首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proliferation of Saccharomyces cerevisiae EPF cells on solid maltose-peptone-yeast extract (MPY) medium was stimulated by the addition of monoamine neurotransmitters. Dopamine turned out to be the most efficient among them: it caused approximately 8-fold growth stimulation at 1 microM concentration. The dopamine effect was partly mimicked by apomorphine, a dopamine receptor agonist. Serotonin and histamine produced less significant (1.5-2-fold) effects, and norepinephrine virtually failed to stimulate yeast culture growth. These data point to a specific, apparently receptor-dependent mode of action of the tested neurotransmitters on S. cerevisiae cells. Using high efficiency liquid chromatography, serotonin, catecholamines (dopamine and norepinephrine), catecholamines precursor dioxyphenylamine, and oxidized amine products (homovanilic acid, dihydrophenylacetic acid, and 5-hydroxyindolacetic acid) were established to be accumulated in yeast cells up to (sub)micromolar concentrations without their release into the culture fluid supernatant (CSF). The results obtained suggest that the tested amine neurotransmitters and related compounds do not serve as autoregulators in the yeast population. Nevertheless, they may be involved in the regulation of yeast population development by other ecosystem components.  相似文献   

2.
The budding yeast Saccharomyces cerevisiae secretes 2-isopropylmalic acid (2-iPMA), an intermediate in leucine biosynthesis. Because 2-iPMA binds Al(III) in the culture medium, it is thought to reduce toxicity by Al(III). The effects of 2-iPMA and malic acid (MA) on Al toxicity were investigated in a medium with a low pH and low concentrations of phosphates and magnesium. The reduction in the growth of S. cerevisiae observed in the presence of 100 μM Al(III) ions was relieved more by the addition of 1.0 mM 2-iPMA than by 1.0 mM MA, indicating that 2-iPMA possesses superior Al(III)-ion detoxification ability. Investigations using the wild type and the Δleu4 and Δleu9 mutant strains indicated that secretion of a sufficient level of 2-iPMA was required to enhance the Al tolerance. It is thought that 2-iPMA secreted from the yeast cells chelates Al ions and prevents them from entering the cells, resulting in Al tolerance. Suzuki and Tamura contributed equally to this work.  相似文献   

3.
 The fermentation characteristics of Saccharomyces cerevisiae strains which overexpress a constitutive OLE1 gene were studied to clarify the relationship between the fatty acid composition of this yeast and its ethanol productivity. The growth yield and ethanol productivity of these strains in the medium containing 15% dextrose at 10 °C were greater than those of the control strains under both aerobic and anaerobic conditions but this difference was not observed under other culture conditions. During repeated-batch fermentation, moreover, the growth yield and ethanol productivity of the wild-type S. cerevisiae increased gradually and then were similar to those of the OLE1-overexpressing transformant in the last batch fermentation. However, the unsaturated fatty acid content (77.6%) of the wild-type cells was lower than that (86.2%) of the OLE1-recombinant cells. These results suggested that other phenomena caused by the overexpression of the OLE1 gene, rather than high unsaturated fatty acid content, are essential to ethanol fermentation by this yeast. Received: 11 June 1999 / Received last revision: 12 November 1999 / Accepted: 28 November 1999  相似文献   

4.
Effects of four lipid peroxidation-inducing pro-oxidants-amphiphilictert-butyl hydroperoxide (TBHP), hydrophobic 1,1′-azobis(4-cyclohexanecarbonitrile) (ACHN), hydrophilic Fe11 and 2,2′-azobis(2-amidinopropane) dihydrochloride (AAPH)-on cell growth and on generation of peroxidation products in isolated plasma membrane lipids were determined in four yeast species (S. cerevisiae, S. pombe, R. glutinis andC. albicans) differing in their plasma membrane lipid composition. TBHP and ACHN inhibited cell growth most strongly, Fe11 and AAPH exerted inhibitory action for about 2 h, with subsequent cell growth resumption.S. cerevisiae strain SP4 was doped during growth with unsaturated linoleic (18∶2) and linolenic (18∶3) acids to change its resistance to lipid peroxidation. Its plasma membranes then contained some 30% of these acids as compared with some 1.3% of 18∶2 acid found in undopedS. cerevisiae, while the content of (16∶1) and (18∶1) acids was lower than in undopedS. cerevisiae. The presence of linoleic and linolenic acids inS. cerevisiae cells lowered cell survival and increased the sensitivity to pro-oxidants. Peroxidationgenerated conjugated dienes (CD) were measured in pure TBHP- and ACHN-exposed fatty acids used as standards. The CD level depended on the extent of unsaturation and the pro-oxidant used. The TBHP-induced CD production in a mixture of oleic acid and its ester was somewhat lower than in free acid and ester alone. In lipids isolated from the yeast plasma membranes, the CD production was time-dependent and decreased after a 5–15-min pro-oxidant exposure. ACHN was less active than TBHP. The most oxidizable were lipids fromS. cerevisiae plasma membranes doped with linoleic and linolenic acids and fromC. albicans with indigenous linolenic acid.  相似文献   

