首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined how a dietary supplement affects the prevalence of antibiotic-resistant Escherichia coli on a dairy farm in Washington State. Between 2001 and 2004 the prevalence of fecal E. coli strains resistant to streptomycin, sulfadiazine, and tetracycline (SSuT strains) declined from 59.2% to 26.1% in the calf population. In 2003 the dairy discontinued use of a dietary supplement, and we hypothesized that the decline in prevalence of SSuT strains was related to this change in management. To test this we established three treatments in which calves received no supplement, the dietary supplement with oxytetracycline, or the dietary supplement without oxytetracycline. Calves receiving either dietary supplement had a significantly higher prevalence of SSuT E. coli than the no-supplement control group (≈37% versus 20%, respectively; P = 0.03). Importantly, there was no evidence that oxytetracycline contributed to an increased prevalence of fecal SSuT E. coli. We compared the growth characteristics of SSuT and non-SSuT E. coli in LB broth enriched with either the complete dietary supplement or its individual constituents. Both the complete dietary supplement and its vitamin D component supported a significantly higher cell density of SSuT strains (P = 0.003 and P = 0.001, respectively). The dry milk and vitamin A components of the dietary supplement did not support different cell densities. These results were consistent with selection and maintenance of SSuT E. coli due to environmental components independent of antibiotic selection.  相似文献   

2.
The prevalence of antimicrobial drug-resistant bacteria is typically highest in younger animals, and prevalence is not necessarily related to recent use of antimicrobial drugs. In dairy cattle, we hypothesize that antimicrobial drug-resistant, neonate-adapted bacteria are responsible for the observed high frequencies of resistant Escherichia coli in calves. To explore this issue, we examined the age distribution of antimicrobial drug-resistant E. coli from Holstein cattle at a local dairy and conducted an experiment to determine if low doses of oxytetracycline affected the prevalence of antimicrobial drug-resistant E. coli. Isolates resistant to tetracycline (>4 microg/ml) were more prevalent in <3-month-old calves (79%) compared with lactating cows (14%). In an experimental trial where calves received diets supplemented with or without oxytetracycline, the prevalence of tetracycline-resistant E. coli was slightly higher for the latter group (P = 0.039), indicating that drug use was not required to maintain a high prevalence of resistant E. coli. The most common resistance pattern among calf E. coli isolates included resistance to streptomycin (>12 microg/ml), sulfadiazine (>512 microg/ml), and tetracycline (>4 microg/ml) (SSuT), and this resistance pattern was most prevalent during the period when calves were on milk diets. To determine if prevalence was a function of differential fitness, we orally inoculated animals with nalidixic acid-resistant strains of SSuT E. coli and susceptible E. coli. Shedding of SSuT E. coli was significantly greater than that of susceptible strains in neonatal calves (P < 0.001), whereas there was no difference in older animals (P = 0.5). These data support the hypothesis that active selection for traits linked to the SSuT phenotype are responsible for maintaining drug-resistant E. coli in this population of dairy calves.  相似文献   

3.
The prevalence of antimicrobial drug-resistant bacteria is typically highest in younger animals, and prevalence is not necessarily related to recent use of antimicrobial drugs. In dairy cattle, we hypothesize that antimicrobial drug-resistant, neonate-adapted bacteria are responsible for the observed high frequencies of resistant Escherichia coli in calves. To explore this issue, we examined the age distribution of antimicrobial drug-resistant E. coli from Holstein cattle at a local dairy and conducted an experiment to determine if low doses of oxytetracycline affected the prevalence of antimicrobial drug-resistant E. coli. Isolates resistant to tetracycline (>4 μg/ml) were more prevalent in <3-month-old calves (79%) compared with lactating cows (14%). In an experimental trial where calves received diets supplemented with or without oxytetracycline, the prevalence of tetracycline-resistant E. coli was slightly higher for the latter group (P = 0.039), indicating that drug use was not required to maintain a high prevalence of resistant E. coli. The most common resistance pattern among calf E. coli isolates included resistance to streptomycin (>12 μg/ml), sulfadiazine (>512 μg/ml), and tetracycline (>4 μg/ml) (SSuT), and this resistance pattern was most prevalent during the period when calves were on milk diets. To determine if prevalence was a function of differential fitness, we orally inoculated animals with nalidixic acid-resistant strains of SSuT E. coli and susceptible E. coli. Shedding of SSuT E. coli was significantly greater than that of susceptible strains in neonatal calves (P < 0.001), whereas there was no difference in older animals (P = 0.5). These data support the hypothesis that active selection for traits linked to the SSuT phenotype are responsible for maintaining drug-resistant E. coli in this population of dairy calves.  相似文献   

