首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cloning and expression of a ferritin subunit for Galleria mellonella   总被引:1,自引:0,他引:1  
Ferritin was purified from iron-fed Galleria mellonella hemolymph by ultra centrifugation and FPLC (Superose 6). SDS-PAGE revealed three bands of 26, 30, and 32 kDa. The ferritin 26 kDa subunit cDNA was obtained from RT-PCR using primer designed from N-terminal sequence analysis. 5'-RACE was used to obtain the complete protein coding sequence. The sequence encodes a 211 amino acid polypeptide including a 20 amino acid leader peptide. An IRE (iron-responsive element) sequence with a predicted stem-loop structure was present in the 5'-UTR of ferritin mRNA. Sequence alignment has a sequence identity with Calpodes ethlius (S)(74%), Drosophila melanogaster (50%), and Aedes aegypti (39%). Northern blot analysis indicated that there were 1.5- and 1.75-fold increases in the expression of ferritin mRNA after iron-fed fat body and midgut, respectively. Also, we confirmed that the ferritin mRNA is not expressed in adult ovary and testis. Arch.  相似文献   

2.
3.
Ferritin, an iron storage protein, has been purified from the last larval hemolymph of Protaetia brevitarsis (coleoptera) by KBr density gradient ultracentrifugation and resource Q (anion exchange chromatography) using fast performance liquid chromatography (FPLC) system. The iron content of ferritin was determined by atomic emission spectroscopy and FereneS stain. Ferritin of P. brevitarsis is shown to have two different subunits presented on a SDSPAGE in normal (N) and ironinjected (I) hemolymph. SDS PAGE revealed that the ferritin consists of two major polypeptides of 27 and 28 kDa in normal hemolymph. Interestingly, however, 30 kDa subunit was substituted for 28 kDa when iron was injected into the hemolymph. Apporximate isoelectric points of 27 kDa, 28 kDa, and 30 kDa ferritin subunits were 6.7, 6.75, and 6.8, respectively. Ferritin of P. brevitarsis was detected by FereneS stain and confirmed by Western blotting using its polyclonal antibody. Other characteristics such as amino acid composition and Nterminal amino acid sequence were investigated. Amino acid composition of ferritin (N and I) was rich in alanine, glycine, glutamine or glutamic acid and serine, but poor in histidine, arginine, methionine and phenylalanine.  相似文献   

4.
In the diffuse epitheliochorial porcine placenta iron is secreted as uteroferrin by the maternal epithelium of the areola-gland subunit of the placenta. To elucidate the intracellular pathways of physiological iron in uterine gland epithelium material from 10 sows at 15 to 111 days of gestation was processed for electron microscopy by different routine methods with or without postfixation in osmium tetroxide. Ferritin particles were identified by their size and shape and the content of iron was confirmed by X-ray energy dispersive microanalysis of accumulated ferritin particles. Distinct ferritin particles were not observed in the extracellular space either basal to or luminal to the epithelial cells. Intracellular ferritin was observed apparently free in the cytoplasm, but in variable amounts. Transfer tubules and dense bodies were located basally in the secretory cells. Both of these organelles contained ferritin particles, showed reaction sites for acid phosphatase and were stained by periodic acid-thiocarbohydrazide-silver proteinate. The ciliated cells differed by having apically located dense bodies containing numerous ferritin particles. Our finding of native ferritin in cells with hormonally regulated iron transport supports the concept that transfer tubules as part of the lysosomal complex are part of the endocytic pathway in secretory cells and indicate that ferritin here is an intracellular transport or storage intermediate.  相似文献   

