首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The oxidation of 2′,7′-dichlorodihydrofluorescein (2′,7′-dichlorofluorescin, DCFH) to a fluorescent product, 2′,7′-dichlorofluorescein (DCF), is commonly used to quantitatively measure oxidative stress in cells using a fluorescence microplate reader. However, many cell lines tend to grow non-uniformly in the wells. This non-uniform distribution results in a high degree of variability in the fluorescence signal and decreases the precision of the method. Also, samples treated in large culture plates, dishes or flasks cannot be assayed directly in fluorescence microplate readers. This study reports an improved DCF assay method that lyses cells with DMSO/PBS (90% dimethyl sulphoxide/10% phosphate buffered saline). Oxidative stress was induced with either hydrogen peroxide or an hypoxia-reoxygenation treatment. Cell lysis with DMSO/PBS resulted in highly stable fluorescence signals in comparison to Triton X-100/PBS lysed cells. The precision of DCF fluorescence measurements of DMSO/PBS lysed cells was much better than for attached cells measured directly in 96-well plates. While DCF fluorescence in PBS was strongly quenched by albumin, no quenching occurred in DMSO/PBS. In conclusion this study describes a more convenient and accurate method for measuring cellular oxidative stress that also makes it possible to assay cells treated in large culture plates.  相似文献   

2.
The circular dichroism (CD) and absorption spectra of uridine, thymidine, purine ribonucleoside, and the four adenine derivatives 2′-deoxyadenosine, adenosine, adenosine-3′,5′-cyclic phosphate, and arabinosyl adenine were measured in water at pH 7 and pH 2. The absorption and CD spectra of the pyrimidines were simultaneously fitted to four Gaussian bands, and the dipole and rotational strengths of the electronic transitions determined. Adenine-derivative CD spectra were determined by computer averaging six runs. The spectra showed CD bands at 268, 226, 209, and 195 nm. The band at 226 nm probably is an n–π* transition; the band at 209 nm cannot be detected without a computer. The CD and absorption spectra of purine ribonucleoside indicate three transitions in the 230–310-nm region.  相似文献   

3.
Intracellular production of active oxygen in the brown alga Fucus evanescens C. Ag. was studied by measuring the capacity for in vivo conversion of 2′,7′-dichlorohydrofluorescein diacetate (DCFH-DA) to the fluorescent dye 2′,7′-dichlorofluorescein (DCF), both in emersed and immersed seaweeds. Algae were incubated in seawater containing DCFH-DA under a range of conditions, and it was also possible to load algae with DCFH-DA and then follow subsequent DCF production in emersed tissue. DCF formation was linear for at least 2 h in both darkness and light, with the rate of formation increasing with the light level. DCF formation was temperature dependent. It also increased when algae were treated with H2O2 or methyl viologen (paraquat), which disrupts photosystem 1 electron transport and increases O?2 production. Exogenous catalase reduced in vivo DCF production, presumably by lowering cellular concentrations of H2O2. Hydrogen peroxide was released into the seawater by illuminated algae resulting in external dye conversion to DCF. However, this does not interfere with in vivo measurement of DCF by loaded, washed algae because DCF leakage appeared to be negligible. Internal DCF did not affect photosynthetic oxygen production relative to untreated controls. Overall, our data suggest that DCFH-DA is a potentially very useful probe for studying active oxygen metabolism in seaweeds subjected to environmental stresses.  相似文献   

4.
The photoreduction of 2′-7′-dichlorofluorescein (DCF) was investigated in buffer solution using direct electron spin resonance (ESR) and the ESR spin-trapping technique. Anaerobic studies of the reaction of DCF in the presence of reducing agents demonstrated that during visible irradiation (λ > 300 nm) 2′-7′-dichlorofluorescein undergoes one-electron reduction to produce a semiquinone-type free radical as demonstrated by direct ESR. Spin-trapping studies of incubations containing DCF, 5,5-dimethyl-1-pyrroline N-oxide (DMPO) and either reduced glutathione (GSH) or reduced NADH demonstrate, under irradiation with visible light, the production of the superoxide dismutase-sensitive DMPO/·OOH adduct. In the absence of DMPO, measurements with a Clark-type oxygen electrode show that molecular oxygen is consumed in a light-dependent process. The semiquinone radical of DCF, when formed in an aerobic system, is immediately oxidized by oxygen, which regenerates the dye and forms superoxide.  相似文献   

