首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Structures at the 5′ terminus of poly (A)-containing cytoplasmic RNA and heterogeneous nuclear RNA containing and lacking poly(A) have been examined in RNA extracted from both normal and heat-shocked Drosophila cells. 32P-labeled RNA was digested with ribonucleases T2, T1 and A and the products fractionated by a fingerprinting procedure which separates both unblocked 5′ phosphorylated termini and the blocked, methylated, “capped” termini, known to be present in the messenger RNA of most eukaryotes.Approximately 80% of the 5′-terminal structures recovered from digests of poly(A)-containing Drosophila mRNA are cap structures of the general form m7G5′ppp5′X(m)pY(m)pZp. With respect to the extent of ribose methylation and the base distribution, the 5′-terminal sequences of Drosophila capped mRNA appear to be intermediate between those of unicellular eukaryotes and those of mammals. Drosophila is the first organism known in which type 0 (no ribose methylations), type 1 (one ribose methylation), and type 2 (two ribose methylations) caps are all present. In contrast to mammalian cells, the caps of Drosophila never contain the doubly methylated nucleoside N6,2′-O-dimethyladenosine. Both purines and pyrimidines can be found as the penultimate nucleoside of Drosophila caps and there is a wide variety of X-Y base combinations. The relative frequencies of these different base combinations, and the extent of ribose methylation, vary with the duration of labeling. The large majority of poly(A)-containing cytoplasmic RNA molecules from heat-shocked Drosophila cells are also capped, but these caps are unusual in having almost exclusively purines as the penultimate X base.Greater than 75% of the 5′ termini of heterogeneous nuclear RNA (hnRNA) containing poly(A) and greater than 50% of the termini of hnRNA lacking poly (A) are also capped. Triphosphorylated nucleotides, common as the 5′ nucleotides of mammalian hnRNA, are rare in the poly(A)-containing hnRNA of Drosophila. The frequency of the various type 0 and type 1 cap sequences of cytoplasmic and nuclear poly (A)-containing RNA are almost identical. The caps of hnRNA lacking poly(A) are also quite similar to those of poly-adenylated hnRNA, but are somewhat lower in their content of penultimate pyrimidine nucleosides, suggesting that these two populations of molecules are not identical.  相似文献   

3.
4.
Mine I  Anota Y  Menzel D  Okuda K 《Protoplasma》2005,226(3-4):199-206
Summary. The configuration and distribution of polyadenylated RNA (poly(A)+ RNA) during cyst formation in the cap rays of Acetabularia peniculus were demonstrated by fluorescence in situ hybridization using oligo(dT) as a probe, and the spatial and functional relationships between poly(A)+ RNA and microtubules or actin filaments were examined by immunofluorescence microscopy and cytoskeletal inhibitor treatment. Poly(A)+ RNA striations were present in the cytoplasm of early cap rays and associated with longitudinal actin bundles. Cytochalasin D destroyed the actin filaments and caused a dispersal of the striations. Poly(A)+ RNA striations occurred in the cytoplasm of the cap rays up to the stage when secondary nuclei migrated into the cap rays, but they disappeared after the secondary nuclei were settled in their positions. At that time, a mass of poly(A)+ RNA was present around each of the secondary nuclei and accumulated rRNA. This mass colocalized with microtubules radiating from the surface of each secondary nucleus and disappeared when the microtubules were depolymerized by butamifos, which did not affect the configuration of actin filaments. These masses of poly(A)+ RNA continued to exist even after the cap ray cytoplasm divided into cyst domains. Thus two distinct forms of poly(A)+ RNA population, striations and masses, appear in turn at consecutive stages of cyst formation and are associated with distinct cytoskeletal elements, actin filaments and microtubules, respectively. Correspondence and reprints: Graduate School of Kuroshio Science, Kochi University, 2-5-1 Akebono-cho, Kochi 780-8520, Japan.  相似文献   

5.
6.
Vectors for in vitro synthesis of poly(A)+RNA transcripts   总被引:1,自引:0,他引:1  
L M Hoffman  D D Donaldson 《Gene》1988,67(1):137-140
  相似文献   

