首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Roots of eighteen potato genotypes, differing in tolerance of G. pallida, were grown from tuberpieces on agar in Petri dishes. Juveniles of G. pallida were inoculated directly onto root tips. Root length was measured at various times after inoculation. Inoculation reduced root growth within one day. At later stages, genotypes differed strongly in growth of inoculated roots. Between four and seven days after inoculation, growth of inoculated roots was not significantly correlated with growth of untreated roots, and was only poorly correlated with tolerance assessed in the greenhouse or in the field. However, multiple regression analysis revealed that the tolerance of the tested genotypes was associated with both the rate at which they induced hatching and the growth of roots after inoculation. The combination of these two variables accounted for high percentages explained variance.  相似文献   

2.
Roots of two Chinese cabbage (Brassica campestris L. ssp. pekinensis) varieties, one tolerant and one susceptible, were inoculated with Plasmodiophora brassicae in liquid medium and in soil. Chitinase and peroxidase activities were determined in roots and shoots 1–21 days after inoculation with resting spores of Plasmodiophora and the enzyme activities compared with healthy tissue of the same age. In infected roots of the susceptible variety ‘Granat’ chitinase activity was higher than in the control 10 days after inoculation with spores. In the tolerant variety ‘Parkin’ we detected an increase in chitinase activity at the same time, which was about twice that of ‘Granat’. Chitinase activity in ‘Granat’ was also enhanced on day 13, 14 and 17 after inoculation, whereas chitinase activity in ‘Parkin’ was lower in the infected roots than in the controls during that period. In the shoots no correlation between chitinase activity and infection in the two varieties was observed. Chitinase from Chinese cabbage was further characterized and showed a pH optimum at pH 4.5–5.5 and a temperature optimum at 35–45°C. After isoelectric focusing 7 isoenzymes were discovered, but there were almost no differences between infected and healthy root extracts. Two isoenzymes with pI 8.7 and 8.8 showed cross-reactivity with an antiserum against bean chitinases. The molecular mass of these isoenzymes was determined as 33 kDa. Total peroxidase activity was generally higher in root tissue of both varieties than in the shoots. Peroxidase activity was increased most prominently in infected ‘Granat’ roots on day 13 after inoculation and of both varieties on day 17 compared to the controls. In clubbed tissue of ‘Granat’ a specific peroxidase isoenzyme appeared the first time 21 days after inoculation and was most prominent 28–30 days after inoculation. This isoenzyme had a molecular mass of ca 24 kDa and a pI of ca 8.8. With respect to our results the strategy of the Plasmodiophorales for plant attack is discussed.  相似文献   

3.
The Hyp content was studied in cell wall of alfalfa susceptible and resistant strains on the 3rd, the 7th and on the 14th day after inoculation with Verticillium albo-atrum or Corynebacterium michiganense pv. insidiosum. The changes of Hyp content after inoculation with both pathogens were markedly expressed in alfalfa roots. Resistant plants of R 337 strain responded to inoculation with V. albo-atrum or C. michiganense pv. insidiosum by the decrease of Hyp content mainly on the 3rd and on the 7th day. On the 14th day after inoculation Hyp content practically did not differ from that of the control. Susceptible plants of S 354 and S 321 srains responded to inoculation with wilt pathogens by the slight decrease of Hyp content at the 3rd day after inoculation. A significant increase of Hyp content was found on the 7th and mainly on the 14th day after inoculation in comparison with control plants. The cell wall Hyp content was also determined with 7 R-strains and 7 S-strains at 120 days after inoculation with both pathogens. In each R and S strain two categories of plants were used for chemical analyses: Wilt-free plants (0 to 1 classes) and diseased, wilted plants (2 to 6 classes). In the resistant alfalfa strains no differences in Hyp content between the wilt-free and diseased plants were found. In the susceptible alfalfa strains the Hyp content was significantly higher in roots of diseased plants comparing with the wilt-free ones. Only negligible changes in Hyp content were registered in the overground parts of all inoculated alfalfa strains.  相似文献   

