首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hao M  Luo J  Yang M  Zhang L  Yan Z  Yuan Z  Zheng Y  Zhang H  Liu D 《Génome》2011,54(12):959-964
The ph-like genes in the Chinese common wheat landrace Kaixian-luohanmai (KL) induce homoeologous pairing in hybrids with alien species. In the present study, meiotic phenotypic differences on homoeologous chromosome pairing at metaphase I between hybrids of wheat genotypes Chinese Spring ph1b (CSph1b) and KL with rye were studied by genomic in situ hybridization (GISH). The frequency of wheat-wheat associations was higher in CSph1b×rye than in KL×rye. However, frequencies of wheat-rye and rye-rye associations were higher in KL×rye than in CSph1b×rye. These differences may be the result of different mechanisms of control between the ph-like gene(s) controlling homoeologous chromosome pairing in KL and CSph1b. Wheat-wheat associations were much more frequent than wheat-rye pairing in both hybriods. This may be caused by lower overall affinity, or homoeology, between wheat and rye chromosomes than between wheat chromosomes.  相似文献   

2.
1RS.1BL translocations are centric translocations formed by misdivision and have been used extensively in wheat breeding. However, the role that the centromere plays in the formation of 1RS.1BL translocations is still unclear. Fluorescence in situ hybridization (FISH) was applied to detect the fine structures of the centromeres in 130 1RS.1BL translocation cultivars. Immuno‐FISH, chromatin immunoprecipitation (ChIP)‐qPCR and RT‐PCR were used to investigate the functions of the hybrid centromeres in 1RS.1BL translocations. New 1R translocations with different centromere structures were created by misdivision and pollen irradiation to elucidate the role that the centromere plays in the formation of 1RS.1BL translocations. We found that all of the 1RS.1BL translocations detected contained hybrid centromeres and that wheat‐derived CENH3 bound to both the wheat and rye centromeres in the 1RS.1BL translocation chromosomes. Moreover, a rye centromere‐specific retrotransposon was actively transcribed in 1RS.1BL translocations. The frequencies of new 1RS hybrid centromere translocations and group‐1 chromosome translocations were higher during 1R misdivision. Our study demonstrates the hybrid nature of the centromere in 1RS.1BL translocations. New 1R translocations with different centromere structures were created to help understand the fusion centromere used for wheat breeding and for use as breeding material for the improvement of wheat.  相似文献   

3.
Compatibility of hybrid cultures Erysiphe graminis ff. sp. secalis (SI) ×tritici (t2) was tested in the laboratory with wheat cultivars involving different resistance genes and with two rye cultivars. Segregation was observed on wheat without resistance gene and with resistance genes Pm1, Pm3b and Pm3c compatible with t2, but not on wheat with resistance gene Pm2, Pm 3a, Pm 4a and Pm 5 incompatible with t2, nor on rye. It was obvious that S1 involves avirulence genes to Pm1, Pm2, Pm 3a, pm 3b, Pm 3c, Pm 4a, Pm 5. Segregation was found on wheat cultivars involving rye resistance genes Pm 7 (Transfed) and Pm 8 (Kavkaz), but cv. Transec (Pm7) was incompatible with all cultures used, because Transec involves another gene for resistance. The results indicate that hybridization between formae speciales secalis and tritici of the fungus can be a source of fungus compatibility with wheat with rye resistance, even in field conditions.  相似文献   

4.
Summary The 6-phosphogluconate dehydrogenase (6-PGD) zymogram phenotypes of wheat, rye and their aneuploid derivatives were determined. Two genes involved in the production of 6-PGD isozymes were located on chromosome arms CRL (4 RL) and FRL (6 RL) of Imperial rye. On the basis of differential interactions between wheat and rye chromosomes, evidence was obtained that genes located on chromosomes 6 A, 6 BL and 7 BL control 6-PGD isozyme activities in Chinese Spring wheat. The wheat and rye 6-PGD zymogram phenotypes were indicative of homoeologous relationships between rye chromosome 6 RL to wheat chromosomes of group 6, and rye chromosome 4 RL to wheat chromosomes of group 7.  相似文献   

