首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The specificity of Staphylococcus aureus and protein A-Sepharose (PA-S) were compared in the radioimmunoprecipitation assay for the characterization of monoclonal antibodies (mAbs) against rotavirus proteins. Five mAbs directed against bovine rotavirus Q17 proteins Vp6 and Vp7 and one mAb directed against human rotavirus protein Vp4 were used in this study. mAbs directed against other viruses, NS-1 culture supernatant and ascitic fluid, were used as control reagents. A non-specific immunoprecipitation of the viral protein Vp6 was always found with S. aureus, but not with PA-S. mAb 74 reacted with rotavirus antigens in ELISA and in indirect immunofluorescence assay but did not immunoprecipitate a viral protein with PA-S. This mAb immunoprecipitated the viral protein Vp6 when S. aureus reagent was used. This false positive reaction was always present and could lead to confusing results in the analysis and characterization of mAbs against rotavirus.  相似文献   

2.
VP4 is an unglycosylated protein of the outer layer of the capsid of rotavirus. It forms spikes that project from the outer layer of mature virions, which is mainly constituted by glycoprotein VP7. VP4 has been implicated in several important functions, such as cell attachment, penetration, hemagglutination, neutralization, virulence, and host range. Previous studies indicated that VP4 is located in the space between the periphery of the viroplasm and the outside of the endoplasmic reticulum in rotavirus-infected cells. Confocal microscopy of infected MA104 monolayers, immunostained with specific monoclonal antibodies, revealed that a significant fraction of VP4 was present at the plasma membrane early after infection. Another fraction of VP4 is cytoplasmic and colocalizes with beta-tubulin. Flow cytometry analysis confirmed that at the early stage of viral infection, VP4 was present on the plasma membrane and that its N-terminal region, the VP8* subunit, was accessible to antibodies. Biotin labeling of the infected cell surface monolayer with a cell-impermeable reagent allowed the identification of the noncleaved form of VP4 that was associated with the glycoprotein VP7. The localization of VP4 was not modified in cells transfected with a plasmid allowing the expression of a fusion protein consisting of VP4 and the green fluorescent protein. The present data suggest that VP4 reaches the plasma membrane through the microtubule network and that other viral proteins are dispensable for its targeting and transport.  相似文献   

3.
Previous studies have shown that rotavirus virions, a major cause of infantile diarrhea, assemble within small intestinal enterocytes and are released at the apical pole without significant cell lysis. In contrast, for the poorly differentiated kidney epithelial MA 104 cells, which have been used extensively to study rotavirus assembly, it has been shown that rotavirus is released by cell lysis. The subsequent discovery that rotavirus particles associate with raft-type membrane microdomains (RTM) in Caco-2 cells provided a simple explanation for rotavirus polarized targeting. However, the results presented here, together with those recently published by another group, demonstrate that rotavirus also associates with RTM in MA 104 cells, thus indicating that a simple interaction of rotavirus with rafts is not sufficient to explain its apical targeting in intestinal cells. In the present study, we explore the possibility that RTM may have distinct physicochemical properties that may account for the differences observed in the rotavirus cell cycle between MA 104 and Caco-2 cells. We show here that VP4 association with rafts is sensitive to cholesterol extraction by methyl-beta-cyclodextrin treatment in MA 104 cells and insensitive in Caco-2 cells. Using the VP4 spike protein as bait, VP4-enriched raft subsets were immunopurified. They contained 10 to 15% of the lipids present in total raft membranes. We found that the nature and proportion of phospholipids and glycosphingolipids were different between the two cell lines. We propose that this raft heterogeneity may support the cell type dependency of virus assembly and release.  相似文献   