4.
Salvia miltiorrhiza Bunge (Lamiaceae) hairy root cultures were inoculated (at 0.02 and 0.2% v/v) and co-cultured with Bacillus cereus bacteria. The root biomass growth was inhibited significantly by the bacteria inoculated to the root culture on the first day (day 0) but not by the bacteria inoculated on days 14 or 21 (in a 28-day overall period). On the other hand, the growth of the bacteria in the hairy root culture was also strongly inhibited by the hairy roots, partially because of the antibacterial activity of the secondary compounds produced by the roots. Most interestingly, the tanshinone production was promoted by the inoculation of bacteria at any of these days but more significantly by an earlier bacteria inoculation. With 0.2% bacteria inoculated on day 0, for example, the total tanshinone content of roots was increased by more than 12-fold (from 0.20 to 2.67 mg g−1 dry weight), and the volumetric tanshinone yield increased by more than sixfold (from 1.40 to 10.4 mg l−1). The tanshinone production was also stimulated by bacterial water extract and bacterial culture supernatant but less significantly than by the inoculation of live bacteria. The results suggest that the stimulation of tanshinone production by live bacteria in the root cultures may be attributed to the elicitor compounds originating from the bacteria, and the hairy root–bacteria coculture may be an effective strategy for improving secondary metabolite production in plant tissue cultures.  相似文献   

5.
Summary The activity of antioxidative enzymes after inoculation of pepper (Capsicum annuum L. Chungok) with a pathogen, Phytophthora capsici (P), the causal agent of Phytophtora blight and dual inoculation of pathogen and an antagonist, Paenibacillus illinoisensis KJA-424 (P+A), were measured and compared with that of non-inoculated (C) roots. Root mortality was significantly reduced by about 84% in P+A treatment compared with P treatment alone. When compared to the non-inoculated (C) roots, malondialdehyde (MDA) concentration gradually decreased by 52.4% in 7 days only in P-treated roots and hydrogen peroxide (H2O2) was not significantly affected by the treatment for 5 days but significantly decreased in the P+A-treated roots at day 7. P-treatment continuously induced peroxidase (POD) and superoxide dismutase (SOD), resulting in significant increases of 36.7% and 27.7% at day 7, respectively, compared to the control. In P+A-treated roots, the activities of POD and SOD also increased for 5 days but returned to the control level at day 7. Catalase activity fluctuated but again increased over the 7-day period following P+A inoculation. These results indicate that an antagonist P. illinoisensis KJA-424 alleviated root mortality and suppressed the elevated activities of POD and SOD in the root of pepper plant root caused by P.␣capsici infection.  相似文献   

6.
The effects of pea (Pisum sativum L.) seedling inoculation with nodule bacteria (Rhizobium leguminosarum bv. viceae) and hypothermia on the content of cytokinins (Ck) in seedling roots during 8 days after external factor action were studied. As soon as a day after inoculation with Rh. leguninosarum, the content of Ck in the seedling roots increased, especially in the root zone most susceptible to infection (0?C20 mm from the tip); this not only affected growth of the whole roots but also determined the initiation of nodule primordia. Hypothermia (8°C) reduced the content of CK as soon as in a day. After 5 and 8 days of hypothermia, the content of Ck in inoculated plants was approximately twice higher than in non-inoculated plant roots.  相似文献   

7.
J. Ikeda 《Plant and Soil》1994,158(1):23-27
The number of nodules formed by white clover (Trifolium repens L.) released from NaCl stress for 3 days (137 mol m-3) at different periods was examined. The NaCl stress-free periods were, 0 to 3 days prior to rhizobial inoculation, 0 to 3, 3 to 6, and 6 to 9 days after rhizobial inoculation. Plants not subjected to NaCl stress at 0 to 3 days after inoculation had 28.7 nodules per plant (74% of control), while plants continuously stressed had 5.2 nodules (13% of control). A NaCl stress-free period immediately after inoculation was the best among the stressed treatments, indicating that the early stage of nodulation was more sensitive than the later stages. Microscopic observation showed that imposing NaCl stress during the first 3 days after inoculation suppressed root hair curling to 9.1% of control, while the numbers of rhizobia attached to roots counted by dilution plates were not affected. Thus, there were no significant effects of NaCl stress on rhizobia. The sensitivity of the early stage of infection to NaCl stress was attributed to the inhibition of root hair curling.  相似文献   