4.
Association of specific antimicrobial resistance patterns with unrelated selective traits has long been implicated in the maintenance of antimicrobial resistance in a population. Previously we demonstrated that Escherichia coli strains with a specific resistance pattern (resistant to streptomycin, sulfadiazine, and tetracycline [SSuT]) have a selective advantage in dairy calf intestinal environments and in the presence of a milk supplement commonly fed to the calves. In the present study we identified the sequence of the genetic element that confers the SSuT phenotype and show that this element is present in a genetically diverse group of E. coli isolates, as assessed by macrorestriction digestion and pulsed-field gel electrophoresis. This element was also found in E. coli isolates from 18 different cattle farms in Washington State. Using in vitro competition experiments we further demonstrated that SSuT strains from 17 of 18 farms were able to outcompete pansusceptible strains. In a separate set of experiments, we were able to transfer the antimicrobial resistance phenotype by electroporation to a laboratory strain of E. coli (DH10B), making that new strain more competitive during in vitro competition with the parental DH10B strain. These data indicate that a relatively large genetic element conferring the SSuT phenotype is widely distributed in E. coli from cattle in Washington State. Furthermore, our results indicate that this element is responsible for maintenance of these traits owing to linkage to genetic traits that confer a selective advantage in the intestinal lumens of dairy calves.  相似文献   

5.
Healthy calves (n = 96, 1 to 9 weeks old) from a dairy herd in central Pennsylvania were examined each month over a five-month period for fecal shedding of ceftiofur-resistant gram-negative bacteria. Ceftiofur-resistant Escherichia coli isolates (n = 122) were characterized by antimicrobial resistance (disk diffusion and MIC), serotype, pulsed-field gel electrophoresis subtypes, beta-lactamase genes, and virulence genes. Antibiotic disk diffusion assays showed that the isolates were resistant to ampicillin (100%), ceftiofur (100%), chloramphenicol (94%), florfenicol (93%), gentamicin (89%), spectinomycin (72%), tetracycline (98%), ticarcillin (99%), and ticarcillin-clavulanic acid (99%). All isolates were multidrug resistant and displayed elevated MICs. The E. coli isolates belonged to 42 serotypes, of which O8:H25 was the predominant serotype (49.2%). Pulsed-field gel electrophoresis classified the E. coli isolates into 27 profiles. Cluster analysis showed that 77 isolates (63.1%) belonged to one unique group. The prevalence of pathogenic E. coli was low (8%). A total of 117 ceftiofur-resistant E. coli isolates (96%) possessed the bla(CMY2) gene. Based on phenotypic and genotypic characterization, the ceftiofur-resistant E. coli isolates belonged to 59 clonal types. There was no significant relationship between calf age and clonal type. The findings of this study revealed that healthy dairy calves were rapidly colonized by antibiotic-resistant strains of E. coli shortly after birth. The high prevalence of multidrug-resistant nonpathogenic E. coli in calves could be a significant source of resistance genes to other bacteria that share the same environment.  相似文献   