4.
Trypsin cleavage stabilizes the rotavirus VP4 spike   总被引:5,自引:0,他引:5       下载免费PDF全文
Trypsin enhances rotavirus infectivity by an unknown mechanism. To examine the structural basis of trypsin-enhanced infectivity in rotaviruses, SA11 4F triple-layered particles (TLPs) grown in the absence (nontrypsinized rotavirus [NTR]) or presence (trypsinized rotavirus [TR]) of trypsin were characterized to determine the structure, the protein composition, and the infectivity of the particles before and after trypsin treatment. As expected, VP4 was not cleaved in NTR particles and was cleaved into VP5(*) and VP8(*) in TR particles. However, surprisingly, while the VP4 spikes were clearly visible and well ordered in the electron cryomicroscopy reconstructions of TR TLPs, they were totally absent in the reconstructions of NTR TLPs. Biochemical analysis with radiolabeled particles indicated that the stoichiometry of the VP4 in NTR particles was the same as that in TR particles and that the VP8(*) portion of NTR, but not TR, particles is susceptible to further proteolysis by trypsin. Taken together, these structural and biochemical data show that the VP4 spikes in the NTR TLPs are icosahedrally disordered and that they are conformationally different. Structural studies on the NTR TLPs after trypsin treatment showed that spike structure could be partially recovered. Following additional trypsin treatment, infectivity was enhanced for both NTR and TR particles, but the infectivity of NTR remained 2 logs lower than that of TR particles. Increased infectivity in these particles corresponded to additional cleavages in VP5(*), at amino acids 259, 583, and putatively 467, which are conserved in all P serotypes of human and animal group A rotaviruses and also corresponded with a structural change in VP7. These biochemical and structural results show that trypsin cleavage imparts order to VP4 spikes on de novo synthesized virus particles, and these ordered spikes make virus entry into cells more efficient.  相似文献   

5.
Rotavirus spike protein VP4 is implicated in several important functions, such as cell attachment, penetration, hemagglutination, neutralization, virulence, and host range. It is present at the plasma membrane and colocalizes with the cytoskeleton in infected cells. We looked for cellular partners responsible for the localization of VP4 by two-hybrid screening of a monkey CV1 cell cDNA library. In the screen we isolated repeatedly three cDNAs encoding either two isoforms (a and c) of Rab5 protein or the prenylated Rab acceptor (PRA1). The small GTPase Rab5 is a molecule regulating the vesicular traffic and the motility of early endosomes along microtubules. Rab5 interacts with a large number of effectors, in particular with PRA1. Interactions of VP4 with both partners, Rab5 and PRA1, were confirmed by coimmunoprecipitation from infected- or transfected-cell lysates. Interaction of Rab5 and PRA1 was restricted to free VP4, since neither triple-layered particles nor NSP4-VP4-VP7 heterotrimeric complexes could be coprecipitated. Site-directed and deletion mutants of VP4 were used to map a VP4 domain(s) interacting with Rab5 or PRA1. Of the 10 mutants tested, 2 interacted exclusively with a single partner. In contrast, the domain extending from amino acids 560 to 722 of VP4 is essential for both interactions. These results suggest that Rab5 and PRA1 may be involved in the localization and trafficking of VP4 in infected cells.  相似文献   

6.
The type I glycoprotein S of coronavirus, trimers of which constitute the typical viral spikes, is assembled into virions through noncovalent interactions with the M protein. Here we demonstrate that incorporation is mediated by the short carboxy-terminal segment comprising the transmembrane and endodomain. To this aim, we used the virus-like particle (VLP) system that we developed earlier for the mouse hepatitis virus strain A59 (MHV-A59) and which we describe now also for the unrelated coronavirus feline infectious peritonitis virus (FIPV; strain 79-1146). Two chimeric MHV-FIPV S proteins were constructed, consisting of the ectodomain of the one virus and the transmembrane and endodomain of the other. These proteins were tested for their incorporation into VLPs of either species. They were found to assemble only into viral particles of the species from which their carboxy-terminal domain originated. Thus, the 64-terminal-residue sequence suffices to draw the 1308 (MHV)- or 1433 (FIPV)-amino-acid-long mature S protein into VLPs. Both chimeric S proteins appeared to cause cell fusion when expressed individually, suggesting that they were biologically fully active. This was indeed confirmed by incorporating one of the proteins into virions which thereby acquired a new host cell tropism, as will be reported elsewhere.  相似文献   