8.
Anodic oxidation of coumaric acid led to the inhibition of the process at the electrode due to a film which was formed after one-electron oxidation of the acid to phenoxy radical.By contrast, caffeic acid is oxidized in two steps-the phenoxy radical is formed in the first step, quinone in the second step. The inhibition of nitrate uptake by coumaric and caffeic acids is dependent on their concentration. 10-4 M eaffeic acid totally inhibited nitrate uptake and the growth ofNicotiana tabacum cell suspension. 10-6 M caffeic acid markedly inhibited nitrate uptake especially in the first three days after inoculation. 10-6 M coumaric acid did not affect nitrate uptake and nitrate reductase activity, 10-4 M coumaric acid inhibited nitrate uptake by day two after inoculation. Nitrate reductase synthesis correlated with the inhibition of nitrate uptake. Differential effects of coumaric and caffeic acids are explained on the basis of different products of their electrochemical oxidation.  相似文献   

9.
 A field experiment was conducted to determine the seasonal patterns of arbuscular mycorrhiza (AM) in a dryland winter wheat (Triticum aestivum L.) system and to determine wheat growth and P uptake responses to inoculation with mycorrhizal fungus. Broadcast-incorporated treatments included (1) no inoculation with mycorrhizal fungus, with and without P fertilizer, and (2) mycorrhizal fungal inoculation at a rate of 5000 spores of Glomus intraradices (Schenck and Smith), per 30 cm in each row, with and without fertilizer P. Winter wheat was seeded within a day after treatments were imposed, and roots were sampled at five growth stages to quantify AM. Shoot samples were also taken for determination of dry matter, grain yield and yield components, and N and P uptake. No AM infection was evident during the fall months following seeding, which was characterized by low soil temperature, while during the spring, the AM increased gradually. Increases in wheat grain yields by enhanced AM were of similar magnitude to the response obtained from P fertilization. However, responses differed at intermediate growth stages. At the tillering stage, P uptake was mainly increased by P fertilization but not by fungal inoculation. At harvest, enhanced AM increased P uptake regardless of whether or not fertilizer P was added. The AM symbiosis increased with rising soil temperatures in the spring, in time to enhance late-season P accumulation and grain production. Accepted: 15 July 1998  相似文献   

10.
Ramamoorthy  V.  Raguchander  T.  Samiyappan  R. 《Plant and Soil》2002,239(1):55-68
Pseudomonas fluorescens isolate Pf1 was found to protect tomato plants from wilt disease caused by Fusarium oxysporum f. sp. lycopersici. Induction of defense proteins and chemicals by P. fluorescens isolate Pf1 against challenge inoculation with F. oxysporum f. sp. lycopersici in tomato was studied. Phenolics were found to accumulate in bacterized tomato root tissues challenged with F. oxysporum f. sp. lycopersici at one day after pathogen challenge. The accumulation of phenolics reached maximum at the 5th day after pathogen challenge. In pathogen-inoculated plants, the accumulation started at the 2nd day and drastically decreased 4 days after the pathogen inoculation. Activities of phenylalanine ammonia-lyase (PAL), peroxidase (PO) and polyphenol oxidase (PPO) increased in bacterized tomato root tissues challenged with the pathogen at one day after pathogen challenge and activities of PAL and PO reached maximum at the 4th day while activity of PPO reached maximum at the 5th day after challenge inoculation. Isoform analysis revealed that a unique PPO1 isoform was induced and PO1 and PPO2 isoforms were expressed at higher levels in bacterized tomato root tissues challenge inoculated with the pathogen. Similarly, -1,3 glucanase, chitinase and thaumatin-like proteins (TLP) were induced to accumulate at higher levels at 3-5 days of challenge inoculation in bacterized plants. Western blot analysis showed that chitinase isoform Chi2 with a molecular weight of 46 kDa was newly induced due to P. fluorescens isolate Pf1 treatment challenged with the pathogen. TLP isoform with molecular weight of 33 kDa was induced not only in P. fluorescens isolate Pf1-treated root tissues challenged with the pathogen but also in roots treated with P. fluorescens isolate Pf1 alone and roots inoculated with the pathogen. These results suggest that induction of defense enzymes involved in phenylpropanoid pathway and accumulation of phenolics and PR-proteins might have contributed to restriction of invasion of F. oxysporum f. sp. lycopersici in tomato roots.  相似文献   