5.
The transformation efficiency of yeast cells during exponential growth might be characterised as undulatory. The aim of the study was to investigate the reason for the fluctuation in transformation efficiency of yeast Saccharomyces cerevisiae p63-DC5 cells during exponential growth. The heightened response to exogenous DNA was observed with the growing yeast culture when budded cells were predominant. To confirm this phenomenon we carried out synchronization of yeast cells with 10 mM hydroxyurea. Results showed that synchronous yeast cells in the S-phase of cell cycle have enhanced transformation efficiency. Furthermore, S. cerevisiae p63-DC5 cells in the S-phase were successfully transformed with plasmid pl13 in the absence of lithium acetate. We indicated that the permeability of yeast cells in the S-phase to tetraphenylphosphonium (TPP) cations was significantly higher than in asynchronous culture. The results of our study showed that the fluctuation in transformation efficiency was strictly dependent on the metabolic state of yeast cells and the capacity of the yeast cells to become competent was related to the S-phase of cell cycle.  相似文献   

6.
Weak organic acids are well-known metabolic effectors in yeast and other micro-organisms. High concentrations of lactic acid due to infection of lactic acid bacteria often occurs in combination with growth under nutrient-limiting conditions in industrial yeast fermentations. The effects of lactic acid on growth and product formation of Saccharomyces cerevisiae were studied, with cells growing under carbon- or nitrogen-limiting conditions in anaerobic chemostat cultures (D=0.1 h−1) at pH values 3.25 and 5. It was shown that lactic acid in industrially relevant concentrations had a rather limited effect on the metabolism of S. cerevisiae. However, there was an effect on the energetic status of the cells, i.e. lactic acid addition provoked a reduction in the adenosine triphosphate (ATP) content of the cells. The decrease in ATP was not accompanied by a significant increase in the adenosine monophosphate levels.  相似文献   

7.
When protoplasts of Saccharomyces cerevisiae T7 and IFO 0309 are cultured in a static liquid culture at 2.5 × 106 protoplasts/ml, cell wall regeneration does not occur and cell wall components (CWC) are released into the culture broth. By using a specialized fluorometer, the concentrations of CWC could be measured on the basis of the fluorescence intensity of the CWC after staining with Fluostain I. The inoculum concentration, pH, and osmotic pressure of the medium were important factors for the production of CWC in culture. Under optimal culture conditions, S. cerevisiae T7 protoplasts produced 0.91 mg/ml CWC after 24 h. The CWC induced the tumor necrosis factor-α production about 1.3 times higher than that of the commercially available β-1,3/1,6-glucan from baker’s yeast cells.  相似文献   

