首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study Saccharomyces cerevisiae yeast cells was used as a novel vehicle for encapsulation of vitamin D3. The effects of initial cholecalciferol concentration (100,000 and 500,000 IU/g yeast), yeast cell pretreatment (plasmolysis with NaCl) and drying method (spray or freeze drying) on microcapsules properties were investigated. It was found that the vitamin concentration and drying method had significant influence on encapsulation efficiency (EE) and size of yeast microcapsules. Furthermore, EE values were more increased by the plasmolysis treatment. The highest EE was obtained for plasmolysed and spray dried yeast cells prepared using initial cholecalciferol concentration of 2.5 mg per gram of yeast cells (76.10?±?6.92%). The values of mean particle size were 3.43–7.91 μm. The presence of cholecalciferol in yeast microcapsules was confirmed by X-ray diffraction (XRD) and Fourier transform-infrared (FT-IR) analyses. The in vitro cholecalciferol release from yeast microcapsules in phosphate buffer saline solution (PBS) followed a controlled release manner consistent with a Fickian diffusion mechanism. In addition, the release studies in simulated gastrointestinal tract showed sustained release of cholecalciferol in the stomach condition and significant release in intestinal medium.  相似文献   

2.
Abstract In conformity with earlier results, low-temperature hardening of cabbage seedlings lowered the osmotic potential and increased the permeability to thiourea of the petiole cells. It also decreased the time required for rounding-up of the protoplasts in cells plasmolysed in 1. 5 × isotonic (or higher) glucose or CaCl2 solutions. Solutions of dimethylsulphoxide (DMSO), thiourea, urea, and glycerol each accelerated the rate of rounding-up of protoplasts in plasmolysed cells, compared to the rate in glucose solution of the same hypertonicity. Each also penetrated the cell membranes as indicated by deplasmolysis. Only in the case of DMSO, in which there was very rapid deplasmolysis (5–6 min), was this rounding-up due to protoplast expansion. In the case of thiourea (deplasmolysis within 30–60 min) rounding-up occurred almost immediately (less than 2 min), before protoplast expansion was sufficient to induce it. It was concluded that the accelerated rounding-up was due to a rapid osmotic adjustment in the protoplasm by the penetrating solution, which increased its water content and decreased its viscosity.  相似文献   

3.
Summary Rapid zygote formation byCosmarium botrytis was induced in a liquid medium by incubation in 5% CO2. Conjugation and zygote formation were studied by SEM, TEM, phase-contrast, and Calcofluor fluorescence microscopy. It was observed that the cells divided immediately prior to conjugation and formed Calcofluor fluorescent conjugation papillae as soon as the primary wall was shed. The conjugating cells and the resultant zygote were envelopped by a non-fluorescent mucilagenous envelope which was eventually pierced by the zygote spines, but never shed. The very young smooth-walled zygote had a thick Calcofluor fluorescent wall. At that stage the zygote could be plasmolysed in 0.4 M mannitol, but no protoplast could be induced to emerge even with the addition of up to 5% Cellulysin; probably indicating that the zygote wall composition and structure is different from that of the secondary wall of the vegetative cells, particularly in the absence of mucilage pores.  相似文献   

4.
The isolation and regenration of prostoplasts from Lipomyces starkeyi have been optimised. Snail enzyme (12 mg·ml−1) proved to be the most effective lytic enzyme although treatment with Novozym 234, Cellulase CP and β-glucanase also resulted in protoplast formation. Magnesium sulphate (0.55 M) was shown to be the best fro protoplast isolation. Exponential phase cells were most susceptible to the lytic enzyme, stationary phase cells appeared to be resistant. 2-Mercaptoethanol or dithiothreitol did not enahance the isolation of protoplasts in this yeast. The optimum pH for protoplast isolation was 5.8. Ultrastructural observations were made on cells during lytic digestion and revealed that the cell wall and capsule are stripped away from the protoplast.Protoplast synthesised new cell wall material when cultured on osmotically stabilised medium, regeneration was not oberved in liquid medium. Optimum regeneration occured when protoplasts were embedded in a thin layer of minimal medium osmotically stabilised with mannitol (0.6M) and solidified with 1.5–2.0% agar. A basal layer of medium was also stabilised with mannitol (0.6 M) but contained 3% agar. The lytic enzyme used for protoplast isolation did not appear to effect the regeneration of protoplasts.  相似文献   