6.
Urinary tract infections (UTIs) are among the most common bacterial infections and are responsible for significant morbidity and health care costs worldwide. The main bacterial cause of uncomplicated UTI is Escherichia coli, which possesses numerous virulence factors (VFs). Many studies of the pathogenesis of E. coli UTI have centered on VF genes. Hence, the development of better molecular assays to study VF genes would facilitate these studies. We developed a highly sensitive and specific multiplex PCR-based reverse line blot (mPCR/RLB) assay to simultaneously detect 22 VF genes of uropathogenic E. coli and then used it to characterize 180 isolates from nonpregnant women of child-bearing age with cystitis and 153 fecal isolates from similar-age healthy women, in regional New South Wales, Australia. The assay accurately identified all VF genes (of the 22 under study) known to be present in 30 previously characterized control strains. The detection limits were 28 ng of DNA from E. coli isolates and 50 CFU/ml in mock-infected urine specimens containing known concentrations of E. coli. Cystitis isolates (compared to the fecal isolates) showed a significantly higher prevalence of 18 individual VF genes and contained significantly more VF genes per isolate (median number, 18.5 versus 6.5 [P = 0.001]). Discordance between paired probes for a given VF gene occurred in several clinical test isolates but no reference strains and among the test isolates was associated with fecal source (10% of VF genes versus 2% for cystitis isolates [P < 0.001]). This novel mPCR/RLB method is a potentially powerful tool for investigating the prevalence and distribution of VFs in E. coli.  相似文献   

7.
We compared fecal samples with samples collected with rectoanal mucosa swabs (RAMS) to determine the prevalence of Escherichia coli O157 in feedlot cattle (n = 747). Escherichia coli O157 was detected in 9.5% of samples collected with RAMS and 4.7% of samples tested by fecal culture. Pulsed-field gel electrophoresis analysis of isolates suggested that the strains colonizing the rectoanal junction were the same as those from the feces. Mucosal swab sampling was more sensitive than fecal sampling for determining the prevalence of E. coli O157 in feedlot cattle.  相似文献   

8.
Maintenance of antimicrobial drug resistance in bacteria can be influenced by factors unrelated to direct selection pressure such as close linkage to other selectively advantageous genes and secondary advantage conveyed by antimicrobial resistance genes in the absence of drug selection. Our previous trials at a dairy showed that the maintenance of the antimicrobial resistance genes is not influenced by specific antimicrobial selection and that the most prevalent antimicrobial resistance phenotype of Escherichia coli is specifically selected for in young calves. In this paper we examine the role of secondary advantages conveyed by antimicrobial resistance genes. We tested antimicrobial-susceptible null mutant strains for their ability to compete with their progenitor strains in vitro and in vivo. The null mutant strains were generated by selection for spontaneous loss of resistance genes in broth supplemented with fusaric acid or nickel chloride. On average, the null mutant strains were as competitive as the progenitor strains in vitro and in newborn calves (in vivo). Inoculation of newborn calves at the dairy with antimicrobial-susceptible strains of E. coli did not impact the prevalence of antimicrobial-resistant E. coli. Our results demonstrate that the antimicrobial resistance genes are not responsible for the greater fitness advantage of antimicrobial-resistant E. coli in calves, but the farm environment and the diet clearly exert critical selective pressures responsible for the maintenance of antimicrobial resistance genes. Our current hypothesis is that the antimicrobial resistance genes are linked to other genes responsible for differential fitness in dairy calves.  相似文献   

9.
10.
Escherichia coli isolates were obtained from common host sources of fecal pollution and characterized by using repetitive extragenic palindromic (REP) PCR fingerprinting. The genetic relationship of strains within each host group was assessed as was the relationship of strains among different host groups. Multiple isolates from a single host animal (gull, human, or dog) were found to be identical; however, in some of the animals, additional strains occurred at a lower frequency. REP PCR fingerprint patterns of isolates from sewage (n = 180), gulls (n = 133), and dairy cattle (n = 121) were diverse; within a host group, pairwise comparison similarity indices ranged from 98% to as low as 15%. A composite dendrogram of E. coli fingerprint patterns did not cluster the isolates into distinct host groups but rather produced numerous subclusters (approximately >80% similarity scores calculated with the cosine coefficient) that were nearly exclusive for a host group. Approximately 65% of the isolates analyzed were arranged into host-specific groups. Comparable results were obtained by using enterobacterial repetitive intergenic consensus PCR and pulsed-field gel electrophoresis (PFGE), where PFGE gave a higher differentiation of closely related strains than both PCR techniques. These results demonstrate that environmental studies with genetic comparisons to detect sources of E. coli contamination will require extensive isolation of strains to encompass E. coli strain diversity found in host sources of contamination. These findings will assist in the development of approaches to determine sources of fecal pollution, an effort important for protecting water resources and public health.  相似文献   

