首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract. 1. Interspecific plant hybridisation can have important evolutionary consequences for hybridising plants and for the organisms that they interact with on multiple trophic levels. In this study the effects of plant hybridisation on the abundance of herbivores and on the levels of herbivore parasitism were investigated. 2. Borrichia frutescens, B. arborescens, and their hybrid (B. × cubana) were censused for Asphondylia borrichiae galls and Pissonotus quadripustulatus plant hoppers in the Florida Keys. Levels of egg parasitism were determined by dissecting parental and hybrid stems and galls for herbivore and parasite eggs and larvae. Stem toughness and gall size are plant‐mediated modes of protection from parasitism and these were also measured. For gall midges, fly size was measured as an estimate of fecundity. 3. Field censuses indicated that herbivore abundances varied on hybrid hosts relative to parent plant species and that the different herbivore species exhibited different patterns of abundance. Asphondylia borrichiae gall numbers followed the additive pattern of abundance while P. quadripustulatus numbers most closely resembled the dominance pattern. 4. Parasitism of P. quadripustulatus eggs was high on B. frutescens and the hybrids, and low on B. arborescens, which also had significantly tougher stems. Asphondylia borrichiae suffered the highest levels of parasitism on B. frutescens, the host plant which produced the smallest galls. On B. arborescens, which produced the largest galls, levels of A. borrichiae parasitism were lowest. Both parasitism and gall size were intermediate on the hybrid plants. Galls on B. arborescens and hybrid plants produced significantly smaller flies then those from B. frutescens suggesting that, when selecting hosts from among parent species and hybrids, gall flies may face a trade‐off between escape from natural enemies and maximising fecundity.  相似文献   

2.
Stiling P  Moon DC 《Oecologia》2005,142(3):413-420
Resource quality (plant nitrogen) and resource quantity (plant density) have often been argued to be among the most important factors influencing herbivore densities. A difficulty inherent in the studies that manipulate resource quality, by changing nutrient levels, is that resource quantity can be influenced simultaneously, i.e. fertilized plants grow more. In this study we disentangled the potentially confounding effects of plant quality and quantity on herbivore trophic dynamics by separately manipulating nutrients and plant density, while simultaneously reducing pressure from natural enemies (parasitoids) in a fully factorial design. Plant quality of the sea oxeye daisy, Borrichia frutescens, a common coastal species in Florida, was manipulated by adding nitrogen fertilizer to increase and sugar to decrease available nitrogen. Plant density was manipulated by pulling by hand 25 or 50% of Borrichia stems on each plot. Because our main focal herbivore was a gall making fly, Asphondylia borrichiae, which attacks only the apical meristems of plants, manipulating plant nitrogen levels was a convenient and reliable way to change plant quality without impacting quantity because fertilizer and sugar altered plant nitrogen content but not plant density. Our other focal herbivore was a sap-sucker, Pissonotus quadripustulatus, which taps the main veins of leaves. Parasitism of both herbivores was reduced via yellow sticky traps that caught hymenopteran parasitoids. Plant quality significantly affected the per stem density of both herbivores, with fertilization increasing, and sugar decreasing the densities of the two species but stem density manipulations had no significant effects. Parasitoid removal significantly increased the densities of both herbivores. Top-down manipulations resulted in a trophic cascade, as the density of Borrichia stems decreased significantly on parasitoid removal plots. This is because reduced parasitism increases gall density and galls can kill plant stems. In this system, plant quality and natural enemies impact per stem herbivore population densities but plant density does not.  相似文献   

3.
Tatyana A. Rand 《Oecologia》2002,132(4):549-558
Herbivore damage and impact on plants often varies spatially across environmental gradients. Although such variation has been hypothesized to influence plant distribution, few quantitative evaluations exist. In this study I evaluated patterns of insect herbivory on an annual forb, Atriplex patula var. hastata, across a salt marsh tidal gradient, and performed experiments to examine potential causes and consequences of variation in herbivory. Damage to plants was generally twice as great at mid-tidal elevations, which are more frequently inundated, than at higher, less stressful, elevations at five of six surveyed sites. Field herbivore assays and herbivore preference experiments eliminated the hypothesis that plant damage was mediated by herbivore response to differences in host plants across the gradient. Alternately, greater herbivore densities in the mid-marsh, where densities of an alternate host plant (Salicornia europaea) were high, were associated with greater levels of herbivory on Atriplex, suggesting spillover effects. The effect of insect herbivores on host plant performance varied between the two sites studied more intensively. Where overall herbivore damage to plants was low, herbivory had no detectable effect on plant survival or seed production, and plant performance did not significantly differ between zones. However, where herbivore damage was high, herbivores dramatically reduced both plant survival (>50%) and fruit production (40-70%), and their effects were stronger in the harsher mid-marsh than the high marsh. Thus herbivores likely play a role in maintaining lower Atriplex densities in mid-marsh. Overall, these results suggest that variation in herbivore pressure can be an important determinant of patterns of plant abundance across environmental gradients.  相似文献   

