首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pullout of implants at the proximal and distal ends of multilevel constructs represents a common spinal surgery problem. One goal concerning the development of new spinal implants is to achieve stable fixation together with the least invasive approach to the spinal column. This biomechanical study measures the influence of different modes of implantation and different screw designs, including a new monocortical system, on the maximum pullout strength of screws inserted ventrolaterally into calf vertebrae. The force pullout of eight different groups were tested and compared. Included were three bicortical used single screws (USS, Zielke-VDS, single KASS). To further increase pullout strength either a second screw (KASS) or a pullout-resistant nut can be added (USS with pullout nut). A completely new concept of anchorage represents the Hollow Modular Anchorage System (MACS-HMA). This hollow titanium implant has an increased outside diameter and is designed for monocortical use. Additionally two screw systems suitable for bicortical use were tested in monocortical mode of anchorage (USS, single KASS). We selected seven vertebrae equal in mean size and bone mineral density for each of the eight groups. The vertebral body and implant were connected to both ends of a servohydraulic testing machine. Displacement controlled distraction was applied until failure at the metal-bone-interface occurred. The maximum axial pullout force was recorded. Mean BMD was 312 +/- 55 mg CaHA/ml in cancellous bone and 498 +/- 98 mg CaHA/ml in cortical bone. The highest resistance to pullout found, measured 4.2 kN (KASS) and 4.0 kN (USS with pullout nut). The mean pullout strength of Zielke-VDS was 2.1 kN, of single KASS 2.5 kN, of MACS-HMA 2.6 kN and of USS 3.2 kN. There was no statistically significant difference (t-test, p > 0.05) between bicortical screws and the new monocortical implant. For the strongest fixation at the proximal or distal end of long spinal constructs the addition of a second screw or a pullout-resistant nut behind the opposite cortex offers even stronger fixation.  相似文献   

2.
In the first of two experiments, ovariectomized ewes with silastic implants containing testosterone propionate had higher concentrations of plasma testosterone than ovariectomized ewes with silastic implants containing testosterone (4.0 +/- .2 vs .8 +/- .1 ng/ml). In the second experiment, one or two 10 cm silastic implants filled with testoster-one propionate increased concentrations of plasma testosterone and induced male sex behavior in ovariectomized ewes similar to plasma testosterone levels and male sex behavior in rams. The interval from initiation of the treatment to the first behavior test in which mounting was consistently observed was 14.4 +/- 2.9 days and once mounting behavior was consistently induced, the testosterone treated ewes mounted estrous ewes an average of 10.7 +/- 1.3 times during a 10-minute test.  相似文献   

3.
The fixation principle of threaded cups ensures high primary stability. Inadequate results with first-generation threaded cups led to modifications of surface machining. 10 threaded cups of the first generation, and 27 of the second and third generations were systematically analysed and their shapes measured using a no-touch light section technique. In addition, measurements of surface roughness were performed. Implants of the first generation made of polyethylene, ceramic or cobalt-chrome have an average surface roughness (Ra) of 1.5 microns. Approximately one-half of these implants have a conical shape, and one-third a height that is greater than the radius. Threaded cups of the second generation are made either of CP-titanium or titanium alloy. The average corundum-blasted surface roughness is 4.5 microns. Hydroxyapatite-coated (HA) implants have a surface roughness of 5.0 microns. Approximately 45% of the implants have a conical, biconical or flattened-conical shape, while one-third are of hemispherical shape. Approximately 90% of the cups have a height that is up to 23% smaller than the radius. A few cups have a height that approximates the radius. Implants of the third generation with identical surface structure can be supplied with crosslinked-polyethylene inlays or, optionally, with metal/metal or ceramic/ceramic contact surfaces. Primary stability, biocompatible materials and a structured surface are essential for ensuring osseointegration over the long-term. Corundum-blasted pure titanium or titanium alloys with corundum-blasted or HA-coated implants can be considered standard for these cups.  相似文献   