5.
Ferritin is a major eukaryotic protein and in humans is the protein of iron storage. A partial gene fragment of ferritin (255 bp) taken from the total RNA of Periserrula leucophryna, was amplified by RT-PCR using oligonucleotide primers designed from the conserved metal binding domain of eukaryotic ferritin and confirmed by DNA sequencing. Using the 32P-labeled partial ferritin cDNA fragment, 28 different clones were obtained by the screening of the P. leucophryna cDNA library prepared in the Uni-ZAP XR vector, sequenced and characterized. The longest clone was named the PLF (Periserrula leucophryna ferritin) gene and the nucleotide and amino acid sequences of this novel gene were deposited in the GenBank databases with accession numbers DQ207752 and ABA55730, respectively. The entire cDNA of PLF clone was 1109 bp (CDS: 129-653), including a coding nucleotide sequence of 525 bp, a 5'-untranslated region of 128 bp, and a 3'-noncoding region of 456 bp. The 5'-UTR contains a putative iron responsive element (IRE) sequence. Ferritin has an open reading frame encoding a polypeptide of 174 amino acids including a hydrophobic signal peptide of 17 amino acids. The predicted molecular weights of the immature and mature ferritin were calculated to be 20.3 kDa and 18.2 kDa, respectively. The region encoding the mature ferritin was subcloned into the pT7-7 expression vector after PCR amplification using the designed primers and included the initiation and termination codons; the recombinant clones were expressed in E. coli BL21(DE3) or E. coli BL21(DE3)pLysE. SDS-PAGE and western blot analysis showed that a ferritin of approximately 18 kDa (mature form) was produced and that by iron staining in native PAGE, it is likely that the recombinant ferritin is correctly folded and assembled into a homopolymer composed of a single subunit.  相似文献   

6.
Ferritin was purified from chicken liver by two different methods: gel filtration on controlled-pore glass beads, and immunoaffinity chromatography employing a chicken ferritin-specific monoclonal antibody that did not cross-react with horse spleen ferritin. This antibody recognizes intact ferritin and an oligomeric 240 kDa form of the molecule after protein transfer to nitrocellulose, but not the 22 kDa chicken ferritin subunit. Chicken liver ferritin purified by these methods exhibited reduced migration on non-denaturing polyacrylamide gels compared with horse spleen ferritin. These results were consistent with the difference in calculated isoelectric points of chicken and horse ferritin subunits. By two-dimensional gel electrophoresis, chicken ferritin 22 kDa subunits exhibited isoelectric points from 6.1 to 6.6 whereas horse spleen ferritin subunits exhibited isoelectric points of 5.8-6.3. The 240 kDa form of the chicken ferritin molecule had an isoelectric point of 6.6 whereas the 210 kDa form of the horse ferritin molecule had isoelectric points of 5.1 and 4.9. Intact chicken liver ferritin particles were 13.4 +/- 0.8 nm (controlled-pore glass-purified) and 12.5 +/- 0.9 nm (affinity-purified) in diameter when viewed by electron microscopy. Horse spleen ferritin consisted of slightly smaller particles with an average diameter of 11.0 +/- 0.7 nm. However, ferritin from chicken liver and horse spleen co-migrated with an apparent molecular mass of 470 kDa when analysed by Sepharose 4B gel filtration chromatography. These results indicate that, consistent with results from other published purification methods, the chicken ferritin purified by the methods reported here exhibits both structural similarities to, and differences from, horse spleen ferritin.  相似文献   

7.
8.
9.
Ferritin has been shown as being the principal iron storage in the majority of living organisms. In marine species, ferritin is also involved in high-level accumulation of (210)Po. As part of our work on the investigation of these radionuclides' concentration in natural environment, ferritin was searched at the gene and protein level. Ferritin was purified from the visceral mass of the oyster Crassostrea gigas by ion-exchange chromatography and HPLC. SDS-PAGE revealed one band of 20 kDa. An Expressed Sequence Tag (EST) library was screened and led to the identification of two complementary DNA (cDNA) involved in ferritin subunit expression. The complete coding sequences and the untranslated regions (UTRs) of the two genes were obtained and a 5' Rapid Amplification of cDNA Ends (RACE) was used to obtain the two iron-responsive elements (IREs) with the predicted stem-loop structures usually present in the 5'-UTR of ferritin mRNA. Sequence alignment in amino acid of the two new cDNA showed an identity with Pinctada fucata (85.4-88.3%), Lymnaea stagnalis (79.3-82.2%) and Helix pomatia (79.1-79.1%). The residues responsible for the ferroxidase center, conserved in all vertebrate H-ferritins, are present in the two oyster ferritin subunits. Oyster ferritins do not present the special characteristics of other invertebrate ferritins like insect ferritins but have some functional similarities with the vertebrate H chains ferritin.  相似文献   