5.
We report here a rapid and sensitive technique for negative visualization of protein in 1D and 2D SDS‐PAGE by using 2′, 7′‐dichlorofluorescein (DCF), which appeared as transparent and colorless bands in an opaque gel matrix background. For DCF stain, down to 0.1–0.2 ng protein could be easily visualized within 7 min by only two steps, and the staining is fourfold more sensitive than that of Eosin Y (EY) negative stain and glutaraldehyde (GA) silver stain, and eightfold more sensitive than that of the commonly used imidazole‐zinc (IZ) negative stain. Furthermore, DCF stain provided good reproducibility, linearity, and MS compatibility compared with those of IZ stain. In addition, the potential staining mechanism was investigated by colorimetric experiment and molecular docking, and the results demonstrated that the interaction between DCF and protein occurs mainly via van der waals force, electrostatic interaction, and hydrogen bonding.  相似文献   

6.
A new continuous spectrophotometric method for determining 2′,3′-cyclic nucleotide 3′-phosphohydrolase (EC 3.1.4.37) is described. The assay method involves monitoring the decrease in pH which accompanies the hydrolysis of 2′,3′-cyclic AMP. The reaction is performed in the presence of phenol red and the pH change is followed spectrophotometrically by recording the decrease in absorbance of the basic chromophore at 560 nm. The assay method is sufficiently sensitive to make accurate determinations of CNPase activity in 20-μl samples of CNS homogenates containing less than 5 μg protein. The primary advantage of the phenol red CNPase assay is the ease and speed with which it is performed.  相似文献   

7.
A previous report disclosed the presence of benzodioxan and bicyclo[3.2.1]octanoid neolignans in the benzene extract of the trunk wood of an Amazonian Aniba (Lauraceae) species. The chloroform extract of the same material contains additionally two new benzodioxan neolignans [rel-(7S,8R)-Δ8′-7-hydroxy-3,4,5,5′-tetramethoxy-7.0.3′,8.0.4′-neolignan; rel-(7R,8R)-Δ7′-3,4,5,5′-tetramethoxy-9′-oxo-7.0.3′,8.0.4′-neolignan], two new bicyclo[3.2.1]-octanoid neolignans [(7R,8S,1′S,2′S,3′S,4′R)-Δ8′-2′,4′-dihydroxy-3,3′-dimethoxy-4,5-methylenedioxy-1′,2′,3′,4′,5′,6′-hexahydro-5′-oxo-7.3′,8.1′-neolignan; (7R,8S,1′R,2′S,3′S)-Δ8′-2′-hydroxy-3,3′,5′-trimethoxy-4,5-methylenedioxy-1′,2′,3′,4′-tetrahydro-4′-oxo-7.3′,8.1′-neolignan] and a hydrobenzofuranoid neolignan [(7S,8R,1′S,5′S)-Δ8′-3,3′,5′-tri-methoxy-4,5-methylenedioxy-1′,4′,5′,6′-tetrahydro-4′-oxo-7.0.2′,8.1-neolignan].  相似文献   

8.
《Phytochemistry》1986,25(8):1953-1956
The wood bark of Mezilaurus itauba afforded in addition to seven known neolignans, three new compounds rel-(7R,8R,1′S,3′S)-Δ5′,8′-5′-methoxy-3,4-methylenedioxy-1′,2′,3′,4′-tetrahydro-2′,4′-dioxo-7.3′,8.1′-neolignan, rel-(7S,8S,1′S, 2′S, 3′R, 4′S)-Δ8′-2′,4′-dihydroxy-3,4-methylenedioxy-1′,2′,3′,4′,5′,6′-hexahydro-5′-oxo-7.3′,8.1′-neolignan and rel-(7S,8S)-Δ8′-6′-hydroxy 5′-methoxy-3,4-methylenedioxy-7·O·2′,8.3′-neolignan. The latter compound has been detected previously in Aniba terminalis. The structures were elucidated by spectroscopic methods and comparison with related compounds.  相似文献   

9.
Two novel chlorinated fluoresceins 2′,4′,5′,7′-tetrachloro-6-(5-carboxypentyl)-4,7-dichloro fluorescein succinimidyl ester (1G) and 2′,4′,5′,7′-tetrachloro-6-(3-carboxypropyl)-4,7-dichlorofluorescein succinimidyl ester (2G) were synthesized as fluorescent probes for labeling proteins. Structures of target compounds and intermediates were determined via IR, MS, 1H NMR and element analysis. The investigation in immunofluorescence histochemistry showed them had strong fluorescence, high photostability and good biocompatibility.  相似文献   

10.
Isolation and structural elucidation of prune constituents were performed and total 10 compounds were determined by NMR and MS analyses. A novel compound was identified to be 2-(5-hydroxymethyl-2′,5′-dioxo-2′,3′,4′,5′-tetrahydro-1′H-1,3′-bipyrrole)carbaldehyde, and 7 phenolic compounds were isolated from prunes for the first time. In addition, antioxidant activity of them was evaluated on the basis of the oxygen radical absorbance capacity (ORAC).  相似文献   