4.
The study focused on the influence of the implant material stiffness on stress distribution and micromotion at the interface of bone defect implants. We hypothesized that a low-stiffness implant with a modulus closer to that of the surrounding trabecular bone would yield a more homogeneous stress distribution and less micromotion at the interface with the bony bed. To prove this hypothesis we generated a three-dimensional, non-linear, anisotropic finite element (FE) model. The FE model corresponded to a previously developed animal model in sheep. A prismatic implant filled a standardized defect in the load-bearing area of the trabecular bone beneath the tibial plateau. The interface was described by face-to-face contact elements, which allow press fits, friction, sliding, and gapping. We assumed a physiological load condition and calculated contact pressures, shear stresses, and shear movements at the interface for two implants of different stiffness (titanium: E=110GPa; composite: E=2.2GPa). The FE model showed that the stress distribution was more homogeneous for the low-stiffness implant. The maximum pressure for the composite implant (2.1 MPa) was lower than for the titanium implant (5.6 MPa). Contrary to our hypothesis, we found more micromotion for the composite (up to 6 microm) than for the titanium implant (up to 4.5 microm). However, for both implants peak stresses and micromotion were in a range that predicts adequate conditions for the osseointegration. This was confirmed by the histological results from the animal studies.  相似文献   

5.
The data on human dermal fibroblasts and rabbit mesenchymal stromal cells cultivation on porous titanium implants are presented in given paper. Two types of implants were used: type 1--with irregular pores formed by pressed titanium particles and type 2--with regular pores formed by coalescence of one-size titanium particles into implant. The goal of this study was to choose the type of titanium implant porosity which ensures the tightest interaction of titanium implant with surrounding tissue cells after implantation in the body. Cells were cultivated on implants for 7 days and in both cases they formed confluent monolayer on the implants surfaces. That indicated adhesion, migration and proliferation of cells on such implants. Condition of cells cultured on titanium implants was controlled by scanning electron microscopy. The character of fibroblasts interaction with given implants was different depending on porosity type of implants. On implants with irregular pores, the cells were more spread and overlapped the pores spreading over neighbored particles. On implants with regular pores that formed by one-size particles into implant, the fibroblasts covered these particles not overlapping the pores and seldom interacted with neighbored particles by small outgrowths. There was no tight interaction of particles into implant. In implants formed by pressed particles, the cells grew not only on the surface but also in the depth of implant. Thereby, we suppose that more tight interaction of cells with titanium implant and, supposedly, tissues with implant in an organism will take place in the case of implant structure formed by pressed titanium particles.  相似文献   

6.
The Luque procedure was developed to correct the deformity without the need of bracing and maintaining that correction with growth. However many authors are disappointed by their results and the complications which appear in the management of infantile scoliosis with Luque trolley alone. Besides failed implants, pseudarthrosis, modest spinal growth and protuberant rods and wires, the major problem of the Luque systems is the high incidence of loss of correction by postoperative rotation. Therefore a new application technique is recommended. A standard posterior extraperiostal approach is chosen. Sublaminar titanium cables are passed at each level except the caudal lamina. Then the rods are precontoured in shape of the planed curve correction. We use a low profile titanium instrumentation with 5.0 mm diameter rods and 4.2 mm pedicle screws. In contrast to the conventional use of two antiparallel "L"-rods we recommend the use of one reversed "U"-rod securing the laminae with sublaminar titanium cables of the upper end vertebrae. For fixation of the lower spine a dual-opening pedicle screw system is used. Using a holding forceps the distal rods are introduced and fixed into the side opening of the screws then secured by sublaminar wires. In addition both single rods are stabilized by a low profile cross link bar. This technique allows to correct pelvic obliquity and a stable anchorage of two screws reduces risk of postoperatively rotation or caudal rod slippage due to gravity forces.  相似文献   