5.
6.
A cDNA sequence (Hbc8-2) isolated from pistils of the self-incompatible species Hordeum bulbosum was analysed for expression pattern and genetic map location. Hbc8-2 was expressed just prior to anthesis in mature pistils, and expression was maintained at a high level throughout anthesis. The same expression pattern was found in self-incompatible rye ( Secale cereale), but no expression was detected in the self-compatible cereals wheat ( Triticum aestivum) or barley ( Hordeum vulgare) at comparable stages of development. However, three wheat expressed sequence tags from a pre-anthesis library had high homology to Hbc8-2. Southern blot analyses using Hbc8-2 as a probe detected hybridising bands in the genomes of various Gramineae species including rye, barley, bread wheat, wild wheat relatives ( Aegilops tauschii and Ae. speltoides), oats ( Avena fatua and A. strigosa), rice ( Oryza sativa) and maize ( Zea mays). This suggests that Hbc8-2-like sequences are present in many species but that high levels of expression may be associated with self-incompatibility. Hbc8-2 was mapped on the long arms of chromosome 2H(b) of H. bulbosum, 2R of rye, and 2B and 2D of wheat and was assigned to chromosome 2H of barley using wheat/barley addition lines. On a H. bulbosum genetic map, Xhbc8-2 was located between Xbcd266 and Xpsr87, while in rye and wheat it was located in a 13.2-cM interval between Xpsr331 and Xpsr932, consistent with previous comparative mapping studies of these species. Mapping in rye suggested that Hbc8-2 is probably proximal to the Z self-incompatibility locus which was previously shown to be tightly linked to Xbcd266.  相似文献   

7.
黑麦(Secale cereale L., RR)是改良普通小麦(Triticum aestivum L., AABBDD)的重要基因资源,将黑麦优异基因转移到普通小麦中,是小麦品种改良的有效途经之一。文章将四川地方品种蓬安白麦子(T. aestivum L., AABBDD) 与秦岭黑麦(S. cereale cv. Qinling, RR)杂交,染色体自动加倍获得八倍体小黑麦CD-13(AABBDDRR);通过顺序FISH和GISH分析,发现该八倍体小黑麦1RS端部与7DS的端部发生相互易位,是一个携带1RS-7DS.7DL小麦-黑麦小片段易位染色体的八倍体小黑麦。利用八倍体小黑麦CD-13与四川推广小麦品种川麦42杂交、连续自交,获得包含60个株系的F5群体;对F5群体的58个株系进行GISH和FISH分析发现,其中13个株系含有1RS-7DS.7DL小片段易位染色体。在这13个株系中,株系811染色体数目为2n=6x=42,是稳定的1RS-7DS.7DL小片段易位系;并且1RS特异分子标记和醇溶蛋白分析表明,1RS-7DS.7DL易位染色体1RS小片段的断裂点位于分子标记IB267-IAG95之间,不包含编码黑麦碱蛋白的Sec-1位点;同时1RS-7DS.7DL小片段易位系的千粒重与川麦42相当,远远高于八倍体小黑麦CD-13,对千粒重无负作用。因此,1RS-7DS.7DL小麦-黑麦小片段易位系可作为进一步深入研究1RS小片段上的优异基因及其遗传效应的重要材料。  相似文献   

8.
The localization of β -glucosidase was determined at the tissue level in roots and shoots of rye, wheat and maize seedlings, using an immunohistochemical approach with antibodies directed against purified maize β -glucosidase as the primary antibody. In the roots, the β -glucosidase was found in the epidermis and the underlying cell layer. In the leaves, staining was seen in the epidermis (rye and wheat) and nearby vascular tissue (rye, wheat and maize). In all 3 species, β -glucosidase activity was highest in the coleoptile. Here the enzyme was restricted to the epidermis in wheat and to cells near the vascular tissue in maize, but was found in the whole tissue, except the vascular tissue, in rye. Maize, wheat and rye all contain hydroxamic acid glucosides and results are discussed in relation to a proposed role of β -glucosidase as part of a defense system releasing hydroxamic acid aglucone upon herbivore attack, pathogen penetration or aphid infestation.  相似文献   