11.
Abstract

The first-order rate constants for hydrolysis of 3′-C-methyluridylyl(2′,5′)- and -(3′,5′)adenosine and the corresponding native dinucleoside monophosphates (2′,5′- and 3′,5′-UpA) have been determined as a function of hydroxide-ion concentration (0.025 - 7 M) at 25°C. In addition to the effects on the hydrolytic stability of the compounds, the effects of the 3′-C-methyl substitution on the kinetically determined pK a values for the sugar hydroxyls of the undine moiety are discussed.  相似文献   

12.
In a continuing research for neolignans from Piper kadsura (Choisy) Ohwi, six benzofuranoid neolignans were isolated from the aerial part of the plant. Their structure determination were based on the spectroscopic analysis (UV, IR, MS, NMR and CD) and derivative synthesis. Three of the isolated compounds were identified as new structures: 7R, 8R, 1′S-△8′-3, 4-methylenedioxy-5′-methoxy-l′, 4′-dihydro-4′-oxo-7, 0, 2′, 8. l′-neolignan ( Ⅰ ), 7 R, 8 R, 1 ′ R- △8′ - 3,4- methylenedioxy- 1 ′- methoxy - 1′,6′- dihydro- 6′- oxo- 7.0.4′,8. 3′-neolignan (Ⅳ) and 7R, 8R, 1′S-△8′-3, 4-methylenedioxy-l′-methoxy-1′,6′-dihydro-6′-oxo-7.0.4′,8.3′-neolignan (Ⅴ). Known compounds among them are 7R, 8S,1′S-△8′-3, 4-methylenedioxy-5′-methoxy-1′, 4′-dihydro-4′-oxo-7. 0. 2′, 8. 1′-neolignan(Ⅱ), 7S, 8S, 1′R-△8′-3, 4, 5′-trimethoxy-1′, 4′-dihydro-4′-oxo-7.0. 2′, 8. 1′-neolignan (Ⅲ) and 75, 85, 1′S-△8′-3, 4, l′-trimethoxy-l′, 6′-dihydro-6′-oxo-7. 0. 4′, 8. 3′-neolignans (Ⅵ). All of them were isolated from the plant for the first time.  相似文献   

13.
We analyzed the effect of 2′-O,4′-C-methylene bridged nucleic acid (2′,4′-BNA) modification of triplex-forming oligonucleotide (TFO) on pyrimidine motif triplex formation at neutral pH, a condition where pyrimidine motif triplexes are unstable. The binding constant of the pyrimidine motif triplex formation at pH 6.8 with 2′,4′-BNA modified TFO was about 20 times larger than that observed with unmodified TFO. The observed increase in the binding constant at neutral pH by the 2′,4′-BNA modification resulted from the considerable decrease in the dissociation rate constant.  相似文献   

14.
A new spectrophotometric assay for the determination of monoamine oxidase activity is described. This simple and sensitive method is based on a coupled indicator reaction measuring the monoamine oxidase-dependent production of hydrogen peroxide. In this reaction the hydrogen peroxide-dependent oxidation of leuco-2′,7′-dichlorofluorescein to 2′,7′-dichlorofluorescein catalyzed by horseradish peroxidase is followed at 502 nm. Using benzylamine and seven biogenic amines as substrates, linear relationships between 2′,7′-dichlorofluorescein formation rate and monoamine oxidase concentration were found. The assay is especially suitable for determining substrate specificities for physiological amines as well as for inhibitor studies with pargyline or the monoamine oxidase A- and B-specific inhibitors clorgyline and deprenyl.  相似文献   

15.
Six coumarins have been isolated from the aerial parts of Coleonema album and identified as ulopterol, 7-(3′, 3′-dimethylallyloxy)-coumarin, (R)-(+)-2′,3′-epoxy-suberosin, and the novel coumarins (R)-(+)-7-(2′, 3′-epoxy-3′-methylbutoxy)-coumarin, (R)-(+)-7-(2′,3′-dihydroxy-3′-dihydroxy-3′-methylbutoxy)-coumarin and (R)-(+)-7-methoxy-8-(2′,3′-epoxy-3′-methylbutoxy)-coumarin.  相似文献   

16.
(7S,8R,7′S)-9,7′,9′-Trihydroxy-3,4-methylenedioxy-3′-methoxy [7-O-4′,8-5′] neolignan (1) and (7S,8R,7′S)-9,9′-dihydroxy-3,4-methylenedioxy-3′,7′-dimethoxy [7-O-4′,8-5′] neolignan (2), two new natural dihydrobenzofuran-type neolignans, along with 9,9′-dihydroxy-3,4-methylenedioxy-3′-methoxy [7-O-4′,8-5′] neolignan (3) and (-)-machicendiol (4), were isolated from the whole plants of Breynia fruticosa. The structures of 1 and 2, including the absolute configurations, were determined by spectroscopic methods and circular dichroism (CD) techniques. The absolute configuration of 4 was confirmed by calculations of the OR spectrum, together with OR and ECD spectra of its p-bromobenzoate ester (4a).  相似文献   