11.
The aim of this work was to evaluate the effects of selected mycorrhiza obtained in the urban environment on growth, leaf gas exchange, and drought tolerance of containerized plants growing in the nursery. Two-year-old uniform Acer campestre L., Tilia cordata Mill., and Quercus robur L. were inoculated with a mixture of infected roots and mycelium of selected arbuscular (maple, linden) and/or ectomycorrhiza (linden, oak) fungi and grown in well-watered or water shortage conditions. Plant biomass and leaf area were measured 1 and 2 years after inoculation. Leaf gas exchange, chlorophyll fluorescence, and water relations were measured during the first and second growing seasons after inoculation. Our data suggest that the mycelium-based inoculum used in this experiment was able to colonize the roots of the tree species growing in the nursery. Plant biomass was affected by water shortage, but not by inoculation. Leaf area was affected by water regime and, in oak and linden, by inoculation. Leaf gas exchange was affected by inoculation and water stress. V cmax and J max were increased by inoculation and decreased by water shortage in all species. F v/F m was also generally higher in inoculated plants than in control. Changes in PSII photochemistry and photosynthesis may be related to the capacity of inoculated plants to maintain less negative leaf water potential under drought conditions. The overall data suggest that inoculated plants were better able to maintain physiological activity during water stress in comparison to non-inoculated plants.  相似文献   

12.
Strains of Streptomyces were tested for their ability to reduce population densities of the root-lesion nematode (RLN), Pratylenchus penetrans, in roots of alfalfa (Medicago sativa) in growth chamber assays. Previously, these strains were shown to suppress potato scab disease, caused by Streptomyces scabies, in field experiments and to inhibit in vitrogrowth of a wide range of plant-pathogenic fungi and bacteria. Inoculation with Streptomyces at planting significantly reduced RLN population densities in roots of both susceptible and resistant alfalfa varieties grown in either heat-treated or untreated soil. Reductions in RLN population densities were observed 6 weeks after nematode inoculation. Shoot dry matter was not affected by any treatment; root dry weight was reduced in Streptomycesplus nematode treatments compared to the nematode inoculation alone in some experiments but was not affected by Streptomyces when RLN was absent. Mutant strains not producing antibiotics in vitro also reduced RLN population densities in alfalfa roots and all strains maintained high population densities after inoculation into heat-treated soil and on alfalfa roots. These strains may be useful in multi-crop, multi-pathogen management programs to augment genetic resistance to plant diseases.  相似文献   

13.
Abstract

The effect of endophytic Pseudomonas fluorescens isolates Endo2 and Endo35 on induced systemic disease protection against dry root rot of black gram (Vigna mungo L. Hepper) caused by Macrophomina phaseolina was investigated under glasshouse conditions. When the bacterized black gram plants were inoculated with dry root rot pathogen, the activities of peroxidase (PO), polyphenol oxidase (PPO), phenylalanine ammonia-lyase (PAL) were stimulated in addition to accumulation of phenolics and lignin. Activity of phenylalanine ammonia-lyase (PAL) reached the maximum 24 h after pathogen challenge inoculation, whereas the activities of PO and PPO reached the maximum at 72 h and 48 h, respectively. Isoform analysis revealed that a unique PPO3 isozyme was induced in bacterized black gram tissues inoculated with the pathogen. Phenolics were found to accumulate in bacterized black gram tissues challenged with M. phaseolina one day after pathogen challenge. The accumulation of phenolics reached maximum at the third day after pathogen inoculation. Similar observation was found in the lignin content of black gram plants. In untreated control plants, the accumulation of defence enzymes and chemicals started at the first day and drastically decreased 3 days after pathogen inoculation. These results suggest that induction of defense enzymes involved in phenylpropanoid pathway and accumulation of phenolics and PR-proteins might have contributed to restricting invasion of Macrophomina phaseolina in black gram roots.  相似文献   