4.
5.
Abstract.  1. Competition, food quality, and pressure from natural enemies have all been established as important determinants of phytophagous insect densities. Examining how these forces interact, however, is important for furthering our understanding of insect population and community ecology.
2. In this paper the results of a factorial field experiment are reported in which the effects of within-trophic-level interactions on the top-down and bottom-up forces influencing the density of a salt marsh planthopper were examined.
3. Plant quality was increased by adding nitrogen fertiliser, and parasitism was decreased through the use of yellow sticky traps that removed hymenopteran parasitoids. These treatments were applied to plots with either low or high densities of a lepidopteran stem borer, which has been shown to negatively affect the planthopper.
4. Addition of nitrogen increased planthopper density significantly, but only on plots with low stem borer densities. Yellow sticky traps significantly reduced parasitism of planthopper eggs, but this resulted in increased planthopper density only on plots with low stem borer density. Thus, where stem borer densities were high, the effects of fertiliser and reduced parasitism on planthopper densities were suppressed.
5. The results of this study show that negative interactions between herbivores can affect vertical trophic linkages, and can greatly modify the strengths of top-down or bottom-up effects on herbivore density.  相似文献   

6.
Abstract.  1. Previous studies have demonstrated that phenotypic traits of plants have the potential to affect interactions between herbivores and their natural enemies. Consequently, the impact of natural enemies on herbivore vital rates and population dynamics may vary among plant species. This study was designed to investigate the potential for density-dependent parasitism of an aphid herbivore feeding on six different host plant species.
2. Population densities of the aphid Aphis nerii B de F (Homoptera: Aphididae) and its parasitoid Lysiphlebus testaceipes Cresson (Hymenoptera: Braconidae) were recorded within a single growing season on six different species of milkweed in the genus Asclepias L. (Asclepiadaceae). Asclepias species are known to vary in their quality as food for herbivores. Although data on plant quality were not available in this study, population data were analysed to determine the effects of different Asclepias species on rates of parasitism and aphid population growth.
3. Parasitism rates of A. nerii varied among Asclepias species but were temporally density dependent over at least some range of aphid density on all plant species. Aphid population growth rates also varied among Asclepias species, and declined with an increase in the maximum parasitism rates among plant species; however, in no case was density-dependent parasitism sufficient to prevent exponential population growth of aphids within the growing season. The results serve to emphasise that, if natural enemies are to regulate herbivore populations, density-dependent mortality is a necessary, but not sufficient, condition for regulation.  相似文献   

7.
1. Stressful abiotic conditions and mycorrhizal fungi have both been shown to influence plant quality significantly, yet the interactive effects of these factors on relationships among plants, herbivores, and natural enemies remain unclear. 2. In this study, the results of a factorial field experiment are reported in which the effects of plant stress and mycorrhizae on density and parasitism of three herbivores of Baccharis halimifolia L. were examined. 3. Plant stress was increased by adding salt to the soil, and association with mycorrhizal fungi was increased by inoculating plant roots. 4. Inoculation with mycorrhizal fungi resulted in increased density of all three herbivore species, but the effects of mycorrhizae on parasitism varied by species and with soil salinity levels. For the gall maker Neolasioptera lathami Gagne, mycorrhizae decreased parasitism regardless of soil salinity levels. For the leaf miners Amauromyza maculosa Malloch and Liriomyza trifolii Burgess, mycorrhizae effectively negated the decrease in parasitism resulting from increased salinity. 5. The results of this study show that the effects of mycorrhizae on parasitism may be context dependent, and can be positive or negative depending upon species and environmental conditions.  相似文献   