11.
We hypothesized that bacterial populations growing in the absence of antibiotics will accumulate more resistance gene mutations than bacterial populations growing in the presence of antibiotics. If this is so, the prevalence of dysfunctional resistance genes (resistance pseudogenes) could provide a measure of the level of antibiotic exposure present in a given environment. As a proof-of-concept test, we assayed field strains of Escherichia coli for their resistance genotypes using a resistance gene microarray and further characterized isolates that had resistance phenotype-genotype discrepancies. We found a small but significant association between the prevalence of isolates with resistance pseudogenes and the lower antibiotic use environment of a beef cow-calf operation versus a higher antibiotic use dairy calf ranch (Fisher's exact test, P = 0.044). Other significant findings include a very strong association between the dairy calf ranch isolates and phenotypes unexplained by well-known resistance genes (Fisher's exact test, P < 0.0001). Two novel resistance genes were discovered in E. coli isolates from the dairy calf ranch, one associated with resistance to aminoglycosides and one associated with resistance to trimethoprim. In addition, isolates resistant to expanded-spectrum cephalosporins but negative for bla(CMY-2) had mutations in the promoter regions of the chromosomal E. coli ampC gene consistent with reported overexpression of native AmpC beta-lactamase. Similar mutations in hospital E. coli isolates have been reported worldwide. Prevalence or rates of E. coli ampC promoter mutations may be used as a marker for high expanded-spectrum cephalosporin use environments.  相似文献   

12.
Escherichia coli strains isolated from commercial broilers and an experimental flock of chickens were screened to determine phenotypic expression of antimicrobial resistance and carriage of drug resistance determinants. The goal of this study was to investigate the influence of oxytetracycline, sarafloxacin, and enrofloxacin administration on the distribution of resistance determinants and strain types among intestinal commensal E. coli strains isolated from broiler chickens. We detected a high prevalence of resistance to drugs such as tetracycline (36 to 97%), sulfonamides (50 to 100%), and streptomycin (53 to 100%) in E. coli isolates from treated and untreated flocks. These isolates also had a high prevalence of class 1 integron carriage, and most of them possessed the streptomycin resistance cassette, aadA1. In order to investigate the contribution of E. coli strain distribution to the prevalence of antimicrobial resistance and the resistance determinants, isolates from each flock were DNA fingerprinted by enterobacterial repetitive intergenic consensus sequence (ERIC) PCR. Although very diverse E. coli strain types were detected, four ERIC strain types were present on all of the commercial broiler farms, and two of the strains were also found in the experimental flocks. Each E. coli strain consisted of both susceptible and antimicrobial agent-resistant isolates. In some instances, isolates of the same E. coli strain expressed the same drug resistance patterns although they harbored different tet determinants or streptomycin resistance genes. Therefore, drug resistance patterns could not be explained solely by strain prevalence, indicating that mobile elements contributed significantly to the prevalence of resistance.  相似文献   

13.
Distillers' grains (DG), a by-product of ethanol production, are fed to cattle. Associations between Escherichia coli O157 prevalence and feeding of DG were investigated in feedlot cattle (n = 379) given one of three diets: steam-flaked corn (SFC) and 15% corn silage with 0 or 25% dried distillers' grains (DDG) or SFC with 5% corn silage and 25% DDG. Ten fecal samples were collected from each pen weekly for 12 weeks to isolate E. coli O157. Cattle fed 25% DDG with 5 or 15% silage had a higher (P = 0.01) prevalence of E. coli O157 than cattle fed a diet without DDG. Batch culture ruminal or fecal microbial fermentations were conducted to evaluate the effect of DDG on E. coli O157 growth. The first study utilized microbial inocula from steers fed SFC or dry-rolled corn with 0 or 25% DDG and included their diet as the substrate. Ruminal microbial fermentations from steers fed DDG had higher E. coli O157 contents than ruminal microbial fermentations from steers fed no DDG (P < 0.05) when no substrate was included. Fecal fermentations showed no DDG effect on E. coli O157 growth. In the second study with DDG as a substrate, ruminal fermentations with 0.5 g DDG had higher (P < 0.01) E. coli O157 concentrations at 24 h than ruminal fermentations with 0, 1, or 2 g DDG. In fecal fermentations, 2 g DDG resulted in a higher concentration (P < 0.05) at 24 h than 0, 0.5, or 1 g DDG. The results indicate that there is a positive association between DDG and E. coli O157 in cattle, and the findings should have important ramifications for food safety.  相似文献   