7.
Isolation of poly(A)+ RNA by paper affinity chromatography   总被引:16,自引:0,他引:16  
Poly(A)+ RNA was isolated from in vitro short-term-labeled total cytoplasmic RNA of Ehrlich ascites tumor cells by oligo(dT) cellulose chromatography. This poly(A)+ RNA fraction was compared with a poly(A)+ RNA fraction isolated by a new procedure which involves specific binding of poly(A)+ RNA to messenger affinity paper (mAP) and its release in hot (70 degrees C) water. In typical experiments 10-11 micrograms (2.3%) of poly(A)+ RNA can be retained from 500 micrograms of total cytoplasmic RNA per cm2 of mAP in a quick one-step procedure. The poly(A)+ RNA preparations isolated by the two methods proved to be almost identical with respect to their fraction in total cytoplasmic RNA, specific radioactivities, sucrose gradient profiles, and translation assays. Since the isolation of poly(A)+ RNA by mAP is much less time consuming than that by oligo(dT) column chromatography and since the poly(A)+ RNA can be recovered from mAP in small volumes, which avoids further loss during precipitations, it can be advantageously used for preparative isolation of poly(A)+ RNA.  相似文献   

8.
Xenopus laevis eggs and gastrula stage embryos were fractionated into three equal sections normal to the animal-vegetal axis, and poly(A)+ RNA was isolated from each section. Hybridization of these poly(A)+ RNAs with [32P]cDNA synthesized using animal or vegetal poly(A)+ RNAs showed no detectable differences in the extents or rates of reaction. Thus, the vast majority of poly(A)+ RNAs are not segregated along the animal-vegetal axis. To increase the sensitivity of these experiments, [32P]cDNAs were prepared which had reduced levels of RNA sequences from the animal region of the gastrula stage embryo or spawned unfertilized egg. Hybridization reactions with these probes showed that 3 to 5% of the input cDNA represents poly(A)+ RNA sequences enriched 2- to 20-fold in the vegetal region of the egg or gastrula stage embryo.  相似文献   

9.
Speckles are subnuclear domains where pre-mRNA splicing factors accumulate in the interchromatin space. To investigate the dynamics of mRNAs at speckles, fluorescently labeled Drosophila Fushitarazu (ftz) pre-mRNAs were microinjected into the nuclei of Cos7 cells and the dissociation kinetics of pre-mRNAs from speckles was analyzed using photobleaching techniques. The microinjected ftz pre-mRNAs accumulated in speckles in an intron-dependent manner and were spliced and exported to the cytoplasm with a half-time of about 10 min. Dissociation of the accumulated pre-mRNAs in speckles exhibited rapid diffusion and slow-dissociation of about 100 s. The slow-dissociation required metabolic energy of ATP. Two types of splice-defective mutated mRNAs dissociated from the speckle with a time constant similar to that of wild-type mRNA, indicating that slow-dissociation was not coupled to the splicing reaction. Furthermore, some pre-mRNAs shuttled between speckles and nucleoplasm, suggesting that pre-mRNAs repeatedly associated with and dissociated from speckles until introns were removed. Next, endogenous poly(A)+ RNA was visualized by injecting Cy3-labeled 2'O-methyl oligo(U)22 probes. Some poly(A)+ RNA distributed diffusely within the nucleus, but some of them accumulated in speckles and dissociated at time constant of about 100 s.  相似文献   

10.
The role of RNA methylations in the control of mRNA maturation and incorporation into polysomes has been investigated through a study of the effects in vivo of cycloleucine, a specific inhibitor of S-adenosyl-methionine mediated methylation. During the cycloleucine treatment, the rate of biosynthesis of hnRNA and its subsequent polyadenylation were only slightly reduced as compared with untreated cells. However a significant lag-time in the cytoplasmic appearance of poly(A)+ undermethylated molecules was observed, in parallel with a transient shift in the average size of hnRNA towards higher molecular weight. Nevertheless, the total amount of pulse-labelled poly(A)+ mRNA transferred to cytoplasm after a long chase time (3 h.) was approximately the same for both cycloleucine-treated and control cells. Extensively undermethylated poly(A)+ cytoplasmic RNAs, possessing a 5' terminal cap were incorporated into polysomes in proportions very similar to control messenger molecules. These results suggest that a normal level of methylation is not stringently required for the production of the functional mRNA molecules although it appears to be of importance for the kinetics of the maturational process.  相似文献   