7.
The present study investigated hydroxyapatite biomaterials implanted in critical-size defects in the calvaria of adult sheep to determine the optimal bioengineering of hydroxyapatite composites to facilitate bone ingrowth into these materials. Five calvarial defects measuring 16.8 mm in diameter were made in each of 10 adult sheep. Three defects were filled with cement paste composites of hydroxyapatite and beta-tricalcium phosphate as follows: (1) 100 percent hydroxyapatite-cement paste, (2) 60 percent hydroxyapatite-cement paste, and (3) 20 percent hydroxyapatite-cement paste. One defect was filled with a ceramic composite containing 60 percent hydroxyapatite-ceramic, and the fifth defect remained unfilled. One year after implantation, the volume of all biomaterials was determined by computed tomography, and porosity and bone replacement were determined using backscatter electron microscopy. Computed tomography-based volumetric assessment 1 year after implantation demonstrated that none of the unfilled cranial defects closed over the 1-year period, confirming that these were critical-size defects. There was a significant increase in volume in both the cement paste and ceramic implants containing 60 percent hydroxyapatite (p < 0.01). There was no significant change in volume of the remaining cement paste biomaterials. Analysis of specimens by backscatter electron microscopy demonstrated mean bone replacement of 4.8 +/- 1.4 percent (mean +/- SEM) in 100 percent hydroxyapatite-cement paste, 11.2 +/- 2.3 percent in 60 percent hydroxyapatite-cement paste, and 28.5 +/- 4.5 percent in 20 percent hydroxyapatite-cement paste. There was an inverse correlation between the concentration of hydroxyapatite and the amount of bone replacement in the cement paste for each composite tested (p < 0.01). Bone replacement in 60 percent hydroxyapatite-ceramic composite (13.6 +/- 2.0 percent) was not significantly different from that in 60 percent hydroxyapatite-cement paste. Of note is that the ceramic composite contained macropores (200 to 300 microm) that did not change in size over the 1-year period. All cement paste composites initially contained micropores (3 to 5 nm), which remained unchanged in 100 percent hydroxyapatite-cement paste. Cement paste implants containing increased tricalcium phosphate demonstrated a corresponding increase in macropores following resorption of the tricalcium phosphate component. Bone replacement occurred within the macropores of these implants. In conclusion, there was no significant bone ingrowth into pure hydroxyapatite-cement paste (Bone Source, Stryker-Leibinger Inc., Dallas, Texas) in the present study. The introduction of macropores in a biomaterial can optimize bone ingrowth for reconstruction of critical-size defects in calvaria. This was demonstrated in both the ceramic composite of hydroxyapatite tested and the cement paste composites of hydroxyapatite by increasing the composition of a rapidly resorbing component such as beta-tricalcium phosphate.  相似文献   

8.
Effects of estradiol on serum luteinizing hormone (LH) were studied in prepubertal boars. In Exp. 1, 15-wk-old boars were given (iv) 50 mug estradiol, 1 mg testosterone or 1.5 ml ethanol. Estradiol (P<0.05) decreased LH over a 2.5-hr period, but testosterone did not. In Exp. 2, an estradiol implant reduced LH sample variance (P<0.01) while LH (547 +/- 96 vs 655 +/- 43 pg/ml) and estradiol (14.2 +/- 3.3 vs 18.4 +/- 1.0 pg/ml; control vs implant) were unchanged in 12-wk-old boars. Pulsatile LH releases (4.3 +/- 1.1 vs 3.0 +/- 0.4 pulses/pig/8 hr; control vs treated) and pulse amplitude (272 +/- 34 vs 305 +/- 40 pg/ml) were not affected. The implant tended to decrease serum testosterone (4.86 +/- 0.75 vs 7.66 +/- 1.51 ng/ml; P<0.10). In Exp. 3, LH was higher after zero implants than after four implants (279 +/- 7 vs 227 +/- 9 pg/ml; P<0.01), and LH after two implants was also higher than after four implants (263 +/- 7 pg/ml; P<0.01) in 14-wk-old boars in a Latin square design. Peak LH after 40 mug gonadotropin releasing hormone (GnRH) was less after two and four implants (1,100 +/- 126 and 960 +/- 167 pg/ml, respectively; P<0.01) than after zero implants (1,742 +/- 126 pg/ml). Slope of the first 20 min of LH response to GnRH was greater after zero implants (45.3 pg/min; P<0.05) than after either two or four implants (20.6 and 16.9 pg/min, respectively). Implant treatment decreased serum testosterone (P<0.025) but increased estradiol (P<0.10). Small changes in serum estradiol resulted in changes in LH. These changes in sample variance and mean LH were recognized by boars as different from normal because serum testosterone decreased. Changes in LH may result from estradiol's negative effect on pituitary responsiveness to endogenous GnRH because response to exogenous GnRH was depressed by estradiol.  相似文献   