9.
Important winter and spring varieties of hexaploid rye-wheat (triticale cvs. 6048 and 5004) were selected for study of heterotic effects on growth and ion transport in the hybrids compared to the parental species rye ( Secale cereale L. cvs. MT 77 and Sv 6970) and wheat (Triticum aestivum L. cvs. Starke II and Sonett). After 3 days germination, seedlings were grown 11 days in water culture on a complete nutrient solution diluted to 1, 25 and 50%. Intracellular influx and transport to shoots of K+, Ca2+, sulphur and phosphate were determined by using radioactive tracers (86Rb (for K+), 45Ca, 35S and 32P). Varietal differences in the parameters studied were generally small compared to differences between species. The heterotic effect on growth of rye-wheat was mainly localized to the shoots at high ionic strengths (25% and 50%). There were no heterotic effects on ion influx or transport to the shoots. Ion influx and transport characteristics in rye-wheat appear to be inherited mainly from wheat. Growth of all species on 1% medium was severely reduced. At the low ionic strength ion influx was inhibited similarly for all species, except influx of K+ (86Rb) which was higher in rye-wheat and wheat than in rye. Ion influx and transport in rye-wheat and wheat and in rye differed especially for 25% and 50% media. Rye had the highest ion influx and transport and the highest shoot/root fresh weight ratio at the high ionic strengths. To feed a comparatively large shoot, rye may compensate for a relatively small root system by efficient ion transport mechanisms.  相似文献   

10.
Chinese rye cultivar Jingzhouheimai (Secale cereale L.) shows a high level of resistance to powdery mildew. Identification, location, and mapping of the resistance gene would be helpful for developing a highly resistant germplasm or cultivar in wheat. Using sequential C-banding, GISH, and marker analysis, an addition chromosome with powdery mildew resistance was identified in a line derived from a cross between Chinese wheat landrace Huixianhong and rye cultivar Jingzhouheimai. The line, designated H-J DA2RDS1R(1D), had 44 chromosomes including two pairs of rye chromosomes, 1R and 2R, and lacked a pair of wheat chromosomes 1D, that is, it is a double disomic addition disomic substitution line. According to its reaction to different isolates of the powdery mildew pathogen, the resistance gene in H-J DA2RDS1R(1D) differed from the Pm8 and Pm7 genes located earlier on rye chromosomes 1R and 2R, respectively. In order to determine the location of the resistance gene, line H-J DA2RDS1R(1D) was crossed with wheat landrace Huixianhong and the F2 population and corresponding F2:3 families were tested for disease reaction and assessed with molecular markers. The results showed that a resistance gene, designated PmJZHM2RL, is located in rye chromosome arm 2RL.  相似文献   

11.
Chromosome 1R of rye is a useful source of genes for disease resistance and enhanced agronomic performance in wheat. One of the most prevalent genes transferred to wheat from rye is the stem rust resistance gene Sr31. The recent emergence and spread of a stem rust pathotype virulent to this gene has refocused efforts to find and utilize alternative sources of resistance. There has been considerable effort to transfer a stem rust resistance gene, SrR, from Imperial rye, believed to be allelic to Sr31, into commercial wheat cultivars. However, the simultaneous transfer of genes at the Sec-1 locus encoding secalin seed storage proteins and their association with quality defects preclude the deployment of SrR in some commercial wheat breeding programs. Previous attempts to induce homoeologous recombination between wheat and rye chromosomes to break the linkage between SrR and Sec-1 whilst retaining the tightly linked major loci for wheat seed storage proteins, Gli-D1 and Glu-D3, and recover good dough quality characteristics, have been unsuccessful. We produced novel tertiary wheat-rye recombinant lines carrying different lengths of rye chromosome arm 1RS by inducing homoeologous recombination between the wheat 1D chromosome and a previously described secondary wheat-rye recombinant, DRA-1. Tertiary recombinant T6-1 (SrR+ Sec-1-) carries the target gene for stem rust resistance from rye and retains Gli-D1 but lacks the secalin locus. The tertiary recombinant T49-7 (SrR- Sec-1+) contains the secalin locus but lacks the stem rust resistance gene. T6-1 is expected to contribute to wheat breeding programs in Australia, whereas T49-7 provides opportunities to investigate whether the presence of secalins is responsible for the previously documented dough quality defects.  相似文献   