11.
The steady state changes in total rat hepatic cytoplasmic RNA, poly(A)+ RNA and poly(A)-RNA were assessed in response to turpentine induced inflammation. From 18 to 24 h after injury, cytoplasmic RNA doubled, while poly(A)+ RNA peaked at 24 h, 3.5 times over control animals. Cell-free translation showed significant increases in messenger RNA levels beginning at 18 h. Gel electrophoresis of translation products revealed significant increases in several polypeptides and a decrease in others. Poly(A)-RNA from control and injured rats translated to an insignificant level and the electrophoretic gel patterns of their proteins were similar. Furthermore, no change had occurred in the 3' poly(A)-sequences during the course of inflammation.  相似文献   

12.
13.
A K Roy  R Bhadra  A G Datta 《Life sciences》1985,36(24):2301-2307
In vivo administration of epinephrine or serotonin has been shown to stimulate the incorporation of 14C-orotic acid into Poly(A)+ RNA. However, only epinephrine and not serotonin could stimulate DNA dependent RNA polymerase activity of isolated hepatic nuclei in in vitro experiments.  相似文献   

14.
15.
Platelets lack a nucleus and are usually considered to be incapable of protein synthesis due to an apparent lack of messenger RNA, precluding the construction of platelet cDNA libraries and hindering the cloning of authentic platelet cDNA's. We reasoned that vestigial amounts of messenger RNA may remain in platelets when they first separate from the megakaryocyte and circulate in the peripheral blood. We isolated poly (A)+ RNA from platelets obtained by pheresis of individuals with elevated blood platelet counts due to a myeloproliferative syndrome termed essential thrombocythemia. Northern blots using probes for platelet glycoprotein Ib indicate that the poly (A)+ RNA obtained from the platelets of these donors is, in fact, derived from platelets. Cell free translation studies using the platelet poly (A)+ RNA indicate that the material is translationally active. We conclude that, contrary to prevailing information, circulating human blood platelets retain appreciable amounts of poly (A)+ RNA and that this RNA can be harvested by the described approach. The poly (A)+ RNA provides templates for the synthesis of cDNA's that code for platelet proteins.  相似文献   

16.
The induction of poly(A) polymerase was accompanied by a rise in the level of poly(A)+ RNA during early germination of excised wheat embryos (48 h). Fractionation of this RNA-processing enzyme by acrylamide gel electrophoresis and also by molecular sieving on Sephadex G-200 revealed a single molecular form of poly(A) polymerase with a molecular weight of 125 000. Wheat poly(A) polymerase specifically catalyzed the incorporation of [3H]AMP from [3H]ATP into the polyadenylate product only in the presence of primer RNA. Substitution of [3H]ATP by other labelled nucleoside triphosphates, such as [3H]GTP, [3H]UTP or [α-32P]CTP in the assay mixture did not yield any labelled polynucleotide reaction product. The 3H-labelled reaction product was retained on poly(U)-cellulose affinity column and was not degraded by RNAase A and RNAase T1 treatment. In addition, the nearest-neighbour frequency analysis of the 32P-labelled reaction product predominantly yielded [32P]AMP. Thus, characterization of the reaction product clearly indicated its polyadenylate nature. The average chain length of the [3H]poly(A) product was 26 nucleotides. Infection of germinating wheat embryos by a fungal pathogen (Drechslera sorokiana) brought about a severe inhibition (62–79%) of poly(A) polymerase activity. Concurrently, there was a parallel decrease (73%) in the level of poly(A)+ RNA. Inhibition of poly(A) polymerase activity in infected embryos could be due to enzyme inactivation, which in turn brought about a downward shift in the level of poly(A)+ RNA. The crude extract of the cultured pathogen contains a non-dialysable, heat-labile factor, which, along with a ligand, inactivates (65–74%) poly(A) polymerase in vitro. The fungal extracts also contained a dialysable, heat-stable stimulatory effector which activated wheat poly(A) polymerase (3.6–4.0-fold stimulation) in vitro. However, the stimulatory fungal effector was not expressed in vivo, but was detectable after the inhibitory fungal factor had been destroyed by heat-treatment in our in vitro experiments.  相似文献   