10.
Ferritin is a multisubunit protein that is responsible for storing and detoxifying cytosolic iron. Ferritin can be found in serum but is relatively iron poor. Serum ferritin occurs in iron overload disorders, in inflammation, and in the genetic disorder hyperferritinemia with cataracts. We show that ferritin secretion results when cellular ferritin synthesis occurs in the relative absence of free cytosolic iron. In yeast and mammalian cells, newly synthesized ferritin monomers can be translocated into the endoplasmic reticulum and transits through the secretory apparatus. Ferritin chains can be translocated into the endoplasmic reticulum in an in?vitro translation and membrane insertion system. The insertion of ferritin monomers into the ER occurs under low-free-iron conditions, as iron will induce the assembly of ferritin. Secretion of ferritin chains provides a mechanism that limits ferritin nanocage assembly and ferritin-mediated iron sequestration in the absence of the translational inhibition of ferritin synthesis.  相似文献   

11.
12.
Summary The distribution of ferritin antigenicity in control and iron-loaded rat hepatocytes was investigated with an immunogold-ferritin antibody technique. Antibody to horse spleen ferritin showed immunoreactivity as determined by dot blotting with immunogold/silver staining with purified rat liver ferritin but not with rat haemosiderin. The initial site of ferritin degradation was studied by analysing the density of gold labelling in the cytosol and lysosomes in combination with pre-embedding acid phosphatase cytochemistry.Immunoreactive ferritin was present in the cytosol, cytosolic clusters and lysosomes of normal hepatocytes. After iron-loading, the labelling density increased over tenfold in parenchymal cell cytosol with a smaller increase in Kupffer cells. Ferritin clusters contained substantially more immunoreactive ferritin than equivalent areas of lysosomes or cytosol. Analysis of the labelling density in hepatocyte lysosomes showed that, despite a striking increase in iron content, one-quarter of the lysosomes showed less immunolabelled ferritin than the cytosol. The existence of a wide range of ferritin labelling densities in the lysosomes with a large proportion unlabelled suggests that the ferritin protein shell is not degraded at a significant rate either in the cytosol or in clusters but only after incorporation into lysosomes.  相似文献   

13.
Ferritin, added to the incubation medium of ascites tumor cells, was used as an electron microscopic marker to study the uptake of large protein molecules by morphologically intact cells. A definite uptake could be detected after 1 hour of incubation in Tyrode bicarbonate solution containing 0.04 to 13.3 mg ferritin/ml. Ferritin was found in a variety of membrane-surrounded structures, suggesting that pinocytesis and related membrane movements are occurring under physiological conditions and can account for the penetration of intact macromolecules into isolated tumor cells. Supplementation of the medium with serum albumin (33 mg/ml) increased the average amount of ferritin per cell and per pinocytotic structure. Ferritin was strongly adsorbed by fragments of lysed cells, which were readily taken up by intact cells. Besides its role as carrier, this debris appeared to stimulate membrane movements. Only rare examples were found to suggest the release of ferritin from the pinocytotic structures into the cytoplasm. Thus, the disintegration of such structures cannot be considered an obvious step towards a rapid metabolic utilization of protein by the cell. Particles of colloidal gold presented to the cell under the same conditions were not taken up to any significant extent, thus providing good evidence for a selective ingestion of particles of comparable sizes.  相似文献   