12.
A quantitative analysis of malate dehydrogenase isozymes has been carried out in a hexaploid wheat Triticum aestivum variety Holdfast, a diploid rye Secale cereale variety King II, a series of seven addition lines each having the Holdfast wheat chromosome complement, and also a different homologous pair of King II rye chromosomes. In young shoots of three of these addition lines grown in a defined salts medium lacking sucrose, at least one isozyme activity was elevated. This did not occur in shoots grown in a medium containing 0.5% sucrose or in the Triticale possessing the full wheat and rye chromosomal complements grown in the absence of exogenous sucrose. On the basis of cellular localization and substrate inhibition studies, the particular isozyme activities enhanced by the rye chromosomes were indistinguishable from isozyme activities in Holdfast wheat and dissimilar to all malate dehydrogenase isozyme activities observed in King II rye. These results suggest that three different rye chromosomes produce gene products which can interact with the wheat malate dehydrogenase regulatory system.  相似文献   

13.
Bulk segregant analysis was used to obtain a random amplified polymorphic DNA (RAPD) marker specific for the rye chromosome arm of the 1BL.1RS translocation, which is common in many high-yielding bread wheat varieties. The RAPD-generated band was cloned and end-sequenced to allow the construction of a pair of oligonucleotide primers that PCR-amplify a DNA sequence only in the presence of rye chromatin. The amplified sequence shares a low level of homology to wheat and barley, as judged by the low strength of hybridization of the sequence to restriction digests of genomic DNA. Genetic analysis showed that the amplified sequence was present on every rye chromosome and not restricted to either the proximal or distal part of the 1RS arm. In situ hybridization studies using the amplified product as probe also showed that the sequence was dispersed throughout the rye genome, but that the copy number was greatly reduced, or the sequence was absent at both the centromere and the major sites of heterochromatin (telomere and nucleolar organizing region). The probe, using both Southern blot and in situ hybridization analyses, hybridized at a low level to wheat chromosomes, and no hybridizing restriction fragments could be located to individual wheat chromosomes from the restriction fragment length polymorphism (RFLP) profiles of wheat aneuploids. The disomic addition lines of rye chromosomes to wheat shared a similar RFLP profile to one another. The amplified sequence does not contain the RIS 1 sequence and therefore represents an as yet undescribed dispersed repetitive sequence. The specificity of the amplification primers is such that they will provide a useful tool for the rapid detection of rye chromatin in a wheat background. Additionally, the relatively low level of cross-hybridization to wheat chromatin should allow the sequence to be used to analyse the organization of rye euchromatin in interphase nuclei of wheat lines carrying chromosomes, chromosome segments or whole genomes derived from rye.  相似文献   

14.
利用APAGE、荧光原位杂交技术和RFLP标记,对导入黑麦(SecalecerealeL.)多小穗等性状创制的小麦新种质10_A进行了分子标记检测。APAGE分析发现,10_A与其他1RS/1BL易位系一样,含有1RS的醇溶蛋白标记位点Gld1B3。以黑麦基因组总DNA作探针,用中国春(Triticumaestivumcv.ChineseSpring)基因组DNA作封阻,与10_A根尖细胞有丝分裂染色体进行荧光原位杂交。结果表明,黑麦的1RS易位到10_A中。用25个RFLP探针进行Southern分析,进一步发现10_A的1BS特异限制性片段发生丢失,代之以黑麦1RS的特异限制性片段,而位于其他染色体上的特异限制性片段未发生缺失。据此认为,多小穗小麦新种质10_A属于1RS/1BL易位系。同时还讨论了10_A在小麦遗传改良中的利用情况。  相似文献   

15.
Seven different mildew resistant wheat lines derived from crosses between triticale and bread wheat were examined by molecular cytogenetics and chromosome C-banding in order to determine their chromosomal composition. Genomic in situ hybridisation (GISH) showed the presence of rye germplasm in all the lines and identified three substitution lines, three double substitution lines and one addition-substitution line. C-banding identified rye chromosomes 1R and 4R in the addition-substitution line, rye chromosomes 1R and 6R in two substitution lines and 1R and 2R in the third line, and rye chromosome 1R in the three substitution lines. Two of the latter lines (7-102 and 7-169) contained a modified form of the chromosome; fluorescent in situ hybridisation (FISH) using five different repetitive DNA-probes showed a pericentric inversion of 1R in both lines. The breakpoints of the 1R inversion were between (1) the 5S rDNA site and the NOR-region on the satellite of the short arm, and (2) between two AAC(5) sites close to the centromere on the long arm. The role of the rye chromosomes in the mildew resistance, the utilisation of the inverted 1R and the significance of the lines in wheat breeding are discussed.  相似文献   