14.
T Zhao  M P Doyle  J Shere    L Garber 《Applied microbiology》1995,61(4):1290-1293
The prevalence of Escherichia coli O157:H7 in dairy herds is poorly understood, even though young dairy animals have been reported to be a host. From February to May 1993, 662 fecal samples from 50 control herds in 14 states, and from June to August 1993, 303 fecal samples from 14 case herds in 11 states were collected for isolation of E. coli O157:H7. Case herds were those in which E. coli O157:H7 was isolated from preweaned calves in a previous U.S. Department of Agriculture study, whereas control herds from which E. coli O157:H7 had not been isolated previously were randomly selected from the same states as case herds. Among the control herds, E. coli O157:H7 was isolated from 6 of 399 calves (1.5%) that were between 24 h old and the age of weaning and from 13 of 263 calves (4.9%) that were between the ages of weaning and 4 months. Eleven of 50 control herds (22%) were positive. Among the case herds, E. coli O157:H7 was isolated from 5 of 171 calves (2.9%) that were between 24 h old and the age of weaning and from 7 of 132 calves (5.3%) that were between the ages of weaning and 4 months. Seven of 14 case herds (50%) were positive. Sixteen of 31 isolates were obtained by direct plating, with populations ranging from 10(3) to 10(5) CFU/g. Fifteen of 31 isolates were isolated by enrichment only. Nineteen of the isolates produced both verocytotoxin 1 (VT-1) and VT-2, whereas 12 produced VT-2 only.  相似文献   

15.
A survey was conducted between March and October of 1994 to determine the prevalence and identify the sources of serotype O157:H7 isolates of Escherichia coli in Wisconsin dairy herds. A stratified sample of 400 farms was identified, and 70 farms with weaned calves less than 4 months old were included in the study. During the prevalence study, 5 of the 70 farms (herd prevalence, 7.1 +/- 4.5%) and fecal samples from 10 of 560 calves (animal prevalence, 1.8%) tested positive for serotype O157:H7. In a follow-up study, the five O157:H7-positive farms and seven of the O157:H7-negative farms identified in the prevalence study were visited again. An additional 517 fecal samples from cattle of various ages were tested, and a total of 15 animals from four of the five herds that were previously positive and 4 animals from two of seven herds that were previously negative tested positive for E. coli O157:H7. Observations made during the follow-up study suggested that horizontal transmission was an important means of E. coli O157:H7 dissemination on the farms. A total of 302 environmental samples, were examined, and 2 animal drinking water samples from one previously negative farm and 1 animal drinking water sample from a previously positive farm contained E. coli O157:H7. Analyses by the pulsed-field gel electrophoresis technique of contour-clamped homogeneous electric field electrophoresis revealed that isolates from the same farm displayed identical or very similar XbaI restriction endonuclease digestion profiles (REDP), whereas isolates from different farms typically displayed different REDP. However, more than one REDP was usually observed for a given herd over the 8-month sampling period. Analyses of multiple isolates from an animal revealed that some animals harbored O157:H7 strains that had different REDP, although the REDP of isolates obtained from the same fecal sample were very similar. Collectively, 160 bovine isolates obtained from 29 different animals and three water isolates displayed 20 distinct XbaI REDP. Our data revealed that there are several clonal types of serotype O157:H7 isolates in Wisconsin and indicated that there is probably more than one source of this pathogen on the dairy farms studied. However, animal drinking water was identified as one source of E. coli O157:H7 on one farm.  相似文献   

