation pathway of toluene is initiated by the addition of the methyl group of toluene to the double bond of fumarate. This reaction is catalyzed by a novel glycyl-radical enzyme, (R)-benzylsuccinate synthase (BSS). The enzyme consists of three subunits, α, β, and γ, and differs from most other glycyl-radical enzymes in having additional cofactors. We have purified a Strep-tagged nonactivated BSS from recombinant Escherichia coli and identified the additional cofactors as FeS clusters by UV/vis, EPR, and M?ssbauer spectroscopy. Analysis of the metal content as well as the EPR and M?ssbauer spectra indicated that BSS contains magnetically coupled low-potential [4Fe–4S] clusters. Several enzyme preparations showed differing amounts of [3Fe–4S] clusters that could be reconstituted to [4Fe–4S] clusters, indicating that they arise from partial decay of the initial [4Fe–4S] clusters. The most likely location of these FeS clusters in the enzyme are the small β and γ subunits, which are unique for the BSS subfamily of glycyl-radical enzymes and contain conserved cysteines as potential ligands.  相似文献   

12.
Conclusive evidence is presented for an S = 1/2 spincoupled pair of high spin ferric and ferrous ions in the major reaction product of sulfide with the met form of the non-heme iron oxygen-carrying protein hemerythrin. Evidence for an analogous selenide derivative is also reported. M?ssbauer and EPR spectroscopy establish (a) the charge and spin states of the individual iron atoms in sulfidehemerythrin as Fe(III), S = 5/2, and Fe(II), S = 2, and (b) the existence of an antiferromagnetic exchange interaction that couples the two spins to a resultant spin S = 1/2. The combined M?ssbauer and EPR data confirm the correctness of the formulation first proposed for semi-methemerythrin by Harrington, P.C., de Waal, D.J.A., and Wilkins, R.G. ((1978) Arch. Biochem. Biophys. 191, 444-451) and furthermore show that a majority of the iron centers in the protein can be stabilized at this oxidation level. The results also demonstrate a new route to semi-methemerythrin. A titration of methemerythrin with selenide indicates that this derivative forms by a two step process consisting of first, reduction to the semi-met oxidation level by selenide and second, binding of selenide to either one or both irons.  相似文献   

13.
The (57)Fe-enriched cytochrome bf complex has been isolated from hydrocultures of spinach. It has been studied at different redox states by optical, EPR, and M?ssbauer spectroscopy. The M?ssbauer spectrum of the native complex at 190 K with all iron centers in the oxidized state reveals the presence of four different iron sites: low-spin ferric iron in cytochrome b [with an isomer shift (delta) of 0.20 mm/s, a quadrupole splitting (DeltaE(Q)) of 1.77 mm/s, and a relative area of 40%], low-spin ferric iron of cytochrome f (delta = 0.26 mm/s, DeltaE(Q) = 1.90 mm/s, and a relative area of 20%), and two high-spin ferric iron sites of the Rieske iron-sulfur protein (ISP) with a bis-cysteine and a bis-histidine ligated iron (delta(1) = 0.15 mm/s, DeltaE(Q1) = 0.70 mm/s, and a relative area of 20%, and delta(2) = 0.25 mm/s, DeltaE(Q2) = 0.90 mm/s, and a relative area of 20%, respectively). EPR and magnetic M?ssbauer measurements at low temperatures corroborate these results. A crystal-field analysis of the EPR data and of the magnetic M?ssbauer data yields estimates for the g-tensors (g(z)(), g(y)(), and g(x)()) of cytochrome b (3.60, 1.35, and 1.1) and of cytochrome f (3.51, 1.69, and 0.9). Addition of ascorbate reduces not only the iron of cytochrome f to the ferrous low-spin state (delta = 0.43 mm/s, DeltaE(Q) = 1.12 mm/s at 4.2 K) but also the bis-histidine coordinated iron of the Rieske 2Fe-2S center to the ferrous high-spin state (delta(2) = 0.73 mm/s, DeltaE(Q2) = -2.95 mm/s at 4.2 K). At this redox step, the M?ssbauer parameters of cytochrome b have not changed, indicating that the redox changes of cytochrome f and the Rieske protein did not change the first ligand sphere of the low-spin ferric iron in cytochrome b. Reduction with dithionite further reduces the two hemes of cytochrome b to the ferrous low-spin state (delta = 0.49 mm/s, DeltaE(Q) = 1.08 mm/s at 4.2 K). The spin Hamiltonian analysis of the magnetic M?ssbauer spectra at 4.2 K yields hyperfine parameters of the reduced Rieske 2Fe-2S center in the cytochrome bf complex which are very similar to those reported for the Rieske center from Thermus thermophilus [Fee, J. A., Findling, K. L., Yoshida, T., et al. (1984) J. Biol. Chem. 259, 124-133].  相似文献   