8.
Dopamine and norepinephrine are neurotransmitters which participate in various regulatory functions of the human brain. These functions are lost in neurodegenerative diseases including Parkinson’s disease and Alzheimer’s disease. In this study, we used SK-N-MC neuroblastoma cells to investigate the cytotoxicities of high concentrations of dopamine and norepinephrine on neuronal cells. Dopamine, norepinephrine, as well as their corresponding synthetic agonists (SKF38393 and isoproterenol, respectively) triggered SK-N-MC cell death when applied at 50–100 μM persistently for 2 days. This catecholamine-induced cell death appears to be neuronal specific, as demonstrated by their inabilities of triggering apoptosis of A549 lung carcinoma cells and Cos-7 kidney fibroblasts. By pretreating SK-N-MC cells with target-specific inhibitors before administration of catecholamine, components of G protein signaling (i.e. G s /cAMP/PKA), monoamine oxidases, nitric oxide synthase, c-Jun N-terminal kinase and oxidative stress were found to be involved in this dopamine/norepinephrine-induced cytotoxicity, which subsequently led to caspase-dependent and -independent apoptotic responses as well as DNA degradation. In contrast, agonists of G i -coupled dopamine receptors and adrenergic receptors (quinpirole and UK14,304, respectively) were incapable of triggering apoptosis of SK-N-MC cells. Our results suggest that both G protein (G s )-mediated signaling cascade and oxidative stress participate in the dopamine/norepinephrine-induced neuronal apoptosis. Anthony Chan and Ng Contributed equally to this work.  相似文献   

9.
10.
Aim: To examine the growth and survival of Williopsis saturnus strains along with wine yeast Saccharomyces cerevisiae in grape must. Methods and Results: For this study, fermentations were performed in sterilized grape must at 18°C. Inoculum level was 5 × 106 cells per ml for each yeast. The results showed that W. saturnus yeasts exhibited slight growth and survival depending on the strain, but they died off by day 5. Saccharomyces cerevisiae, however, dominated the fermentation, reaching the population of about 8 log CFU ml?1. It was observed that ethanol formation was not affected. The concentrations of acetic acid, ethyl acetate and isoamyl acetate were found higher in mixed culture experiments compared to control fermentation. The results also revealed that higher alcohols production was unaffected in general. Conclusion: Fermentations did not form undesirable concentrations of flavour compounds, but production of higher levels of acetic acid in mixed culture fermentations may unfavour the usage of W. saturnus in wine making. Significance and Impact of the Study: This study provides information on the behaviour of W. saturnus together with S. cerevisiae during the alcoholic fermentation.  相似文献   

11.
Cells of Kluyveromyces marxianus FII 510700 and Saccharomyces cerevisiae CBS 1907 were autolysed in phosphate buffer, pH 4.5, for a maximum of 10 days to compare chemical changes that occur in the carbohydrate, protein, amino acid and nucleic acid content. Approximately 2.2–3% carbohydrate, 9.5–12% protein, 0.6–1.0% DNA and 6–7% RNA were recovered in the autolysates. The main amino acids were β-alanine, phenylalanine, cysteine, methionine, glutamic acid and isoleucine. No significant differences in the yeast autolysates of K. marxianus and S. cerevisiae were observed. Consequently, K. marxianus produced from lactose-based media has potential as a source of yeast autolysates used in the food industry. Electronic Publication  相似文献   

12.
The effect of phosphate (P i ) concentration on the growth behavior of Saccharomyces cerevisiae strain CEN.PK113-5D in phosphate-limited batch and chemostat cultures was studied. The range of dilution rates used in the present study was 0.08–0.45 h−1. The batch growth of yeast cells followed Monod relationship, but growth of the cells in phosphate-limited chemostat showed change in growth kinetics with increasing dilution rates. The difference in growth kinetics of the yeast cells in phosphate-limited chemostat for dilution rates below and above approximately 0.2 h−1 has been discussed in terms of the batch growth kinetic data and the change in the metabolic activity of the yeast cells. Immunological detection of a C-terminally myc epitope-tagged Pho84 fusion protein indicated derepressive expression of the Pho84 high-affinity P i transporter in the entire range of dilution rates employed in this study. Phosphate transport activity mediated by Pho84 transporter was highest at very low dilution rates, i.e. 0.08–0.1 h−1, corresponding to conditions in which the amount of synthesized Pho84 was at its maximum.  相似文献   