16.
While cattle in general have been identified as a reservoir of Escherichia coli O157:H7, there are limited data regarding the prevalence and clonality of this pathogen in downer dairy cattle and the potential impact to human health that may occur following consumption of meat derived from downer dairy cattle. In the present study, conducted at two slaughter facilities in Wisconsin between May and October of 2001, we established a higher prevalence of E. coli O157:H7 in fecal and/or tissue samples obtained aseptically from intact colons of downer dairy cattle (10 of 203, 4.9%) than in those from healthy dairy cattle (3 of 201, 1.5%). Analyses of 57 isolates, representing these 13 positive samples (one to five isolates per sample), by pulsed-field gel electrophoresis, revealed 13 distinct XbaI restriction endonuclease digestion profiles (REDP). Typically, isolates from different animals displayed distinct REDP and isolates from the same fecal or colon sample displayed indistinguishable REDP. However, in one sample, two different, but highly related, REDP were displayed by the isolates recovered. Antimicrobial susceptibility testing indicated that 10 of the 57 isolates, recovered from 2 (1 downer and 1 healthy animal) of the 13 positive samples, were resistant to at least 1 of 18 antimicrobials tested. However, there was no appreciable difference in the frequency of resistance of isolates recovered from downer and healthy dairy cattle, and not all isolates with the same REDP displayed the same antimicrobial susceptibility profile. Lastly, it was not possible to distinguish between isolates recovered from downer and healthy cattle based on their XbaI REDP or antimicrobial susceptibility. These results indicate that downer cattle had a 3.3-fold-higher prevalence of E. coli O157:H7 than healthy cattle within the time frame and geographic scope of this study.  相似文献   

17.
【目的】旨在对从山东省某地区4个健康奶牛养殖场分离到的大肠埃希菌进行优势血清型、耐药特性、Ⅰ类整合子基因盒携带情况以及系统进化群分析。【方法】采集194份来自山东省某地区4个规模化奶牛场奶牛新鲜粪便样品,进行大肠埃希菌分离和鉴定,利用常用大肠埃希菌诊断血清进行血清型鉴定;利用10%的绵羊血平板检测溶血性;利用K-B法检测对14种常规抗菌药物的敏感性;利用聚合酶链式反应(PCR)检测革兰阴性菌常见的6大类24种耐药基因、Ⅰ类整合子基因盒结构并对目的条带测序分析;利用细菌多位点序列分型(Multilocus sequence typing,MLST)技术分析大肠埃希菌的ST型并使用eBURST v3软件分析菌株之间的克隆关系。【结果】从194份新鲜粪便样品中分离到171株大肠埃希菌,其中主要为致病性(19.9%)和侵袭性大肠埃希菌(17.0%),优势血清型分别为O128:K67(12/171)和O143:K7(12/171)。另外,具有溶血性的大肠埃希菌阳性率为9.4%(16/171);药敏试验结果显示多重耐药菌株的比率为22.2%,其中对氨苄西林耐药率最高为33.9%,四环素次之,为24.0%;PCR检测耐药基因和整合子结果显示,59.1%的菌株携带β-内酰胺类耐药基因blaTEM,59.1%的菌株携带氨基糖苷类耐药基因ant(2′),未检测到四环素耐药基因tetA和tetB;Ⅰ类整合子的阳性率为4.1%(7/171),dfrA12-aadA2-sul1为优势基因盒结构(4/171);MLST将大肠埃希菌分为8种ST型,其中,ST155(10/171)和ST58(45/171)形成一个克隆复合物且没有发现新的ST型。【结论】本研究证实,从该地区规模化健康奶牛场新鲜粪便中分离到的大肠埃希菌优势血清型为O128:K67和O143:K7;少部分大肠埃希菌具有溶血性;仅对氨苄西林、四环素等具有较高的耐药率;优势基因盒结构为dfrA12-aadA2-sul1;MLST分型显示不同奶牛场分离出亲缘关系较近的菌株,其分布具有多态性,血清型与ST型之间无相关性。本研究表明源自表观健康的奶牛的大肠埃希菌存在多重耐药现象,具有食品公共卫生安全隐患,该研究对于提升规模化奶牛场奶制品的安全生产与质量评估具有一定的理论指导意义。  相似文献   