9.
The Masquelet technique is a surgical procedure to regenerate segmental bone defects. The two-phase treatment relies on the production of a vascularized foreign-body membrane to support bone grafts over three times larger than the traditional maximum. Historically, the procedure has always utilized a bone cement spacer to evoke membrane production. However, membrane formation can easily be effected by implant surface properties such as material and topology. This study sought to determine if the membrane’s mechanical or barrier properties are affected by changing the spacer material to titanium or roughening the surface finish. Ten-week-old, male Sprague Dawley rats were given an externally stabilized, 6 mm femur defect which was filled with a pre-made spacer of bone cement (PMMA) or titanium (TI) with a smooth (∼1 μm) or roughened (∼8 μm) finish. After 4 weeks of implantation, the membranes were harvested, and the matrix composition, tensile mechanics, shrinkage, and barrier function was assessed. Roughening the spacers resulted in significantly more compliant membranes. TI spacers created membranes that inhibited solute transport more. There were no differences between groups in collagen or elastin distribution. This suggests that different membrane characteristics can be created by altering the spacer surface properties. Surgeons may unknowingly effecting membrane formation via bone cement preparation techniques.  相似文献   

10.
The aim of this investigation was to evaluate a new method developed for the measurement of bone mineral density and bone remodelling phenomena after total hip arthroplasty using computer tomography. Computertomography is a radiological technique to examine bone structures in high resolution. Using an extended scale it is possible to investigate bone scans and implants with fewer metal artifacts. For osteodensitometry measurement a special software (IMPact HIP) for the analysis of the data was used. The measured parameters were the overall bone mineral density (mg Calcium-Hydroxyapatite/ml) and the cortical bone structure. A standard scan mode enable to compare the computertomography scans at follow-up. Nineteen total hip arthroplasty patients (20 hips) with a mean age of 58 years (31-70) were operated on using an uncemented titanium alloy stem with a tapered design. The periprosthetic bone was assessed using computertomography-assisted osteodensitometry two weeks and one year after surgery. We observed a decrease of the overall bone mineral density (15%) and of the cortical bone structure (20%) one year after insertion of the stem in the proximal part of the femur. The area corresponds to the Gruen zones 1 and 7. On the other hand, a decrease of mineral density of 5% for the overall bone and of 3% for the cortical bone was found at the level of the tip of the stem, which corresponds to the Gruen zones 3, 4 and 5. Computertomography-assisted osteodensitometry allows to investigate the bone remodelling after total hip arthroplasty by separating the analysis of the overall bone mineral density and of the cortical structure. The present method is a reliable tool for quality-control in total hip arthroplasty.  相似文献   