5.
When exponentially growing cells of Clostridium saccharoperbutylacetonicum (ATCC 13564) were exposed to hypertonic concentrations of sucrose (0.3–0.5 M), rapid degradation of the cell wall occurred (sucrose-induced autolysis). The morphological changes from the original rod-shaped cells to protoplasts during the sucrose-induced autolysis were investigated by phase contrast and electron microscopy. When the cells were autolysed in the sucrose solution (0.35 M), each cell began to swell at the middle or at one pole and then formed a small bulb at the swollen part. The bulb consisted of the cytoplasm which was enveloped by the plasma membrane and extruded from the small gap produced by the degradation of the cell wall. The bulb gradually enlarged as lysis progressed, and finally became a protoplast which had no cell wall. The large pre-division cell frequently formed the bulb at the middle (septal site), while the small post-division cell formed the bulb at the pole.  相似文献   

6.
The probable involvement of phospholipase D (PLD)/phosphatidic acid (PA) signalling in the hyperosmotic stress response of Triticum turgidum root cells was investigated by examining the effects of butanol-1, butanol-2, phosphatidylbutanol (PtdBut), N-acylethanolamine (NAE) and PA on the hyperosmotic response, the organization of the tubulin cytoskeleton and the accumulation of a phosphorylated p38-like mitogen-activated protein (MAP) kinase (phospho-p46) in plasmolysed root cells. The effects of all the treatments were assessed by differential interference contrast (DIC) microscopy of living cells, tubulin immunofluorescence, conventional transmission electron microscopy (TEM), tubulin immunogold localization, protoplast volume measurements and western blot analysis. Butanol-1 and NAE compromised the viability of plasmolysed cells, induced a marked reduction in the plasmolysed protoplast volume, and inhibited hyperosmotically induced tubulin macrotubule formation and the accumulation of phospho-p46. Exogenous PA reinforced the hyperosmotic response of T. turgidum root cells and positively affected tubulin macrotubule formation. Additionally, PA reduced the effects of butanol-1 in plasmolysed cells. Taken together, the data suggest that PLD-mediated PA synthesis occurs upstream of the accumulation of phospho-p46 to regulate hyperosmotically induced macrotubule formation in plasmolysed T. turgidum root cells.  相似文献   

7.
Two strains of rumen anaerobes isolated from dehydrodivanillin-degrading cultures were identified as Fusobacterium varium and Enterococcus faecium. These organisms degraded dehydrodivanillin synergistically to 5-carboxymethylvanillin and vanillic acid. Specific conditions for protoplast formation and cell wall regeneration for both bacteria were determined, under strictly anaerobic conditions, to be as follows. The cell wall of each bacterium in yeast extract medium was loosened by adding penicillin G during early log-phase growth. The cell wall of F. varium was lysed by lysozyme (1 mg/ml) in glycerol (0.2 M)-phosphate buffer (0.05 M; pH 7.0). The addition of NaCl (0.08 M) with lysozyme was necessary for lysis of E. faecium in this solution. Almost all cells were converted to protoplasts after 2 h of incubation at 37 degrees C. Regeneration of both protoplasts was 20 to 30% on an agar-containing yeast extract medium.  相似文献   

8.
W Chen  K Ohmiya    S Shimizu 《Applied microbiology》1986,52(4):612-616
Two strains of rumen anaerobes isolated from dehydrodivanillin-degrading cultures were identified as Fusobacterium varium and Enterococcus faecium. These organisms degraded dehydrodivanillin synergistically to 5-carboxymethylvanillin and vanillic acid. Specific conditions for protoplast formation and cell wall regeneration for both bacteria were determined, under strictly anaerobic conditions, to be as follows. The cell wall of each bacterium in yeast extract medium was loosened by adding penicillin G during early log-phase growth. The cell wall of F. varium was lysed by lysozyme (1 mg/ml) in glycerol (0.2 M)-phosphate buffer (0.05 M; pH 7.0). The addition of NaCl (0.08 M) with lysozyme was necessary for lysis of E. faecium in this solution. Almost all cells were converted to protoplasts after 2 h of incubation at 37 degrees C. Regeneration of both protoplasts was 20 to 30% on an agar-containing yeast extract medium.  相似文献   