14.
We reported previously on the purification and partial characterization of a putative microtubule-associated protein (MAP) from bovine adrenal cortex with an approximate molecular mass of 250 kDa. The protein was expressed ubiquitously in mammalian tissues, and bound to microtubules in vitro and in vivo, but failed to promote tubulin polymerization into microtubules. In the present study, partial amino acid sequencing revealed that the protein shares an identical primary structure with the widely distributed iron storage protein, ferritin. We also found that the putative MAP and ferritin are indistinguishable from each other by electrophoretic mobility, immunological properties and morphological appearance. Moreover, the putative MAP conserves the iron storage and incorporation properties of ferritin, confirming that the two are structurally and functionally the same protein. This fact led us to investigate the interaction of ferritin with microtubules by direct electron microscopic observations. Ferritin was bound to microtubules either singly or in the form of large intermolecular aggregates. We suggest that the formation of intermolecular aggregates contributes to the intracellular stability of ferritin. The interactions between ferritin and microtubules observed in this study, in conjunction with the previous report that the administration of microtubule depolymerizing drugs increases the serum release of ferritin in rats [Ramm GA, Powell LW & Halliday JW (1996) J Gastroenterol Hepatol11, 1072-1078], support the probable role of microtubules in regulating the intracellular concentration and release of ferritin under different physiological circumstances.  相似文献   

15.
Decreased Ferritin Levels in Brain in Parkinson''s Disease   总被引:5,自引:2,他引:3  
Ferritin levels were measured in postmortem brain tissue from patients dying with Parkinson's disease [treated with L-3,4-dihydroxyphenylalanine (L-DOPA)] and from control patients. Ferritin levels were decreased in the substantia nigra, caudate-putamen, globus pallidus, cerebral cortex, and cerebellum when compared with age-matched control tissues. However, in CSF from L-DOPA-treated patients and in serum from L-DOPA-treated and untreated parkinsonian patients, ferritin levels were normal. Previous studies have suggested an increased total iron content in substantia nigra of parkinsonian brain. The failure of substantia nigra ferritin formation to be stimulated by increased iron levels suggests some defect in iron handling in this critical brain region in Parkinson's disease. The reason for decreased ferritin levels throughout the parkinsonian brain is not clear but does not seem to reflect a general system deficit in ferritin.  相似文献   

16.
17.
Ferritin and colloidal gold were found to permeate human erythrocytes during rapid or gradual hypotonic hemolysis. Only hemolysed cells contained these particles; adjacent intact cells did not contain the tracers. Ferritin or gold added 3 min after the onset of hypotonic hemolysis did not permeate the ghost cells which had, therefore, become transiently permeable. By adding ferritin at various times after the onset of hemolysis, it was determined that for the majority of the cells the permeable state (or interval between the time of development and closure of membrane holes) existed only from about 15 to 25 sec after the onset of hemolysis. It was possible to fix the transient "holes" in the open position by adding glutaraldehyde only between 10 and 20 sec after the onset of hemolysis. The existence of such fixed holes was shown by the cell entry of ferritin and gold which were added to these prefixed cells. Membrane defects or discontinuities (of the order of 200–500 A wide) were observed only in prefixed cells which were permeated by ferritin subsequently added. Adjacent prefixed cells which did not become permeated by added ferritin did not reveal any membrane discontinuities. Glutaraldehyde does not per se induce or create such membrane defects since cells which had been fixed by glutaraldehyde before the 10-sec time point or after the 180-sec time point were never permeable to added ferritin, and the cell membranes never contained any defects. It was also observed that early in hemolysis (7–12 sec) a small bulge in one zone of the membrane often occurred. Ghost cells produced by holothurin A (a saponin) and fixed by glutaraldehyde became permeated by ferritin subsequently added, but no membrane discontinuities were seen. Ghosts produced by lysolecithin and fixed by glutaraldehyde also became permeated by subsequently added ferritin, and many membrane defects were seen here (about 300 A wide).  相似文献   