11.
Experimental hydroxyapatite cement cranioplasty.   总被引:27,自引:0,他引:27  
Hydroxyapatite cement is a calcium phosphate-based material that when mixed with water forms a dense paste that sets within 15 minutes and isothermically converts in vivo to a microporous hydroxyapatite implant. This cement was used to reconstruct bilateral 2.5-cm-diameter full-thickness critical-sized parietal skull defects in six cats. One side was reconstructed with 100 percent hydroxyapatite cement, and the other with a mixture of 50 percent hydroxyapatite cement and 50 percent ground autogenous bone by weight. These animals were sacrificed at 6 and 12 months after implantation. Positive and negative controls also were prepared. The anatomic contour of the soft tissue overlying all hydroxyapatite cement implants was well maintained, there were no wound infections or structural failures, and the implants were well tolerated histologically. None of the negative (unreconstructed) control defects was completely filled with repair bone, and all positive (methyl methacrylate) controls demonstrated foreign-body giant-cell formation and fibrous encapsulation of the implants. Examination of decalcified and undecalcified sections revealed progressive but variable replacement of the cement by new bone and soft tissue without a change in the shape or volume of the hydroxyapatite cement-reconstructed areas. New bone comprised 77.3 and 64.7 percent of the tissue replacing the hydroxyapatite cement and hydroxyapatite cement-bone implants, respectively. Replacement of the hydroxyapatite cement implants by new bone is postulated to occur by a combination of osteoconduction and implant resorption. These results indicate that further experimental research leading to the possible application of hydroxyapatite cement for full-thickness calvarial defect reconstruction in humans is warranted.  相似文献   

12.
The aim of this study was to develop a biomechanical experimental set-up to quantify motion of ventrally inserted spinal implants at the implant/bone interface. The model we used was the vertebral column of the calf. Lumbar vertebrae L2 to L4 were "instrumented" with a screw-rod system. The adjacent vertebrae L1 and L5 were connected to a servohydraulic testing machine and axial compression applied. Shortening of the specimen and three-dimensional movement of the most cranial implant relative to the bone was recorded using 3 electromagnetic transducers. 100,000 cycles of axial loading varying between -0.5 kN and -1 kN were applied. Static shortening of the specimen of 8.5 mm and an elastic movement of 180 to 280 microns were measured. The greatest amplitude of single-plane motion was recorded in the sagittal plane in both static and elastic modes. Implant motion within each cycle was recorded accurately as load-displacement curves within a range of 1.35 to 30 microns. With this test set-up, primary stability of different spinal implant systems can be compared. The use of electromagnetic transducers permits three-dimensional implant motion analysis even when only a mono-axial servohydraulic testing machine is available.  相似文献   

13.
The objective of this study was to predict time-dependent bone remodeling around tissue- and bone-level dental implants used in patients with reduced bone width. The remodeling of bone around titanium tissue-level, and titanium and titanium–zirconium alloy bone-level implants was studied under 100 N oblique load for one month by implementing the Stanford theory into three-dimensional finite element models. Maximum principal stress, minimum principal stress, and strain energy density in peri-implant bone and displacement in x- and y- axes of the implant were evaluated. Maximum and minimum principal stresses around tissue-level implant were higher than bone-level implants and both bone-level implants experienced comparable stresses. Total strain energy density in bone around titanium implants slightly decreased during the first two weeks of loading followed by a recovery, and the titanium–zirconium implant showed minor changes in the axial plane. Total strain energy density changes in the loading and contralateral sides were higher in tissue-level implant than other implants in the cortical bone at the horizontal plane. The displacement values of the implants were almost constant over time. Tissue-level implants were associated with higher stresses than bone-level implants. The time-dependent biomechanical outcome of titanium–zirconium alloy bone-level implant was comparable to the titanium implant.  相似文献   