8.
Invasive non-native plant species often harbor fewer herbivorous insects than related native plant species. However, little is known about how herbivorous insects on non-native plants are exposed to carnivorous insects, and even less is known on plants that have recently expanded their ranges within continents due to climate warming. In this study we examine the herbivore load (herbivore biomass per plant biomass), predator load (predator biomass per plant biomass) and predator pressure (predator biomass per herbivore biomass) on an inter-continental non-native and an intra-continental range-expanding plant species and two congeneric native species. All four plant species co-occur in riparian habitat in north-western Europe. Insects were collected in early, mid and late summer from three populations of all four species. Before counting and weighing the insects were classified to trophic guild as carnivores (predators), herbivores, and transients. Herbivores were further subdivided into leaf-miners, sap-feeders, chewers and gallers. Total herbivore loads were smaller on inter-continental non-native and intra-continental range-expanding plants than on the congeneric natives. However, the differences depended on time within growing season, as well as on the feeding guild of the herbivore. Although the predator load on non-native plants was not larger than on natives, both non-native plant species had greater predator pressure on the herbivores than the natives. We conclude that both these non-native plant species have better bottom-up as well as top-down control of herbivores, but that effects depend on time within growing season and (for the herbivore load) on herbivore feeding guild. Therefore, when evaluating insects on non-native plants, variation within season and differences among feeding guilds need to be taken into account.  相似文献   

9.
There is a lack of scientific consensus about how top-down and bottom-up forces interact to structure terrestrial ecosystems. This is especially true for systems with large carnivore and herbivore species where the effects of predation versus food limitation on herbivores are controversial. Uncertainty exists whether top-down forces driven by large carnivores are common, and if so, how their influences vary with predator guild composition and primary productivity. Based on data and information in 42 published studies from over a 50-year time span, we analyzed the composition of large predator guilds and prey densities across a productivity gradient in boreal and temperate forests of North America and Eurasia. We found that predation by large mammalian carnivores, especially sympatric gray wolves (Canis lupus) and bears (Ursus spp.), apparently limits densities of large mammalian herbivores. We found that cervid densities, measured in deer equivalents, averaged nearly six times greater in areas without wolves compared to areas with wolves. In areas with wolves, herbivore density increased only slightly with increasing productivity. These predator effects are consistent with the exploitation ecosystems hypothesis and appear to occur across a broad range of net primary productivities. Results are also consistent with theory on trophic cascades, suggesting widespread and top-down forcing by large carnivores on large herbivores in forest biomes across the northern hemisphere. These findings have important conservation implications involving not only the management of large carnivores but also that of large herbivores and plant communities.  相似文献   

10.
How variations in the strength of bottom-up and top-down forces are mediated by life-history trait differences of insect herbivores is an important but underexplored topic in ecology. Here, we implemented a factorial experiment manipulating plant quality by nitrogen fertilization and attack rates of parasitoids and spiders, respectively. We used sticky traps and mesh barriers in a salt marsh system to examine bottom-up and top-down effects on populations of three hemipteran sap-feeding monophagous species of Phragmites australis with different seasonality. The species included Chloriona alaica and Stenocranus matsumurai most abundant in spring and autumn, respectively, and Dimorphopterus pallipes abundant in both summer and autumn. Fertilization increased the density of S. matsumurai but had no effect on C. alaica and D. pallipes. Its negative effects on densities of the latter two species were even observed in earlier months. On the other hand, parasitoid removal not only increased abundance of all three herbivores, but also reduced the culm diameter, shoot height and biomass of P. australis, suggesting a trophic cascade. The main effects of parasitoid removal were greatest in months when those herbivores had their peak densities. In contrast, spider removal only affected the abundance of S. matsumurai with the greatest effect in September. Our results indicate that parasitoids have strong top-down effects on populations of insect herbivores in P. australis-dominated salt marshes and the strength of their effects is positively correlated with the host density. Furthermore, effects of plant quality and spider predation are more varied among herbivores with different seasonality.  相似文献   

11.
Quantitative differences in plant defence metabolites, such as glucosinolates, may directly affect herbivore preference and performance, and indirectly affect natural enemy pressure. By assessing insect abundance and leaf damage rate, we studied the responses of insect herbivores to six genotypes of Brassica oleracea var. acephala, selected from the same cultivar for having high or low foliar content of sinigrin, glucoiberin and glucobrassicin. We also investigated whether the natural parasitism rate was affected by glucosinolates. Finally, we assessed the relative importance of plant chemistry (bottom-up control) and natural enemy performance (top-down control) in shaping insect abundance, the ratio of generalist/specialist herbivores and levels of leaf damage. We found that high sinigrin content decreased the abundance of the generalist Mamestra brassicae (Lepidoptera, Noctuidae) and the specialist Plutella xylostella (Lepidoptera, Yponomeutidae), but increased the load of the specialist Eurydema ornatum (Hemiptera, Pentatomidae). Plants with high sinigrin content suffered less leaf injury. The specialist Brevicoryne brassicae (Hemiptera, Aphididae) increased in plants with low glucobrassicin content, whereas the specialists Pieris rapae (Lepidoptera, Pieridae), Aleyrodes brassicae (Hemiptera, Aleyrodidae) and Phyllotreta cruciferae (Coleoptera, Chrysomelidae) were not affected by the plant genotype. Parasitism rates of M. brassicae larvae and E. ornatum eggs were affected by plant genotype. The ratio of generalist/specialist herbivores was positively correlated with parasitism rate. Although both top-down and bottom-up forces were seen to be contributing, the key factor in shaping both herbivore performance and parasitism rate was the glucosinolate concentration, which highlights the impact of bottom-up forces on the trophic cascades in crop habitats.  相似文献   