18.
Ferritin, an iron-sequestering and -binding protein, is localized to the vacuolar system in Calpodes ethlius larvae. The amount of iron-loaded ferritin in intact larval midgut can be increased by pretreatment with iron. When poly(A)+ RNA from control or iron-treated larvae was translated in vitro, a 24 kilodalton (kDa) protein was a major translation product. If the cell-free system was supplemented with dog pancreatic microsomes, the 24-kDa protein was not detectable: the major translation product was 28-30 kDa. The 24-kDa and 28- to 30-kDa proteins were identified as ferritin subunits by immunoprecipitation with anti-Manduca ferritin antibodies. Proteinase K digestion of the translation products showed that the 28- to 30-kDa subunit was targeted into the lumen of, and protected by, the microsomes. The change in molecular mass of the ferritin monomer was attributed to glycosylation of the 24-kDa subunit within the lumen of the microsomes. This was demonstrated by (i) the ability of the 28- to 30-kDa subunit, but not the 24-kDa subunit, to bind concanavalin A on Western blots and (ii) inhibition of the change in molecular mass from 24 to 28-30 kDa if tunicamycin is added to the microsomes. The results indicate that the Calpodes ferritin subunit was synthesized, targeted to microsomes, and glycosylated within their lumen in a rabbit reticulocyte cell-free system primed with midgut poly(A)+ RNA extracted from control or iron-treated larvae.  相似文献   

19.
Ferritin is a cytosolic protein that stores excess iron, thereby protecting cells from iron toxicity. Ferritin-stored iron is believed to be utilized when cells become iron deficient; however, the mechanisms underlying the extraction of iron from ferritin have yet to be fully elucidated. Here, we demonstrate that ferritin is degraded in the lysosome under iron-depleted conditions and that the acidic environment of the lysosome is crucial for iron extraction from ferritin and utilization by cells. Ferritin was targeted for degradation in the lysosome even under iron-replete conditions in primary cells; however, the mechanisms underlying lysosomal targeting of ferritin were distinct under depleted and replete conditions. In iron-depleted cells, ferritin was targeted to the lysosome via a mechanism that involved autophagy. In contrast, lysosomal targeting of ferritin in iron-replete cells did not involve autophagy. The autophagy-independent pathway of ferritin delivery to lysosomes was deficient in several cancer-derived cells, and cancer-derived cell lines are more resistant to iron toxicity than primary cells. Collectively, these results suggest that ferritin trafficking may be differentially regulated by cell type and that loss of ferritin delivery to the lysosome under iron-replete conditions may be related to oncogenic cellular transformation.  相似文献   

20.
Ferritin is an intracellular iron storage protein and its translation is inhibited by binding of iron regulatory proteins (IRPs) to the iron-responsive element (IRE) located in the 5' untranslated region of its mRNA. In this paper, we have investigated the effect of hyperoxia and iron on the binding activity of IRP-1 and the ferritin synthesis in mouse peritoneal macrophages. The binding activity of IRP-1 was increased and the ferritin synthesis was suppressed when the macrophages were cultured under hyperoxia, and the reverse occurred under hypoxia. Iron diminished the IRP-1-binding activity and the enhanced synthesis of ferritin. However, this effect was arrested under hyperoxia. Consistently, hypoxia-induced loss of binding activity of IRP-1 and the enhanced synthesis of ferritin were blocked in the presence of an iron chelator deferoxamine. These alterations of the binding activity of IRP-1 in response to oxygen and iron were not reproduced in the cell-free extract. The data suggest that in the macrophages oxygen and iron inversely act on the binding activity of IRP-1 and the ferritin synthesis, and that intracellular mechanism(s) to sense iron and/or oxygen is required for these actions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号