13.
Oenococcus oeni exhibited extracellular β (1→3) glucanase activity. This activity increased when cells were cultivated with glycosidic cell-wall macromolecules. In addition, the culture supernatant of the organism effectively lysed viable or dead cells of Saccharomyces cerevisiae. This lytic activity appeared in the early stationary phase of bacterial growth. Yeast cells at the end of the log phase of growth were the most sensitive. The optimum temperature for lysis of viable yeast cells was 40°C, which is very different from the temperatures observed in enological conditions (15–20°C). Moreover, the rate of the lytic activity was significantly lower in comparison with yeast cell wall-degrading activities previously measured in various other microorganisms. Therefore, yeast cell death that is sometimes observed during the alcoholic fermentation could hardly be attributed to the lytic activity of O. oeni. Journal of Industrial Microbiology & Biotechnology (2000) 25, 193–197. Received 27 December 1999/ Accepted in revised form 14 July 2000  相似文献   

14.
The yeast Saccharomyces cerevisiae was shown to have a high potential as a phosphate-accumulating organism under growth suppression by nitrogen limitation. The cells took up over 40% of phosphate from the medium containing 30 mM glucose and 5 mM potassium phosphate and over 80% of phosphate on addition of 5 mM magnesium sulfate. The major part of accumulated Pi was reserved as polyphosphates. The content of polyphosphates was ∼57 and ∼75% of the phosphate accumulated by the cells in the absence and presence of magnesium ions, respectively. The content of long-chain polyphosphates increased in the presence of magnesium ions, 5-fold for polymers with the average length of ∼45 phosphate residues, 3.7-fold for polymers with the average chain length of ∼75 residues, and more than 10-fold for polymers with the average chain length of ∼200 residues. On the contrary, the content of polyphosphates with the average chain length of ∼15 phosphate residues decreased threefold. According to the data of electron and confocal microscopy and X-ray microanalysis, the accumulated polyphosphates were localized in the cytoplasm and vacuoles. The cytoplasm of the cells accumulating polyphosphates in the presence of magnesium ions had numerous small phosphorus-containing inclusions; some of them were associated with large electron-transparent inclusions and the cytoplasmic membrane.  相似文献   

15.
The sensitivity of Saccharomyces cerevisiae to the redox-active metal copper has recently been found to be influenced by cellular fatty acid composition. This study sought to investigate whether fatty acid composition affected plasma membrane permeabilisation and whole-cell toxicity induced by the redox-inactive metal cadmium. S. cerevisiae NCYC 1383 was enriched with the polyunsaturated fatty acids linoleate (18:2) and linolenate (18:3) by growth in 18:2- or 18:3-supplemented medium. Incorporation of the exogenous fatty acids resulted in them comprising more than 65% of the total fatty acids in plasma membrane lipids. Inhibition of cell division in the presence of Cd(NO3)2 was accentuated by growth in the presence of a polyunsaturated fatty acid. Furthermore, susceptibility to Cd2+-induced plasma membrane permeabilisation increased with the degree of fatty acid unsaturation. Thus, during exposure to Cd2+, K+ efflux from 18:2- and 18:3-enriched cells was up to 2.5-fold or 3-fold greater, respectively than that from unsupplemented cells. In addition, reductions in cell viability during exposure to Cd2+ were most marked in polyunsaturated-fatty-acid-supplemented cells. At certain times, unsupplemented Cd2+-exposed cells displayed up to 7-fold greater viability than supplemented Cd2+-exposed cells. The study demonstrates that the toxicity of the redox-inactive metal Cd2+ towards S. cerevisiae becomes markedly amplified with increased cellular and plasma membrane fatty acid unsaturation. Received: 14 March 1997 / Received revision: 4 June 1997 / Accepted: 7 June 1997  相似文献   

16.
The fermentation kinetics of Lactobacillus plantarum were studied in a specially designed broth formulated from commercially available, dehydrated components (yeast extract, trypticase, ammonium sulfate) in batch and continuous culture. During batch growth in the absence of malic acid, the specific growth rate was 0.20 h–1. Malic acid in the medium, at 2 mM or 10 mM, increased the specific growth rate of L. plantarum to 0.34 h–1. An increase in the maximum cell yield due to malic acid also was observed. Malic acid in the medium (12 mM) reduced the non-growth-associated (maintenance energy) coefficient and increased the biomass yield in continuous culture, based on calculations from the Luedeking and Piret model. The biomass yield coefficient was estimated as 27.4 mg or 34.3 mg cells mmol–1 hexose in the absence or presence of malic acid, respectively. The maintenance coefficient was estimated as 3.5 mmol or 1.5 mmol hexose mg–1 cell h–1 in the absence or presence of malic acid. These results clearly demonstrate the energy-sparing effect of malic acid on the growth- and non-growth-associated energy requirements for L. plantarum. The quantitative energy-sparing effect of malic acid on L. plantarum has heretofore not been reported, to our knowledge.  相似文献   