12.
Egg distribution in herbivorous beetles can be affected by bottom-up (host plant), and by top-down factors (parasitoids and predators), as well as by other habitat parameters. The importance of bottom-up and top-down effects may change with spatial scale.

In this study, we investigated the influence of host plant factors and habitat structure on egg distribution in the leaf beetle Cassida canaliculata Laich. (Coleoptera: Chrysomelidae), a monophagous herbivore on Salvia pratensis L. (Lamiales: Lamiaceae), on four spatial scales: individual host plant, microhabitat, macrohabitat, and landscape. At the individual host plant scale we studied the correlation between egg clutch incidence and plant size and quality. On all other scales we analyzed the relationship between the egg clutch incidence of C. canaliculata and host plant percentage cover, host plant density, and the surrounding vegetation structure. Vegetation structure was examined as herbivores might escape egg parasitism by depositing their eggs on sites with vegetation factors unfavorable for host searching parasitoids.

The probability that egg clutches of C. canaliculata were present increased with an increasing size, percentage cover, and density of the host plant on three of the four spatial scales: individual host plant, microhabitat, and macrohabitat. There was no correlation between vegetation structure and egg clutch occurrence or parasitism on any spatial scale. A high percentage of egg clutches (38–56%) was parasitized by Foersterella reptans Nees (Hymenoptera: Tetracampidae), the only egg parasitoid, but there was no relationship between egg parasitism and the spatial distribution of egg clutches of C. canaliculata on any of the spatial scales investigated. However, we also discuss results from a further study, which revealed top-down effects on the larval stage.  相似文献   


13.
We tested integrative bottom-up and top-down trophic cascade hypotheses with manipulative experiments in a tropical wet forest, using the ant-plant Piper cenocladum and its associated arthropod community. We examined enhanced nutrients and light along with predator and herbivore exclusions as sources of variation in the relative biomass of plants, their herbivores (via rates of herbivory), and resident predaceous ants. The combined manipulations of secondary consumers, primary consumers, and plant resources allowed us to examine some of the direct and indirect effects on each trophic level and to determine the relative contributions of bottom-up and top-down cascades to the structure of the community. We found that enhanced plant resources (nutrients and light) had direct positive effects on plant biomass. However, we found no evidence of indirect (cascading through the herbivores) effects of plant biomass on predators or top predators. In contrast, ants had indirect effects on plant biomass by decreasing herbivory on the plants. This top-down cascade occurred whether or not plant resources were enriched, conditions which are expected to modify top-down forces. Received: 9 August 1998 / Accepted: 1 December 1998  相似文献   

14.

Background

Dioecy represents a source of variation in plant quality to herbivores due to sexual differences in intensity and timing of resource allocation to growth, defense and reproduction. Male plants have higher growth rates and should be more susceptible to herbivores than females, due to a lower investment in defense and reproduction.

Methodology/Principal Findings

We compared resource investment to growth and reproduction and its consequences to herbivore attack on three Baccharis species along one year (B. dracunculifolia, B. ramosissima, and B. concinna). Phenological patterns presented by the three species of Baccharis were quite different over time, but the number of fourth-level shoots and plant growth rate did not differ between sexes in any studied species. Intersexual difference in reproductive investment was only observed for B. concinna, with female individuals supporting higher inflorescence density than male individuals throughout the year. Gall abundance on the three Baccharis species was not influenced by plant sex. However, all plant traits evaluated here positively influenced the gall abundance on B. concinna, whereas only the number of fourth-level shoots positively influenced gall abundance on B. ramosissima and B. dracunculifolia.