9.
A simple method for preparation of yeast and plant protoplasts immobilized in alginate gel beads was developed. Yeast cells were first immobilized in strontium alginate gel beads and then treated with protoplast isolation enzyme so that the protoplasts are formed inside the beads. In the case of plant cells, degassing treatment was necessary in order to facilitate enzyme penetration into the cell aggregates. A mixture of the degassing treated plant cells and sodium alginate solution was dropped into SrCl2 containing the protoplast isolation enzymes. Thus protoplasts isolation and gel solidification proceeded simultaneously. With these methods, the required time was shorter while the viability of the immobilized protoplasts were higher than when the conventional method is used.  相似文献   

10.
When the cell wall of Bacillus subtilis is removed by lysozyme and the resultant protoplasts are plated on hypertonic soft agar medium, each protoplast forms an L colony. L bodies from such L colonies again plate as L-colony-forming units (CFU). However, if protoplasts or L bodies are "conditioned" by 1 h of incubation in 0.4% casein hydrolysate medium and then incubated in 25% gelatin medium for 1 h, 60 to 100% of the formerly naked cells give rist to bacillary colonies. The present experiments largely explain the mechanism responsible for the "heritable" persistence of the wall-less state in B. subtilis. It is shown that protoplasts produce a reversion inhibitory factor (RIF) which blocks reversion when the cell concentration exceeds 5 x 105 CFU/ml. This inhibitor is nondialyzable and sensitive to trypsin, heat, and detergent. Efficient reversion at 2 x 107 CFU/ml is obtained if the protoplasts are treated with trypsin after conditioning and chloramphenicol is incorporated into the gelatin reversion medium. In the presence of 500 mug of trypsin per ml, the requirement for gelatin is sharply reduced, and reversion occurs rapidly in liquid medium containing only 10% gelatin. Trypsin also stimulates reversion in L colonies growing on soft agar. Latent RIF is activated by beta-mercaptoethanol. This reagent blocks reversion of protoplast suspensions at densities of 5 x 105 CFU/ml. Comparison of the autolytic behavior of B. subtilis and of the RIF revealed that several or the properties of the two activities coincide: both are inhibited by high concentrations of gelatin, both are activated by beta-mercaptoethanol, and both have high affinity for cell wall. Going on the assumption that RIF is autolysin, models for protoplast reversion is suggested by the finding that mutants with altered teichoic acid show altered reversion behavior.  相似文献   

11.
The aim of this study was to isolate protoplasts from carob (Ceratonia siliqua L.) embryonic tissues with the ability to regenerate cell walls, divide and synthesize galactomannan, a valuable polysaccharide for industry. Protoplasts isolated from carob hypocotyl hooks regenerated cell walls within 24 h. The first divisions of the regenerated cells were observed after 2 days of culture. The highest percentage that successfully divided was achieved when the seedlings were grown under diffuse light, the hypocotyl hooks were plasmolysed for 1 h before incubation in the protoplast isolation solution and the protoplasts were cultured under diffuse light. After 9 days of culture, cell clusters, consisting of eight cells, had been produced, which underwent further mitotic divisions and which were expected to lead to callus formation. Polysaccharide and oligosaccharide synthesis during protoplast regeneration was studied by radiolabelling with exogenous d ‐[U‐14C]glucose, d ‐[U‐14C]mannose or d ‐[2‐3H]mannose, which gave rise to uniform, moderately specific and highly specific labelling, respectively. As revealed by the radioactivity distribution in cell wall monosaccharides, the regenerants deposited new wall polymers that differed markedly from those being synthesized by the hypocotyls from which the protoplasts had been isolated. The regenerants deposited large amounts of callose and smaller amounts of galactose‐, arabinose‐ and mannose‐containing polymers. The latter included glucuronomannan, as demonstrated by a new method involving partial acid hydrolysis followed by β‐glucuronidase (EC 3.2.1.31) digestion. The regenerating protoplasts also released soluble extracellular carbohydrates: polysaccharides which appeared to be mainly acidic arabinogalactans, and oligosaccharides which were mainly neutral and contained glucose, galactose and mannose. We conclude that regenerating carob protoplasts are a useful system for studying carbohydrate secretion, including mannose‐rich poly‐ and oligosaccharides.  相似文献   

12.
The strength of the long-range electrostatic repulsion forces on HeLa cells is measured by agglutinative titration using low molecular weight polylysine (M.W. 11,000). Repulsion forces, found to be present on the smaller HeLa cells from density-inhibited suspension cultures, are weakened by incubation of the cells in hypotonic NaCl solutions. Repulsion forces, found to be absent on the larger cells from fast growing cultures, can be induced on these cells by incubation in hypertonic NaCl solutions. Both effects of anisotonicity are reversible, and disappear on restoration of the medium to normal tonicity. Induction of repulsion forces on fast growing cells is prevented by previous treatment of the cells with neuraminidase. Neuraminidase also abolishes repulsion on density-inhibited cells. It is proposed that alterations of the cell size, produced by anisotonicity or occurring during growth in isotonic suspension medium, affect mutual cell adhesiveness by modifying the strength of the repulsion forces generated by cell surface sialic acids.  相似文献   