14.
Cell-mediated immune responses in mice infected with fonsecaea pedrosoi   总被引:4,自引:1,他引:3  
Time course of cellular and humoral immune responses in mice infected with Fonsecaea pedrosoi was investigated by using an antigen prepared from culture filtrate of this fungus. Mice were infected by intravenous injection with yeast-like cells of the fungus. Viable fungus was recovered from the brain of the infected mice until the 36th day after inoculation, and from the other organs examined until 14th to 16th day. Inflammatory lesions were observed in the brain, lung, heart, liver, spleen, kidney and intestine during the first 30 days after inoculation. Macrophage migration inhibition factor response in these mice was insignificant until 8 days after inoculation. A significant response was developed at day 10 and persisted until day 63. This response returned negative by 95 days after inoculation. Lymphocyte transformation response of these mice was negative until 4 days after inoculation. At day 6 blastogenic index increased to 1.5, and at day 10, 14 and 16 the indices were 1.8, 2.4 and 1.7 respectively. Precipitin response to this fungus could not be detected in these mice until 16 days after inoculation. Positive results were obtained at day 21 and lasted until 51 days after inoculation. The precipitin titers, however, did not exceed one fold in any of these mice.  相似文献   

15.
 As many eucalypts in commercial plantations are poorly ectomycorrhizal there is a need to develop inoculation programs for forest nurseries. The use of fungal spores as inoculum is a viable proposition for low technology nurseries currently producing eucalypts for outplanting in developing countries. Forty-three collections of ectomycorrhizal fungi from southwestern Australia and two from China, representing 18 genera, were tested for their effectiveness as spore inoculum on Eucalyptus globulus Labill. seedlings. Seven-day-old seedlings were inoculated with 25 mg air-dry spores in a water suspension. Ectomycorrhizal development was assessed in soil cores 65 and 110 days after inoculation. By day 65, about 50% of the treatments had formed ectomycorrhizas. By day 110, inoculated seedlings were generally ectomycorrhizal, but in many cases the percentage of roots colonized was low (<10%). Species of Laccaria, Hydnangium, Descolea, Descomyces, Scleroderma and Pisolithus formed more ectomycorrhizas than the other fungi. Species of Russula, Boletus, Lactarius and Hysterangium did not form ectomycorrhizas. The dry weights of inoculated seedlings ranged from 90% to 225% of the uninoculated seedlings by day 110. Although plants with extensively colonized roots generally had increased seedling growth, the overall mycorrhizal colonization levels were poorly correlated to seedling growth. Species of Laccaria, Descolea, Scleroderma and Pisolithus are proposed as potential candidate fungi for nursery inoculation programs for eucalypts. Accepted: 7 May 1998  相似文献   

16.
Loss of the water droplet above inoculation sites during the first day after inoculation inhibited lesion formation by Botrytis cinerea and prevented the development of spreading lesions of B. fabae. With droplets present two general patterns of infection by B. cinerea were determined; in one, few or no symptoms were produced and in the other, limited lesions developed with marked browning of the inoculation site. Where few or no symptoms were produced, germination and germ-tube growth were inhibited on the leaf surface. B. cinerea was inhibited within the leaf at sites bearing limited lesions; invading hyphae were restricted to brown epidermal cells. Fungal growth on the leaf surface was greatest at sites with most browning beneath the droplet area. Variation in lesion development by B. cinerea could not be related to droplet position or leaf damage during normal preparation for inoculation. Plants differed in their susceptibility to lesion formation by B. cinerea. B. fabae, with droplet present, was not inhibited on the leaf surface and spread inter- and intra-cellularly beneath the inoculum drop and then into surrounding tissues. Delay in spread until the inoculation site was completely necrotic and colonized suggested that B. fabae is partially inhibited during the initial phase of infection. The rate of lesion spread varied in different plants and was most rapid in the youngest leaves.  相似文献   

17.
To investigate the biocontrol effectiveness of the antibiotic producing bacterium, Pseudomonas aureofaciens 63–28 against the phytopathogen Rhizoctonia solani AG-4 on Petri plates and in soybean roots, growth response and induction of PR-proteins were estimated after inoculation with P. aureofaciens 63–28 (P), with R. solani AG-4 (R), or with P. aureofaciens 63–28 + R. solani AG-4 (P + R). P. aureofaciens 63–28 showed strong antifungal activity against R. solani AG-4 pathogens in Petri plates. Treatment with P. aureofaciens 63–28 alone increased the emergence rate, shoot fresh weight, shoot dry weight and root fresh weight at 7 days after inoculation, when compared to R. solani AG-4; P + R treatment showed similar effects. Peroxidase (POD) and β-1,3-glucanase activity of P. aureofaciens 63–28 treated roots increased by 41.1 and 49.9%, respectively, compared to control roots. POD was 26% greater in P + R treated roots than R. solani treated roots. Two POD isozymes (59 and 27 kDa) were strongly induced in P + R treated roots. The apparent molecular weight of chitinase from treated roots, as determined through SDS-PAGE separation and comparison with standards, was about 29 kDa. Five β-1,3-glucanase isozymes (80, 70, 50, 46 and 19 kDa) were observed in all treatments. These results suggest that inoculation of soybean plants with P. aureofaciens 63–28 elevates plant growth inhibition by R. solani AG-4 and activates PR-proteins, potentially through induction of systemic resistance mechanisms.  相似文献   