Conclusions/Significance

The absence of differential reproductive allocation may have contributed to similar growth and shoot production between the sexes, with bottom-up effects resulting in gender similarities in gall abundance patterns. The number of fourth-level shoots, an indicator of meristem availability to herbivores, was the most important driver of the abundance of the galling insects regardless of host plant gender or species. Albeit the absence of intersexual variation in insect gall abundance is uncommon in the literature, the detailed study of the exceptions may bring more light to understand the mechanisms and processes behind such trend.  相似文献   

15.
The evolution of plant defensive traits in response to selection pressures imposed by herbivores is central to co-evolutionary theory. To demonstrate the role of herbivores as selective agents on plant resistance there must be variability in plant resistance to herbivores within a plant population. This variability must be under genetic control, and the variability in plant resistant traits and consequently herbivore damage to plants must reflect variability in plant fitness. We used a common eucalypt species, Eucalyptus globulus, and two major mammalian herbivores, the common brushtail possum (Trichosurus vulpecula) and the red-bellied pademelon (Thylogale billardierii), as a system to investigate intraspecific variation in plant resistance to mammalian herbivores and to investigate if this variation has a genetic basis. We measured mammalian browsing damage on 2,302 individual trees of E. globulus, from 563 families derived from range-wide native stand seed collections of known pedigree and grown in a common environment field trial. Using a selection of trees from the field trial we then conducted a feeding trial with captive herbivores to assess if the genetic variation in plant resistance in the field was reflected in feeding preferences of captive animals, as measured by relative intake. Results from the field trial showed significant genetic variation in plant resistance amongst races, localities and amongst different families. These results were consolidated in the captive trial with similar trends in genetic variation among E. globulus localities. Dry matter intake of foliage by Trichosurus vulpecula was consistently greater than that by Thylogale billardierii; however, the intraspecific preferences of the two herbivores were significantly correlated.  相似文献   

16.
1. A tritrophic perspective is fundamental for understanding the drivers of insect–plant interactions. While host plant traits can directly affect insect herbivore performance by either inhibiting or altering the nutritional benefits of consumption, they can also have an indirect effect on herbivores by influencing rates of predation or parasitism. 2. Enhancing soil nutrients available to trees of the genus Eucalyptus consistently modifies plant traits, typically improving the nutritional quality of the foliage for insect herbivores. We hypothesised that resulting increases in volatile essential oils could have an indirect negative effect on eucalypt‐feeding herbivores by providing their natural enemies with stronger host/prey location cues. 3. Eucalyptus tereticornis Smith seedlings were grown under low‐ and high‐nutrient conditions and the consequences for the release of volatile cues from damaged plants were examined. The influence of 1,8‐cineole (the major volatile terpene in many Eucalyptus species) on rates of predation on model caterpillars in the field was then examined. 4. It was found that the emission of cineole increased significantly after damage (artificial or herbivore), but continued only when damage was sustained by herbivore feeding. Importantly, more cineole was emitted from high‐ than low‐nutrient seedlings given an equivalent amount of damage. In the field, predation was significantly greater on model caterpillars baited with cineole than on unbaited models. 5. These findings are consistent with the hypothesis that any performance benefits insect herbivores derive from feeding on high‐nutrient eucalypt foliage could be at least partially offset by an increased risk of predation or parasitism via increased emission of attractive volatiles.  相似文献   

17.
Herbivores have diverse impacts on their host plants, potentially altering survival, growth, fecundity, and other aspects of plant performance. Especially for longer-lived plant species, the effects of a single herbivore species can vary markedly throughout the life of the host plant. In addition, the effects of herbivory during any given life history stage of a host plant may also vary considerably with different types of herbivores. To investigate the effects of herbivory by black-tailed deer (Odocoileus hemionus columbianus) and snails (Helminthoglypta arrosa and Helix aspersa) on a nitrogen-fixing shrub, Lupinus chamissonis, we established three exclosure experiments in a sand dune system on the coast of northern California. These experiments documented that deer browsing significantly reduced the volume and growth rate of lupines in the seedling and juvenile life stages. Since plant volume was strongly correlated with aboveground dry biomass for lupines, such herbivore-induced reductions in volume should translate into losses of aboveground biomass. Deer browsing also significantly altered the likelihood of attack by and density of a leaf-galling cecidomyid fly (Dasineura lupinorum), suggesting that a vertebrate herbivore indirectly affected an invertebrate herbivore in this system. Although deer did not significantly affect the survival of lupine seedlings and juveniles, individuals protected from deer had consistently greater survival in the two separate experiments. Our results revealed that snails did not have a significant effect on the survival or growth of juvenile plants, despite being common on and around lupines. An exclosure experiment revealed that herbivory by deer significantly reduced the shoot lengths of mature shrubs, but led only to a minimal reduction in growth rates. In addition, we found that browsed shrubs had significantly greater inflorescence production, but also produced individual seeds with significantly reduced mass. Collectively, these data indicate that deer and snails have widely differing effects on their shared host plant; browsing by deer indirectly affects insect herbivores, and the impacts of deer change markedly with the life history stage of their host plant.  相似文献   