17.
Fourteen wild-type baking strains of Saccharomyces cerevisiae were grown in batch culture to true stationary phase (exogenous carbon source exhausted) and tested for their trehalose content and their tolerance to heat (52°C for 4.5 min), ethanol (20% v/v for 30 min), H2O2 (0.3 M for 60 min), rapid freezing (−196°C for 20 min, cooling rate 200°C min−1), slow freezing (−20°C for 24 h, cooling rate 3°C min−1), salt (growth in 1.5 M NaCl agar) or acetic acid (growth in 0.4% w/v acetic acid agar) stresses. Stress tolerance among the strains was highly variable and up to 1000-fold differences existed between strains for some types of stress. Compared with previously published reports, all strains were tolerant to H2O2 stress. Correlation analysis of stress tolerance results demonstrated relationships between tolerance to H2O2 and tolerance to all stresses except ethanol. This may imply that oxidative processes are associated with a wide variety of cellular stresses and also indicate that the general robustness associated with industrial yeast may be a result of their oxidative stress tolerance. In addition, H2O2 tolerance might be a suitable marker for the general assessment of stress tolerance in yeast strains. Trehalose content failed to correlate with tolerance to any stress except acetic acid. This may indicate that the contribution of trehalose to tolerance to other stresses is either small or inconsistent and that trehalose may not be used as a general predictor of stress tolerance in true stationary phase yeast. Received 10 October 1995/ Accepted in revised form 10 September 1996  相似文献   

18.
The ability of added acetaldehyde to stimulate growth in ethanol-stressed Saccharomyces cerevisiae while grown on non-fermentable substrates (ethanol, glycerol) is reported. The addition of acetaldehyde to ethanol-stressed yeast grown on either ethanol or glycerol led to a significant decrease in lag time of 67 and 45 %, respectively (p = 0.000) and an increase in the specific growth rate (0.008–0.038/h and 0.060–0.074/h, respectively). The stimulatory effect of acetaldehyde could be mimicked by the addition of propionaldehyde. Results, following metabolic tracing of the added stimulants, question the previously held notion that the acetaldehyde effect in S. cerevisiae is fully redox related.  相似文献   

19.
The growth dynamics of the synthesis of monoamine neuromediators serotonin, norepinephrine, and dopamine in Escherichia coli K-12 was investigated for the first time using high performance liquid chromatography with electrodetection. Maximum (micromolar) concentrations of these compounds were detected in E. coli cells during the early growth phases; their intracellular content decreases after the transition to late growth phases. E. coli biomass contains (i) the substances DOPA and 5-hydroxytryptamine that serve in animal cells as neuromediator precursors and (ii) the products of their oxidative deamination. Presumably, the biosynthesis and degradation of monoamine neuromediators in bacterial cells involves enzyme systems analogous to those typical of animals. The culture fluid of E. coli contains micromolar concentrations of DOPA and nanomolar of serotonin, dopamine, and norepinephrine during the late growth phase. These concentrations are sufficient for animal/human receptors to bind them. This article deals with the potential biotechnological applications of the data obtained.  相似文献   

20.
The aim of this work was to prepare recombinant amine oxidase from Aspergillus niger after overexpressing in yeast. The yeast expression vector pDR197 that includes a constitutive PMA1 promoter was used for the expression in Saccharomyces cerevisiae. Recombinant amine oxidase was extracted from the growth medium of the yeast, purified to homogeneity and identified by activity assay and MALDI-TOF peptide mass fingerprinting. Similarity search in the newly published A. niger genome identified six genes coding for copper amine oxidase, two of them corresponding to the previously described enzymes AO-I a methylamine oxidase and three other genes coding for FAD amine oxidases. Thus, A. niger possesses an enormous metabolic gear to grow on amine compounds and thus support its saprophytic lifestyle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号