13.
Densitometry was applied to the study of sugar transport in yeast cells and protoplasts. The uptake curves of nonmetabolized monosaccharides were without the transient peak observed analytically. Differences in the space of distribution of different monosaccharides (e.g.d-arabinosev.l-arabinose) were confirmed. The uptake of metabolizable sugars (d-glucose,d-fructose) resulted in a gradual increase in protoplast (and cell) volume. The optical density of cells rose abruptly after some 20–60 min of incubation but this rise was not accompanied by a decrease in cell volume. The increase was prevented by 2,4-dinitrophenol but not by iodoacetic acid. The effect of temperature and of ionic strength of the medium was examined. Differences between protoplasts and intact cells in the utilization of sucrose were confirmed.  相似文献   

14.
The yeast Torulaspora delbrueckii, which propagates as a haploid, was made into a diploid by treatment with dimethyl sulfoxide (DMSO) on the regeneration of protoplasts. The diploid state was stably inherited; the cell volume was three times that of the parent strain and the cellular DNA content was two times that of the parental strain. No essential difference was found between diploids induced by DMSO and those formed through intraspecific protoplast fusion. The diploid strains sporulated fairly well, with their cells converting directly into asci. Random spore analysis revealed that diploids induced through protoplast fusion gave rise to auxotrophic segregants (haploids) with the parental genetic marker or to segregants formed by recombination, while diploids induced by DMSO from a doubly auxotrophic parent gave rise to no recombinant, indicating that it was chromosomally homoallelic in nature. The magnesium level in the protoplast regeneration medium was found to be an important factor for inducing diploid formation. At 0.2 mM magnesium diploids appeared even in the absence of DMSO, while at 2 mM magnesium diploids never appeared unless DMSO was added to the regeneration medium. Evidence is provided that the diploids induced by DMSO or a low magnesium level are due to direct diploidization but not protoplast fusion. UV light irradiation of intact cells (without protoplasts), 10% of which survived, also produced diploids among this surviving population. From these results we conclude that the perturbation of protoplast regeneration or of cell division by the treatments mentioned above somehow induced direct diploidization of T. delbrueckii.  相似文献   

15.
The rabbit retina was used to study, in vitro, the responses of central nervous tissue to changes in extracellular osmolarity. After isolation, retinas were incubated in either hypertonic or hypotonic medium containing 80 milliosmols more or 80 milliosmols less sodium chloride than the isotonic control medium. After fixation and embedding, comparable areas of each retina were sectioned and studied with the phase and electron microscopes. The diameters of receptor cell inner segments, synapses, nuclei, and mitochondria were measured on micrographs; mean nuclear areas and volumes were calculated. Cutouts from micrographs also provided areas and volumes of the receptor cell nucleus and its 'surround' of axons, dendrites, glial processes, and extracellular space. In general, hypertonic incubation produced decreases in the linear dimensions, areas, and volumes of the receptor cell, its nucleus, and its mitochondria that were consistent with their behaviour as osmometers. After hypotonic incubation, the increases in the diameters of inner segments, synapses, and mitochondria were in the predicted range. The increases for the nuclei themselves, and the nuclei and their 'surround' were less than expected. This may have been due to the failure of the preparative techniques to maintain the swollen state of these larger structures.  相似文献   

16.
Microbubble has been applied for the recovery of yeast cells from their growth medium using the bioflocculant–chitosan. Results reaching 99% cell recovery were obtained under various conditions examined. The result of bubble size distribution showed that mean bubble size increased as microbubble diffuser pore size was increased. Also, cell recovery efficiency was a function of both bubble size and particle size (cell size). For smaller particles (<50 μm), relatively smaller bubbles (<80 μm) were found to be more effective for recovery, otherwise, relatively larger bubbles (80–150 μm) proved to be efficient in recovering larger particles (particle size: ∼250 μm). Acidic and neutral pHs were effective in separation as hydrophobic particles were formed. As pH tends toward alkalinity, flocs become more hydrophilic, leading to low recovery from the aqueous solution. In addition, separation efficiency was dependent on flocculant dose as increase in concentration improved flocculation and consequently, yeast recovery. However, above a critical concentration, overdosing occurred and inadvertently, recovery efficiency decreased. The application of chitosan as a bioflocculant and the subsequent application of microflotation for the separation of yeast cells proved effective and promises several advantages over non-bubble based separation techniques that preclude continuous industrial-scale production.  相似文献   