16.
两个紧密连锁的小麦苯丙氨酸解氨酶基因的分离与鉴定   总被引:1,自引:0,他引:1  
李和平  廖玉才 《遗传学报》2003,30(10):907-912
利用一个小麦苯丙氨酸解氨酶基因PCR片段为探针,从小麦核DNA基因库中筛选出一个阳性噬菌体克隆,该克隆含有两个高度同源、紧密连锁、转录方向相同的小麦苯丙氨酸解氨酶基因PAL1与PAL2,它们之间的核酸序列同源性。为93%,相距约7kb,利用PAL1特异片段进行Southern分析,表明该基因在小麦基因组中具有多个拷贝。Northern杂交表明,经秆锈菌接种诱导,苯丙氨酸解氨酶基因在一对小麦抗-感近等基因系中差异表达:抗病等基因系中国春-Sr11携带与接种菌无毒性基因P11相对应的抗病基因Sr11,在接种4d后开始诱导表达,8d后表达量更高;而缺少抗病基因的感病系中国春-sr11接种6d后才开始表达,8d后的表达量与抗病系中6d时相当。用秆锈菌诱导物和几丁质寡聚物处理小麦悬浮细胞,均可在2h内激活苯丙氨酸解氨酶基因表达,但真菌诱导物在早期的诱导活性显著高于几丁质寡聚物。从转录水平证实了小麦苯丙氨酸解氨酶基因在秆锈菌诱导的抗性反应中具有重要作用。  相似文献   

17.
In tetraploid rye with single-substitution wheat chromosomes - 1A, 2A, 5A, 6A, 7A, 3B, 5B, 7B - chromosome pairing was analysed at metaphase I in PMCs with the C-banding method. The frequency of univalents of chromosome 1A was considerably higher than that of the other four wheat chromosomes of genome A (6A, 5A, 7A and 2A). Among chromosomes of genome B, the lowest mean frequency of univalents was observed for chromosome 5B. In monosomic lines, wheat chromosomes 1A, 2A, 5A, 6A, 7A and 5B paired with rye homoeologues most often in rod bivalents and in chain quadrivalents (also including 3B). The 47% pairing of 5B-5R chromosomes indicate that the rye genomes block the suppressor Ph1 gene activity. In monosomic plants with chromosomes 5A, 2A, 6A, 7A and 5B, a low frequency of rye univalents was observed. It was also found that the wheat chromosomes influenced the pairing of rye genome chromosomes, as well as the frequency of ring and rod bivalents and tri- and quadrivalents. However, the highest number of terminal chiasmata per chromosome occurred in the presence of chromosomes 5A and 2A, and the lowest - in the presence of chromosomes 3B and 7B. In the presence of chromosome 5B, the highest frequency of bivalents was observed. The results of the present study show that the rye genome is closer related to the wheat genome A of than to genome B. The high pairing of wheat-rye chromosomes, which occurs in tetraploid rye with substitution wheat chromosomes, indicates that there is a high probability of incorporating wheat chromosome segments into rye chromosomes.  相似文献   

18.
Based on the similarity in gene structure between rice and wheat, the polymerase chain reaction (PCR)-based landmark unique gene (PLUG) system enabled us to design primer sets that amplify wheat genic sequences including introns. From the previously reported wheat PLUG markers, we chose 144 markers that are distributed on different chromosomes and in known chromosomal regions (bins) to obtain rye-specific PCR-based markers. We conducted PCR with the 144 primer sets and the template of the Imperial rye genomic DNA and found that 131 (91.0 %) primer sets successfully amplified PCR products. Of the 131 PLUG markers, 110 (76.4 %) markers showed rye-specific PCR amplification with or without restriction enzyme digestion. We assigned 79 of the 110 markers to seven rye chromosomes (1R to 7R) using seven wheat–rye (cv. Imperial) chromosome addition and substitution lines: 12 to 1R, 8 to 2R, 11 to 3R, 8 to 4R, 16 to 5R, 12 to 6R, and 12 to 7R. Furthermore, we located their positions on the short or long (L) chromosome arm, using 13 Imperial rye telosomic lines of common wheat (except for 3RL). Referring to the chromosome bin locations of the 79 PLUG markers in wheat, we deduced the syntenic relationships between rye and wheat chromosomes. We also discussed chromosomal rearrangements in the rye genome with reference to the cytologically visible chromosomal gaps.  相似文献   