18.
In a longitudinal study in a Finnish cattle finishing unit we investigated excretion and sources of Escherichia coli O157 in bulls from postweaning until slaughter. Three groups of 31 to 42 calves were sampled in a calf transporter before they entered the farm and four to seven times at approximately monthly intervals at the farm. All calves sampled in the livestock transporter were negative for E. coli O157 on arrival, whereas positive animals were detected 1 day later. During the fattening period the E. coli O157 infection rate varied between 0 and 38.5%. The animals were also found to be shedding during the cold months. E. coli O157 was isolated from samples taken from water cups, floors, and feed passages. E. coli O157 was detected in 9.7 to 38.9% of the fecal samples taken at slaughter, while only two rumen samples and one carcass surface sample were found to be positive. E. coli O157 was isolated from barn surface samples more often when the enrichment time was 6 h than when the enrichment time was 24 h (P < 0.0001). Fecal samples taken at the abattoir had lower counts (< or = 0.4 MPN/g) than fecal samples at the farm (P < 0.05). E. coli O157 was isolated more often from 10-g fecal samples than from 1-g fecal samples (P < 0.0001). Most farm isolates belonged to one pulsed-field gel electrophoresis (PFGE) genotype (79.6%), and the rest belonged to closely related PFGE genotypes. In conclusion, this study indicated that the finishing unit rather than introduction of new cattle was the source of E. coli O157 at the farm and that E. coli O157 seemed to persist well on barn surfaces.  相似文献   

19.
A specific and sensitive combined selection and enrichment PCR procedure was developed for the detection of Clostridium botulinum types B, E, and F in fecal samples from slaughtered pigs. Two enrichment PCR assays, using the DNA polymerase rTth, were constructed. One assay was specific for the type B neurotoxin gene, and the other assay was specific for the type E and F neurotoxin genes. Based on examination of 29 strains of C. botulinum, 16 strains of other Clostridium spp., and 48 non-Clostridium strains, it was concluded that the two PCR assays detect C. botulinum types B, E, and F specifically. Sample preparation prior to the PCR was based on heat treatment of feces homogenate at 70 degrees C for 10 min, enrichment in tryptone-peptone-glucose-yeast extract broth at 30 degrees C for 18 h, and DNA extraction. The detection limits after sample preparation were established as being 10 spores per g of fecal sample for nonproteolytic type B, and 3.0 x 10(3) spores per g of fecal sample for type E and nonproteolytic type F with a detection probability of 95%. Seventy-eight pig fecal samples collected from slaughter houses were analyzed according to the combined selection and enrichment PCR procedure, and 62% were found to be PCR positive with respect to the type B neurotoxin gene. No samples were positive regarding the type E and F neurotoxin genes, indicating a prevalence of less than 1.3%. Thirty-four (71%) of the positive fecal samples had a spore load of less than 4 spores per g. Statistical analysis showed that both rearing conditions (outdoors and indoors) and seasonal variation (summer and winter) had significant effects on the prevalence of C. botulinum type B, whereas the effects of geographical location (southern and central Sweden) were less significant.  相似文献   

20.
A cattle trial using artificially inoculated calves was conducted to determine the effect of the addition of colicinogenic Escherichia coli strains capable of producing colicin E7 (a 61-kDa DNase) to feed on the fecal shedding of serotype O157:H7. The experiment was divided into three periods. In period 1, which lasted 24 days, six calves were used as controls, and eight calves received 10(7) CFU of E. coli (a mixture of eight colicinogenic E. coli strains) per g of feed. Both groups were orally inoculated with nalidixic acid-resistant E. coli O157:H7 strains 7 days after the treatment started. In periods 2 and 3, the treatment and control groups were switched, and the colicinogenic E. coli dose was increased 10-fold. During period 3, which lasted as long as period 1, both groups were reinoculated with E. coli O157:H7. The numbers of E. coli O157:H7 were consistently greater in the control groups during the three periods, but comparisons within each time period determined a statistically significant (P < 0.05) difference only at day 21 of period 1. However, when the daily average counts were compared between the period 1 control group and the period 3 treatment group that included the same six animals, an overall reduction of 1.1 log(10) CFU/g was observed, with a maximum decrease of 1.8 log(10) CFU/g at day 21 (overall statistical significance, P = 0.001). Serotype O157:H7 was detected in 44% of the treatment group's intestinal tissue samples and in 64% of those from the control group (P < 0.04). These results indicated that the daily addition of 10(8) CFU of colicin E7-producing E. coli per gram of feed could reduce the fecal shedding of serotype O157:H7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号