14.
In order to improve implant success rate, it is important to enhance their responsiveness to the prevailing conditions following implantation. Uncontrolled movement of inflammatory cells and fibroblasts is one of these in vivo problems and the porosity properties of the implant have a strong effect on these. Here, we describe a hybrid system composed of a macroporous titanium structure filled with a microporous biodegradable polymer. This polymer matrix has a distinct porosity gradient to accommodate different cell types (fibroblasts and epithelial cells). The main clinical application of this system will be the prevention of restenosis due to excessive fibroblast migration and proliferation in the case of tracheal implants. METHODOLOGY/PRINCIPAL FINDINGS: A microbead-based titanium template was filled with a porous Poly (L-lactic acid) (PLLA) body by freeze-extraction method. A distinct porosity difference was obtained between the inner and outer surfaces of the implant as characterized by image analysis and Mercury porosimetry (9.8±2.2 μm vs. 36.7±11.4 μm, p≤0.05). On top, a thin PLLA film was added to optimize the growth of epithelial cells, which was confirmed by using human respiratory epithelial cells. To check the control of fibroblast movement, PKH26 labeled fibroblasts were seeded onto Titanium and Titanium/PLLA implants. The cell movement was quantified by confocal microscopy: in one week cells moved deeper in Ti samples compared to Ti/PLLA. CONCLUSIONS: In vitro experiments showed that this new implant is effective for guiding different kind of cells it will contact upon implantation. Overall, this system would enable spatial and temporal control over cell migration by a gradient ranging from macroporosity to nanoporosity within a tracheal implant. Moreover, mechanical properties will be dependent mainly on the titanium frame. This will make it possible to create a polymeric environment which is suitable for cells without the need to meet mechanical requirements with the polymeric structure.  相似文献   

15.
BackgroundHip implants are usually manufactured from cobalt-chromium and titanium alloys. As the implants wear and corrode, metal debris is released into the surrounding tissue and blood, providing a potential biomarker for their function. Whilst there are laboratory reference levels for blood cobalt and chromium in patients with well and poorly functioning hip implants, there are no such guidelines for titanium. This is despite the increasing use of titanium implants worldwide.Patients and methodsWe recruited a consecutive series of 95 patients (mean age 71 years, mean time after surgery 8.5 years) with one hip implant type, inserted by the same surgeon. We assessed clinical and radiological outcome, and measured blood and plasma titanium using high resolution inductively-coupled plasma mass spectrometry.ResultsThe upper normal reference limit for blood and plasma titanium was 2.20 and 2.56 μg L−1, respectively, and did not differ significantly between males and females.ConclusionWe are the first to propose a laboratory reference level for blood and plasma titanium in patients with well-functioning titanium hip implants. This is an essential starting point for further studies to explore the clinical usefulness of blood titanium as a biomarker of orthopaedic implant performance, and comes at a time of considerable controversy regarding the use of certain titanium alloys in hip arthroplasty.  相似文献   

16.
To enable a comparison of different pressfit acetabular cups objective criteria are essential. The aim of this study is to describe the design features of this type of cup and to analyse currently available cups. 30 implants were systematically measured and analysed. The mean surface roughness (Ra) was determined and configurations established with the light section technique. For further evaluation the cups were transversely sectioned. The cups are made of pure titanium, titanium alloy or polyethylene coated with titanium. Five implants take the form of monoblocks. The configuration is predominately (n = 25) flattened spherical. The size of eight cups corresponds to the outer diameter, 19 cups have a larger outer diameter (overdimensioning), 3 cups have a smaller outer diameter (underdimensioning). The magnitude of overdimensioning is, on average, 1.9%. 9 cups are provided with plugs, hollow cylinders, fins or rings as outer stabilizers. Surface roughness achieved with corundum blasting is 6.8 microns. Titanium porous-coated implants have a surface roughness of 21-32 microns. 24 cups have polyethylene inserts, most of which are snap-fixed with equatorial lips. For 16 cups, full-ceramic inserts are available. 4 cups have a metal insert. Titanium implants with structured or HAC-coated surfaces have become the accepted standard for cementless acetabular cup implantation. Together with ceramic, metal, or modified polyethylene inserts they meet the requirement for permanent osteo-integrative stability.  相似文献   