17.
The tropical agarophyte Gracilaria changii has been much researched and documented by the Algae Research Laboratory, University of Malaya, especially with regards to its potential as a seaweed bioreactor for valuable compounds. Protoplast regeneration of this seaweed was developed following the optimization of protoplast isolation protocol. Effect of the concentration and combination of isolating enzymes, incubation period, temperature, enzyme solution pH, tissue source on the protoplast yields were used to optimize the isolation protocol. The enzyme mixture with 4% w/v cellulase Onozuka R-10, 2% w/v macerozyme R-10 and 1 unit mL-1 agarase was found to produce the highest yield of protoplast at 28°C and 3 h incubation period. Thallus tips gave higher yields of protoplasts than middle segments. Freshly isolated G. changii protoplasts were cultured in MES medium. Regeneration of protoplast cell walls after 24 h was confirmed by calcofluor white M2R staining under UV fluorescence microscopy. The protoplasts with regenerated cell walls then underwent a series of cell division to produce callus-like cell masses in MES medium. Following this, juvenile plants of G. changii were obtained.  相似文献   

18.
Summary The red cell pH of lamprey (Lampetra fluviatilis) was measured using the DMO method (based on the passive distribution of the wead acid, DMO, across the red cell membrane). The measured red cell pH was higher than the pH of the incubation medium throughout the pH range (7.2–8.2) studied, and higher than the red cell pH calculated from the chloride distribution ratio. Treatment of cells with the metabolic inhibitors 2,4-dinitrophenol or KCN caused a drop in the red cell pH to values lower than the pH of incubation medium, and abolished the difference between the measured red cell pH and the pH calculated from the chloride distribution ratio. These data strongly suggest that the proton gradient across lamprey red cell membrane is actively maintained. Acid extrusion from lamprey red cells may require sodium, as indicated by the observation that when choline was substituted for sodium in the incubation medium, the intracellular pH decreased significantly.  相似文献   

19.
Abstract. The osmotic behaviour of vacuolated plant cells (adaxial epidermal cells of Allium cepa bulb scales, and epidermal as well as chloroplast containing subepidermal stem base cells of Pisum sativum) was studied over a wide range of CaCl2 concentrations. The following results were obtained.
  • a. Allium cepa and Pisum sativum plant cells behave as an ideal osmometer as far as plasmolytic contraction of the protoplast is concerned.
  • b. The protoplasts of these cells could be plasmolysed to 15–45% of their original volume without the loss of membrane semi-permeability.
  • c. Cells plasmolysed in 1.0 kmol m?3 CaCl2 could be completely deplasmolysed and upon deplasmolysis the cells resumed protoplasmic streaming.
  • d. The above findings (a-c) indicate that during gradual plasmolysis and deplasmolysis membrane semi-permeability is maintained.
  • e. At very high plasmolysing concentrations vacuoles covered with the tonoplast separated from the rest of the protoplasm in some cells whereas others showed systrophy. Extruded vacuoles were able to respond to osmotic shrinkage.
  • f. The non-solvent space in Allium cells of about 3% also corresponded to the protoplasm volume calculated from the protoplast geometry (mean from results of direct measurement method and subtraction method).
  • g. Subepidermal stem base cells of water-stress-tolerant Pisum plants had a 75% greater non-solvent space than the control cells indicating that a water-stress-tolerant cell may contain a larger amount of protoplasm and/or a vacuole with a higher content of colloidal material in the vacuole.
  • h. Water-stress-tolerant cells showed greater tolerance to osmotic dehydration (volume reduction) than control cells.
  相似文献   

20.
Summary The optimum conditions for efficient protoplast formation and regeneration in Actinomadura species have been determined. Effective protoplast formation in A. madurae, A. salmonea and strain 2AMI was accomplished using a growth medium containing 1.5% (w/v) glycine, harvested after 3 days growth. A combination of 3 cell wall lytic enzymes was essential for maximal conversion. Using surface spread cultures on a hypertonic regeneration medium, a high efficiency (60%) of regeneration was achieved. Cephamycin C production in strain 2AMI was unaffected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号