14.
Biotin synthase was the first example of what is now regarded as a distinctive enzyme class within the radical S-adenosylmethionine superfamily, the members of which use Fe/S clusters as the sulphur source in radical sulphur insertion reactions. The crystal structure showed that this enzyme contains a [2Fe–2S] cluster with a highly unusual arginine ligand, besides three normal cysteine ligands. However, the crystal structure is at such a low resolution that neither the exact coordination mode nor the role of this exceptional ligand has been elucidated yet, although it has been shown that it is not essential for enzyme activity. We have used quantum refinement of the crystal structure and combined quantum mechanical and molecular mechanical calculations to explore possible coordination modes and their influences on cluster properties. The investigations show that the protonation state of the arginine ligand has little influence on cluster geometry, so even a positively charged guanidinium moiety would be in close proximity to the iron atom. Nevertheless, the crystallised enzyme most probably contains a deprotonated (neutral) arginine coordinating via the NH group. Furthermore, the Fe···Fe distance seems to be independent of the coordination mode and is in perfect agreement with distances in other structurally characterised [2Fe–2S] clusters. The exceptionally large Fe···Fe distance found in the crystal structure could not be reproduced.  相似文献   

15.
Protocatechuate 4,5-dioxygenase from Pseudomonas testosteroni has been purified to homogeneity and crystallized. The iron containing, extradiol dioxygenase is shown to be composed of two subunit types (alpha, Mr = 17,700 and beta, Mr = 33,800) in a 1:1 ratio; such a composition has not been observed for other extradiol dioxygenases. The 4.2 K M?ssbauer spectrum of native protocatechuate 4,5-dioxygenase prepared from cells grown in 57Fe-enriched media consists of a doublet with quadrupole splitting, delta EQ = 2.22 mm/s, and isomer shift delta Fe = 1.28 mm/s, demonstrating a high spin Fe2+ site. These parameters, and the temperature dependence of delta EQ, are unique among enzymes but are strikingly similar to those reported for the reaction center of the photosynthetic bacterium Rhodopseudomonas sphaeroides R-26, suggesting very similar ligand environments. The Fe2+ of protocatechuate 4,5-dioxygenase can be oxidized, for instance by H2O2, to yield high spin Fe3+ with EPR g values around g = 6 (and g = 4.3). In the oxidized state, protocatechuate 4,5-dioxygenase is inactive; the iron, however, can be rereduced by ascorbate to yield active enzyme. Our data suggest that protocatechuate binds to Fe2+; the spectra indicate that the ligand binding is heterogenous. The M?ssbauer spectra observed here are fundamentally different from those reported earlier (Zabinski, R., Münck, E., Champion, P., and Wood, J. M. (1972) Biochemistry 11, 3212-3219). The spectra of the earlier (reconstituted) preparations, which had substantially lower specific activities, probably reflect adventitiously bound Fe3+. We discuss here how adventitiously bound iron can be identified and removed. The Fe2+ which is present in native protocatechuate 4,5-dioxygenase and its complexes with substrates and inhibitors reacts quantitatively with nitric oxide to produce a species with electronic spin S = 3/2. The EPR and M?ssbauer spectra of these complexes compare favorably with EDTA . Fe(II) . NO. We have studied the latter complex extensively and have analyzed the M?ssbauer spectra with an S = 3/2 spin Hamiltonian. EPR spectra show that protocatechuate 4,5-dioxygenase-NO complexes with substrates or inhibitors are heterogeneous and consist of several well defined subspecies. The data show that NO, and presumably also O2, has access to the active site Fe2+ in the enzyme-substrate complex. The use of EPR-detectable NO complexes as a rapid and sensitive tool for the study of the EPR silent active site iron of extradiol dioxygenases is discussed.  相似文献   