17.
Infection of germinating wheat embryos by a fungal pathogen (Drechslera sorokiana) drastically lowered (70–73%) the relative abundance of poly(A)+ RNA. This was paralleled by a significant loss in the activities of RNA polymerase II (60–70%) and poly(A) polymerase (80–85%) enzymes. The inhibition of RNA polymerase II (60–65%) and poly(A) polymerase (70–85%) activities was also witnessed by the in vitro addition of the fungal extract to the enzyme preparations isolated from healthy embryos. The fungal extract showed negligible phosphatase and nuclease activities. This ruled out the possibility of rapid degradation of the labelled substrate [3H]ATP, primer RNA, or even the labelled reaction products under our assay conditions. The inhibitory effect of the fungal extract could be alleviated by fractionating the treated enzyme preparation by phosphocellulose chromatography. This indicated that the fungal extract was directly responsible for the inactivation of the polymerases in a reversible manner. The inhibitory function of the fungal extract was destroyed by treatment with pronase, but not with RNAase A and RNAase Ti. Poly(A) ‘tails’ were enzymatically excised from 32P-labelled poly(A)+ RNA and fractionated on acrylamide gels for autoradiographic analysis. The lengths of the 32P-labelled poly(A) ‘tails’ in control and infected embryos turned out to be identical (64 nucleotides). Our results suggest that the relative abundance of poly(A)+ RNA is diminished in fungal-infected wheat embryos through the selective inactivation of RNA polymerase II and poly(A) polymerase enzymes.  相似文献   

18.
This investigation deals both qualitatively and quantitatively with the changes of RNA content and synthesis during the culture growth cycle of Tetrahymena. Affinity chromatography with an oligo(dT) column was used to separate poly(A)+ RNA from total RNA. The rates of synthesis of poly(A)- and poly(A)+ RNA were determined in terms of the incorporation of [5-3H]uridine. During the log phase, the cellular RNA and protein contents decreased steadily, whereas during the resting stage, both were constant. The extents of decrease of both fractions of RNA were essentially the same (54.4% and 50.6% for total and poly(A)+ RNA, respectively). Therefore, the relative contents of poly(A)+ RNA was constant from the beginning of the log to the resting stage (4.58%). The decrease in protein content, however, amounted to only 24.8%. Theoretically, a change in the age distribution during culture growth would cause a lower content of both fractions of RNA. The extents of the decrease in the rate of synthesis of both fractions were the same (75% and 79% for poly(A)- and poly(A)+ RNA, respectively). However, this reduction is so large that it cannot be solely the result of a shift of the age distribution of the cell population.  相似文献   

19.
20.
The relative amounts of newly synthesized poly(A)+ and poly(A)? mRNA have been determined in developing embryos of the frog Xenopus laevis. Polysomal RNA was isolated and fractionated into poly(A)+ and poly(A)? RNA fractions with oligo(dT)-cellulose. In normal embryos the newly synthesized polysomal poly(A)+ RNA has a heterodisperse size distribution as expected of mRNA. The labeled poly(A)? RNA of polysomes is composed mainly of rRNA and 4S RNA. The amount of poly(A)? mRNA in this fraction cannot be quantitated because it represents a very small proportion of the labeled poly(A)? RNA. By using the anucleolate mutants of Xenopus which do not synthesize rRNA, it is possible to estimate the percentage of mRNA which contains poly(A) and lacks poly(A). All labeled polysomal RNA larger than 4S RNA which does not bind to oligo(dT)-cellulose in the anucleolate mutants is considered presumptive poly(A)? mRNA. The results indicate that about 80% of the mRNA lacks a poly(A) segment long enough to bind to oligo(dT). The poly(A)+ and poly(A)? mRNA populations have a similar size distribution with a modal molecular weight of about 7 × 105. The poly(A) segment of poly(A)+ mRNA is about 125 nucleotides long. Analysis of the poly(A)? mRNA fraction has shown that it lacks poly(A)125.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号