17.
We measured daily energy expenditure (DEE) and water turnover rates in lactating and non-lactating short beaked echidnas (Tachyglossus aculeatus) using the doubly labelled water technique during the lactation period in spring. Reproductively inactive echidnas were on average significantly heavier (median: 3354 g; range: 2929-3780 g; N=4) than lactating females (median: 2695 g; range: 2690-2715 g; N=3) during the equivalent time period. The median water flux rate of lactating echidnas (152 ml day(-1); range: 120-198 ml day(-1)) did not differ significantly from that of non-lactating females (170 ml day(-1); range: 128-227 ml day(-1)). The median DEE of echidnas that were lactating was 645 kJ day(-1) (range: 581-850 kJ day(-1)), which was not different from the median DEE of non-reproductive control females (763 kJ day(-1); range: 720-766 kJ day(-1)). Lactating females somehow compensate for the energy costs of milk production, resulting in a daily energy budget that is not different from that of non-reproductive females. At least part of their energy minimising strategy could involve the use of moderate heterothermy, allowing a greater proportion of daily energy expenditure to diverted to milk production.  相似文献   

18.
PurposeBone cement used for vertebroplasty can affect the accuracy on the dose calculation of the radiation therapy treatment. In addition the CT values of high density objects themselves can be misrepresented in kVCT images. The aim of our study is then to propose a streamlined approach for estimating the real density of cement implants used in stereotactic body radiation therapy.MethodsSeveral samples of cement were manufactured and irradiated in order to investigate the impact of their composition on the radiation dose. The validity of the CT conversion method for a range of photon energies was investigated, for the studied samples and on six patients. Calculations and measurements were carried out with various overridden densities and dose prediction algorithms (AXB with dose-to-medium reporting or AAA) in order to find the effective density override.ResultsRelative dose differences of several percent were found between the dose measured and calculated downstream of the implant using an ion chamber and TPS or EPID dosimetry. If the correct density is assigned to the implant, calculations can provide clinically acceptable accuracy (gamma criteria of 3%/2 mm). The use of MV imaging significantly favors the attribution of a correct equivalent density to the implants compared to the use of kVCT images.ConclusionThe porosity and relative density of the various studied implants vary significantly. Bone cement density estimations can be characterized using MV imaging or planar in vivo dosimetry, which could help determining whether errors in dose calculations are due to incorrect densities.  相似文献   

19.
The goal of this study was to provide material property data for the cement/bone composite resulting from the introduction of PMMA bone cement into human vertebral bodies. A series of quasistatic tensile and compressive mechanical tests were conducted using cement/bone composite structures machined from cement-infiltrated vertebral bodies. Experiments were performed both at room temperature and at body temperature. We found that the modulus of the composite structures was lower than bulk cement (p<0.0001). For compression at 37( composite function)C: composite =2.3+/-0.5GPa, cement =3.1+/-0.2GPa; at 23( composite function)C: composite =3.0+/-0.3GPa, cement =3.4+/-0.2GPa. Specimens tested at room temperature were stiffer than those tested at body temperature (p=0.0004). Yield and ultimate strength factors for the composite were all diminished (55-87%) when compared to cement properties. In general, computational models have assumed that cement/bone composite had the same modulus as cement. The results of this study suggest that computational models of cement infiltrated vertebrae and cemented arthroplasties could be improved by specifying different material properties for cement and cement/bone composite.  相似文献   

20.
M Axelson  A Aly  J Sj?vall 《FEBS letters》1988,239(2):324-328
A method for analysis of 7 alpha-hydroxy-4-cholesten-3-one in plasma is described. Following solid-phase extraction/purification the compound is determined by high-performance liquid chromatography using a UV detector. The median concentration in healthy subjects was 12 ng/ml (range 3-40). The levels were lower in diseases associated with a low bile acid production: extrahepatic cholestasis, less than 1.5 ng/ml (range less than 0.9-3); liver cirrhosis less than 1.5 ng/ml (range less than 0.9-38), and higher in diseases associated with a high bile acid production: cholestyramine treatment, 188 ng/ml (range 54-477); ileal resection 397 ng/ml (range 128-750). The levels were essentially normal in patients with colon resection. The results are consistent with a strong positive correlation between the levels of 7 alpha-hydroxy-4-cholesten-3-one in plasma and the rate of bile acid synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号