17.
2′,3′-Dideoxythymidine 5′-triphosphate was found to strongly inhibit the activity of DNA polymerase α from mouse myeloma in the presence of manganese ion as divalent cation. The extent of inhibition by 2′,3′-dideoxythymidine 5′-triphosphate increased by raising pH of the reaction. The mode of inhibition by 2′,3′-dideoxythymidine 5′-triphosphate was competitive to the substrate, 2′-deoxythymidine 5′-triphosphate. Ki of the DNA polymerase α for 2′,3′-dideoxythymidine 5′-triphosphate (0.035 μM) was much lower than Km for 2′-deoxythymidine 5′-triphosphate (1.8 μM).  相似文献   

18.
《Phytochemistry》1987,26(4):1155-1158
The stem bark of Ocotea veraguensis has yielded nine neolignans of which five appear to be novel. The new neolignans, which were identified on the basis of spectral characteristics, are* (7S,8R,1′S,2′S,3′R,4′S)-Δ8′-2′,4′-dihydroxy-3,3′5′-trimethoxy-4,5-methylenedioxy-1′,2′,3′,4′-tetrahydro-7.3′,8.1′-neolignan, (7S,8R,1′S,3′S,4′S)-Δ8′-4,4'-dihydroxy-3,3′,5′-trimethoxy-1′,2′,3′,4′-tetrahydro-2′-oxo-7.3′,8.1′-neolignan, (7S,8S,1′R)-Δ8′-3′,5′-dimethoxy-3,4-methylenedioxy-1′,4′-dihydro-4′-oxo-7.0.2′,8.1′-neolignan, (7S,8S,1′R )-Δ8′-1′-methoxy-3,4-methylenedioxy-1′,6′-dihydro-6′-oxo-7.0.4′,8.3′-neolignan and (7S,8S)-Δ8′-2′,6′-dimethoxy-3,4-methylenedioxy-7.0.3′,8.4′,1′.0.7′-neolignan.  相似文献   

19.
Amiodarone (AM) is an effective antidysrhythmic agent, restricted in use by the development of adverse effects, including potentially fatal AM-induced pulmonary toxicity (AIPT). Although the pathogenesis of AIPT is unknown, an oxidant mechanism has been proposed. The present study evaluated the role of reactive oxygen species (ROS) in AM-induced toxicity. The effect of inhibiting lung antioxidant defense on in vivo development of AIPT was evaluated in hamsters. Lung glutathione reductase activity was inhibited by 66%, 6 hours following administration of 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) (20 mg/kg i.p.). When AM (1.83 μmol) was administered intratracheally 6 hours after BCNU, toxicity was enhanced, as indicated by lung hydroxyproline content and histological evaluation 21 days later. However, BCNU treatment did not affect AM-induced alterations in lung glutathione, suggesting that the increased toxicity was not due to decreased antioxidant capacity following BCNU. The effect of BCNU on AM cytotoxicity in vitro was evaluated using rabbit lung alveolar macrophages. Incubation with 5 μM BCNU for 2 hours caused greater than 95% inhibition of glutathione reductase activity. However, BCNU treatment had no effect on 146 μM AM-induced cytotoxicity, as assessed by lactate dehydrogenase latency following 12 hours of incubation. Rabbit macrophages loaded with 2′,7′-dichlorofluorescin, which is oxidized by ROS to fluorescent 2′,7′-dichlorofluorescein (DCF), were used to evaluate ROS generation by AM. Incubation of macrophages with AM (73 or 146 μM) for 1 hour, with or without the catalase inhibitor sodium azide (1 mM), did not result in DCF formation. Overall, these results do not support the hypothesis that AIPT is due to ROS action. © 1997 John Wiley & Sons, Inc.  相似文献   

20.
Cytidine 2′,3′-cyclic monophosphate (2′,3′-cCMP) and uridine 2′,3′-cyclic monophosphate (2′,3′-cUMP) were isolated from Pseudomonas fluorescens pfo-1 cell extracts by semi-preparative reverse phase HPLC. The structures of the two compounds were confirmed by NMR and mass spectroscopy against commercially available authentic samples. Concentrations of both intracellular and extracellular 2′,3′-cCMP and 2′,3′-cUMP were determined. Addition of 2′,3′-cCMP and 2′,3′-cUMP to P. fluorescens pfo-1 culture did not significantly affect the level of biofilm formation in static liquid cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号