16.
M?ssbauer spectra of 57Fe-enriched NADH-reduced yeast cytochrome c oxidase reveal two quadrupole doublets of unequal intensity; one (approximately 33%) is typical of high-spin ferrous heme with histidine coordination and is assigned to heme a3, while the other (approximately 67%) is typical of low-spin heme with two nitrogeneous axial ligands as expected from heme a. The excess intensity (approximately 17%) of the low-spin doublet must therefore be assigned to heme a3 in a modified environment. The M?ssbauer spectra of the same sample exposed to CO show that 50% of the heme iron forms a CO adduct, consistent with heme a3 being inhibited by CO. While low-spin hem a has the same M?ssbauer parameters as in the reduced sample, its intensity has dropped to 35%. A distinctly new high-spin species (approximately 15%) is observed and assigned to heme a in a modified environment. The comparable size of the unexpected high-spin heme a fraction in the CO adduct and the low-spin heme a3 fraction in the reduced enzyme suggest that they arise from the same material. This material is likely to be the inactive fraction that has been found in all preparations of resting yeast cytochrome c oxidase (Siedow, J.N., Miller, S., and Palmer, G. (1981) J. Bioenerg. Biomembr. 14, 171-179). The kinetics of CO recombination following photolysis of the CO complex further confirms the coexistence of two distinct fractions associated with active and inactive protein. The majority (approximately 74%), presumably active protein, recombines exponentially from 160 to 270 K following an Arrhenius law. The large activation enthalpy, delta H approximately 35 kJ/mol, is comparable to that found in the beef heart enzyme, suggesting that the flashed-off CO is bound by the nearby CuB as in the mammalian system (Fiamingo, F.G., Altschuld, R.A., Moh, P.P., and Alben, J.O. (1982) J. Biol. Chem. 250, 1639-1650). In the minority, presumably inactive, fraction the CO recombination has fast nonexponential kinetics with a distribution of activation enthalpies peaking near delta Hp = 13 kJ/mol reminiscent of CO binding to myoglobin. In this inactive fraction CuB is apparently not accessible to the flashed-off CO.  相似文献   

17.
18.
In a previous study of human haemosiderin and ferritin by a combination of Mössbauer spectroscopy and electron microscopy, it was observed that the Mössbauer spectra of haemosiderin showed a very different temperature dependence to those of ferritin. These differences were related to the superparamagnetic behaviour of small particles of a magnetic material and suggested that the magnetic anisotropy constant of the haemosiderin was considerably larger than that of the ferritin. In the present work, samples of ferritin have been examined by Mössbauer spectroscopy following partial deproteinisation, subfractionation, and reconstitution with and without phosphate, in order to investigate whether these procedures lead to changes in the magnetic anisotropy constant of the iron-containing cores. There is no evidence from the present data that changes in the protein shell, in the size of the iron-containing cores of ferritin, or in the phosphate content lead to any significant changes in the magnetic anisotropy constant, as obtained from the temperature dependence of the Mössbauer spectra. These results indicate that the different magnetic anisotropy constant observed in the case of human haemosiderin resulting from transfusional iron overload must arise from other significant differences in the composition or structure of the iron-containing cores.  相似文献   

19.
Iron uptake into the nonheme ferritin of Escherichia coli (EcFtnA) and its site-directed variants have been investigated by M?ssbauer spectroscopy. EcFtnA, like recombinant human H chain ferritin (HuHF), oxidized Fe(II) at a dinuclear ferroxidase center situated at a central position within each subunit. As with HuHF, M?ssbauer subspectra observed between 1 min and 24 h after Fe(II) addition were assigned to Fe(III) monomers, "c", mu-oxo-bridged dimers, "b", and clusters, "a", the latter showing magnetically split spectra, "d", at 4.1 K. Like those of HuHF, the mu-oxo-bridged dimers were formed at the ferroxidase centers. However, the analysis also revealed the presence of a new type of dimer, "e" (QS1 = 0.38 mm/s, IS1 = 0.51 mm/s and QS2 = 0.72 mm/s, IS2 = 0.50 mm/s), and this was also assigned to the ferroxidase center. Dimers "b" appeared to be converted to dimers "e" over time. Subspectra "e" became markedly asymmetric at temperatures above 90 K, suggesting that the two Fe(III) atoms of dimers "e" were more weakly coupled than in the mu-oxo-bridged dimers "b", possibly due to OH- bridging. Monomeric Fe(III), giving relaxation spectra "c", was assigned to a unique site C that is near the dinuclear center. In EcFtnA all three iron atoms seemed to be oxidized together. In contrast to HuHF, no Fe(III) clusters were observed 24 h after the aerobic addition of 48 Fe(II) atoms/molecule in wild-type EcFtnA. This implies that iron is more evenly distributed between molecules in the bacterial ferritins, which may account for its greater accessibility.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号