18.
Many plant and animal species have higher densities at the centre of their distribution, with a gradual decline in abundance towards the edge of the range, though reasons for this pattern is not well known. We examined the abundance of the leaf miner Cameraria sp. nova over the range of its host plant Quercus myrtifolia in Florida and addressed how bottom-up and top-down factors varied over its whole distribution. Leaf miner densities, plant quality and natural enemy effects on mine survivorship were evaluated in 40 sites and spatially structured models were used to determine the effects of spatial location on the abundance of Cameraria and effects of both bottom-up (tannin concentration, foliar nitrogen, soil nitrogen, and leaf area) and top-down factors (larval parasitism and predation) on abundance and survivorship. Cameraria mines were, on average, three times more abundant on edge/coastal sites compared to centre/inland sites and did not support the hypothesis of higher abundance on the centre of the distribution. Differences in plant quality, larval parasitism and successful emergence of mines on edge versus central sites might be partially responsible for this finding. A trend surface equation with latitude and longitude combined explained almost 52% of the variation in Cameraria density and a trend surface map also revealed peaks of Cameraria abundance on the edges of the plant distribution. Correlograms also indicated a significant spatial structure of Cameraria as mines were positively spatially autocorrelated at small distances (≈122 km). Partial regression analyses indicated that 69% of the variation in Cameraria abundance was explained by the effects of latitude, longitude, elevation and percentage of foliar nitrogen. Our results indicated that variation in Cameraria abundance was mostly explained by spatial position and significant effects of bottom-up and top-down factors were not detected in our large-scale study.  相似文献   

19.
Interactions between plants and herbivores often vary on a geographic scale. Although theory about plant defenses and tolerance is predicated on temporal or spatial variation in herbivore damage, no single study has compared the pattern of herbivory, plant defenses and tolerance to herbivory of a single species across a latitudinal gradient. In 2002–2005 we surveyed replicate salt marshes along the Atlantic coast of the United States from Florida to Maine. At each field site we scored leaves of Iva frutescens for herbivore damage. In laboratory experiments we measured constitutive resistance and induced resistance in I. frutescens from high and low latitude sites along the Atlantic Coast. In another common garden experiment we studied tolerance to herbivory of I. frutescens from various sites. Theory predicts that constitutive resistance should matter more when damage is high, and induced resistance when herbivory is high but variable. In the field, average levels of herbivore damage, and spatial and temporal variation in herbivore damage were all greater at low versus high latitudes, indicating that constitutive as well as induced resistance should be stronger at low latitudes. Consistent with this prediction, constitutive resistance to herbivory was stronger at low latitudes. Induced resistance to herbivores was also stronger at low latitudes: it was deployed faster and lasted longer. Theory also predicts that tolerance to herbivory should be greater where average herbivory damage is greater; however, tolerance to herbivory in Iva did not depend on geographic origin. Our results emphasize the value of considering multiple ways in which plants respond to herbivores when examining geographic variation in plant–herbivore interactions.  相似文献   

20.
To examine top-down and bottom-up influences on managed terrestrial communities, we manipulated plant resources and arthropod abundance in alfalfa (Medicago sativa L.) fields. We modified arthropod communities using three nonfactorial manipulations: pitfall traps to remove selected arthropods, wooden crates to create habitat heterogeneity, and an arthropod removal treatment using a reversible leaf blower. These manipulations were crossed with fertilizer additions, which were applied to half of the plots. We found strong effects of fertilizer on plant quality and biomass, and these effects cascaded up to increase herbivore abundance and diversity. The predator community also exhibited a consistent positive effect on the maintenance of herbivore species richness and abundance. These top-down changes in arthropods did not cascade down to affect plant biomass; however, plant quality (saponin content) increased with higher herbivore densities. These results corroborate previous studies in alfalfa that show complex indirect effects, such as trophic cascades, can operate in agricultural systems, but the specifics of the interactions depend on the assemblages of arthropods involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号