19.
Cakmak  I.  Derici  R.  Torun  B.  Tolay  I.  Braun  H.J.  Schlegel  R. 《Plant and Soil》1997,196(2):249-253
Using the disomic wheat-rye addition lines (Triticum aestivum L., cv. Holdfast-Secale cereale L., cv. King-II) and an octoploid triticale line (xTriticosecale Wittmark L. "PlutoxFakon") as well as the respective wheat and rye parents, greenhouse experiments were carried out to study the role of rye chromosomes on the severity of Zn deficiency symptoms, shoot dry matter production, Zn efficiency, shoot Zn concentration and Zn content. Plants were grown in a Zn-deficient calcareous soil with (10 mg Zn kg-1 soil) and without Zn supply. Zinc efficiency was calculated as the ratio of dry weight produced under Zn deficiency to the dry weight produced under Zn fertilization. In the experiments with addition lines, visual Zn deficiency symptoms were slight in the rye cultivar King-II, but were severe in the wheat cultivar Holdfast. The addition of rye chromosomes, particularly 1R, 2R and 7R, into Holdfast reduced the severity of deficiency symptoms. Holdfast showed higher decreases in shoot dry matter production by Zn deficiency and thus had a low Zn efficiency (53 %), while King-II was less affected by Zn deficiency and had a higher Zn efficiency (89 %). With the exception of the 3R line, all addition lines had higher Zn efficiency than their wheat parent: the 1R line had the highest Zn efficiency (80 %). In the experiment with the triticale cultivar and its parents, rye cv. Pluto and wheat cv. Fakon, Zn deficiency symptoms were absent in Pluto, slight in triticale and very severe in Fakon. Zinc efficiency was 88 % for Pluto, 73 % for triticale and 64% for Fakon. Such differences in Zn efficiency were better related to the total amount of Zn per shoot than to the amount of Zn per unit dry weight of shoot. Only in the rye cultivars, Zn efficiency was closely related with Zn concentration. Triticale was more similar to rye than wheat regarding Zn concentration and Zn accumulation per shoot under both Zn-deficient and Zn-sufficient conditions.The results presented in this study show that rye has an exceptionally high Zn efficiency, and the rye chromosomes, particularly 1R and 7R carry the genes controlling Zn efficiency. To our knowledge, the result with triticale and its rye parents is the first report showing that the genes controlling Zn efficiency in rye are transferable into wheat and can be used for development of new wheat varieties with high Zn efficiency for severely Zn-deficient conditions.  相似文献   

20.
The phenotypic manifestation and genetic control of embryo lethality observed in crosses between common wheat and rye were studied. It was found that crosses between common wheat and inbred self-fertile rye lines L2 and 535 gave rise to ungerminating grains, in which the development and differentiation of the hybrid embryo are arrested. Study of the degree of embryo development in the hybrid grains obtained by crossing common wheat varieties with inbred rye lines L2 and 535 showed that genotypes of the parents affected the ratio between undifferentiated embryos of various sizes. Analysis of this trait was performed by test crosses according to a novel pedigree program with the use of interlinear hybrids and a set of fourth-generation hybrid recombinant inbred lines. Rye line L2 was shown to bear the Eml (Embryo lethality) gene, which terminates the development of the hybrid embryo in amphihaploids. The suggestion of complementary interaction between wheat and rye genes during formation of a “new” character in wheat-rye F1 hybrids is discussed. A method of detecting an allele not complementary to the rye Eml allele in wheat is proposed. The proposed test program allows appropriate study of the system of wheat and rye genes involved in complementary interaction in the genotype of a distant hybrid.__________Translated from Genetika, Vol. 41, No. 8, 2005, pp. 1075–1083.Original Russian Text Copyright © 2005 by Tikhenko, Tsvetkova, Voylokov.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号