18.
The effect of the placement of inoculum of Fusarium oxysporum at two soil depths, and the sequences of inoculations with Meloidogyne arenaria and Fusarium oxysporum on root growth and development of root disease in Trifolium subterraneum L. (subterranean clover) were investigated. The timing of infection and the proximity of root tips of the host root system to infection by M. arenaria and F. oxysporum appeared to be the major determining factors of root growth and of disease development in plants exposed to the pathogens. Immediate contact of roots with F. oxysporum (where the fungus was placed at seed level of 10 mm depth) appeared to result in more severe effects on roots in the presence of the nematode than later infection by the fungus placed at 30 mm depth. The production of galls by the nematode and early infection by F. oxysporum at 10 mm depth resulted in a severe inhibition of root growth, particularly of the lateral roots. But no such growth inhibition was evident when F. oxysporum and M. arenaria were introduced together at the lower depth of 30 mm. The lowest density of M. arenaria inoculum was sufficient to cause severe root rot if F. oxysporum was present at the host seed level. With the fungus at 30 mm depth, however, the expression of root rot appeared to be influenced by the inoculum level of the nematode. In sequential inoculation with F. oxysporum or M. arenaria, the organism added 2 weeks later had little or no effect on root development. The first organism (M. arenaria or F. oxysporum) to infect the germinated seedlings was the main cause of root growth inhibition. The organism that came into contact with the roots 2 weeks later had little or no effect on the roots. Concurrent infection by F. oxysporum and M. arenaria resulted in less M. arenaria gall production on the tap root system than those added with the nematode alone or in advance of the fungus.  相似文献   

19.
A study was conducted to determine the effect of inoculation method and plant growth medium on colonization of sorghum by an endophytic Beauveria bassiana. Colonization of leaves, stems, and roots by B. bassiana was assessed 20-days after application of the fungus. Although B. bassiana established as an endophyte in sorghum leaves, stems, and roots regardless of inoculation method (leaf, seed, or soil inoculation), plant growth medium (sterile soil, non-sterile soil, or vermiculite) apparently influenced colonization rates. Seed inoculation with conidia caused no stem or leaf colonization by the fungus in non-sterile soil but did result in substantial endophytic colonization in vermiculite and sterile soil. Leaf inoculation did not result in root colonization, regardless of plant growth medium. Endophytic colonization was greater in leaves and stems than roots. Endophytic colonization by B. bassiana had no adverse effects on the growth of sorghum plants. Leaf inoculation with a conidial suspension proved to be the best method to introduce B. bassiana into sorghum leaves for plants growing in either sterile or non-sterile soil. Further research should focus on the virulence of endophytic B. bassiana against sorghum stem borers.  相似文献   

20.
Combined inoculation of grapevine roots with Meloidogyne hapla and Agrobacterium vitis at the level of 102–3 bacteria/g of soil resulted in root infestation by A. vitis. When inoculation of M. hapla and A vitis was applied, most of the feeder roots were dead and at points of secondary root branching, dark lesions could be observed. Along the secondary living roots, typical nematode induced galls could be seen. In many cases the infection stopped growth ofthe main or secondary roots. Plants inoculated with A. vitis alone did not show any galls or swellings on roots and its infection did not stop root growth. However in the M. hapla only treatment, small swellings or elongated galls were readily apparent on secondary roots. These galls were always exempt of A. vitis. Xylem sap, collected in spring 2 years after inoculation of A. vitis+M. hapla yielded many A. vitis cells demonstrating that the bacteria became systemic in plant vessels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号