7.
The purpose of the present study was to examine potential mechanisms for the known inhibitory effect of acute alcohol exposure on myocardial protein synthesis. Rats were injected intraperitoneally with either ethanol (75 mmol/kg) or saline, and protein synthesis was measured in vivo 2.5 h thereafter by use of the flooding-dose L-[(3)H]phenylalanine technique. Rates of myocardial protein synthesis and translational efficiency in alcohol-treated rats were decreased compared with control values. Free (nonpolysome bound) 40S and 60S ribosomal subunits were increased 50% after alcohol treatment, indicating an impaired peptide-chain initiation. To identify mechanisms responsible for this impairment, several eukaryotic initiation factors (eIF) were analyzed. Acute alcohol intoxication did not significantly alter the myocardial content of eIF2 alpha or eIF2B epsilon, the extent of eIF2 alpha phosphorylation, or the activity of eIF2B. Acute alcohol exposure increased the binding of 4E-binding protein 1 (4E-BP1) to eIF4E (55%), diminished the amount of eIF4E bound to eIF4G (70%), reduced the amount of 4E-BP1 in the phosphorylated gamma-form (40%), and decreased the phosphorylation of p70S6 kinase and the ribosomal protein S6. There was no significant difference in either the plasma insulin-like growth factor (IGF) I concentration (total or free) or expression of IGF-I or IGF-II mRNA in heart between the two groups. These data suggest that the acute alcohol-induced impairment in myocardial protein synthesis results, in part, from an inhibition in peptide-chain initiation, which is associated with marked changes in eIF4E availability and p70S6 kinase phosphorylation but is independent of changes in the eIF2/2B system and IGFs.  相似文献   

8.
The spike (S) protein of SARS coronavirus (SARS-CoV) has been known to recognize and bind to host receptors, whose conformational changes then facilitate fusion between the viral envelope and host cell membrane, leading to viral entry into target cells. However, other functions of SARS-CoV S protein such as proteolytic cleavage and its implications to viral infection are incompletely understood. In this study, we demonstrated that the infection of SARS-CoV and a pseudovirus bearing the S protein of SARS-CoV was inhibited by a protease inhibitor Ben-HCl. Also, the protease Factor Xa, a target of Ben-HCl abundantly expressed in infected cells, was able to cleave the recombinant and pseudoviral S protein into S1 and S2 subunits, and the cleavage was inhibited by Ben-HCl. Furthermore, this cleavage correlated with the infectivity of the pseudovirus. Taken together, our study suggests a plausible mechanism by which SARS-CoV cleaves its S protein to facilitate viral infection.  相似文献   

9.
The effect of hydrostatic pressure on the conformational properties of the E. coli methionine repressor protein in aqueous solution was investigated by infrared spectroscopy. Changes in hydrostatic pressure produce dramatic changes in the spectral region of the conformation-sensitive amide I band. As the pressure is raised up to 18 kbar, the protein undergoes a rearrangement of alpha-helical segments into beta-type structures; after the pressure is released the beta-strands reconvert into less ordered alpha-helical or random segments.  相似文献   

10.
The solution structure of the GB1 domain of protein G at a pressure of 2 kbar is presented. The structure was calculated as a change from an energy-minimised low-pressure structure using (1)H chemical shifts. Two separate changes can be characterised: a compression/distortion, which is linear with pressure; and a stabilisation of an alternative folded state. On application of pressure, linear chemical shift changes reveal that the backbone structure changes by about 0.2 A root mean square, and is compressed by about 1% overall. The alpha-helix compresses, particularly at the C-terminal end, and moves toward the beta-sheet, while the beta-sheet is twisted, with the corners closest to the alpha-helix curling up towards it. The largest changes in structure are along the second beta-strand, which becomes more twisted. This strand is where the protein binds to IgG. Curved chemical shift changes with pressure indicate that high pressure also populates an alternative structure with a distortion towards the C-terminal end of the helix, which is likely to be caused by insertion of a water molecule.  相似文献   

11.
J N Herron  K R Ely  A B Edmundson 《Biochemistry》1985,24(14):3453-3459
The effect of high static pressures on the internal structure of the immunoglobulin light chain (Bence-Jones) dimer from the patient Mcg was assessed with measurements of intrinsic protein fluorescence polarization and intensity. Depolarization of intrinsic fluorescence was observed at relatively low pressures (less than 2 kbar), with a standard volume change of -93 mL/mol. The significant conformational changes indicated by these observations were not attributable to major protein unfolding, since pressures exceeding 2 kbar were required to alter intrinsic fluorescence emission maxima and yields. Fluorescence intensity and polarization measurements were used to investigate pressure effects on the binding of bis(8-anilino-naphthalene-1-sulfonate) (bis-ANS), rhodamine 123, and bis(N-methylacridinium nitrate) (lucigenin). Below 1.5 kbar the Mcg dimer exhibited a small decrease in affinity for bis-ANS (standard volume change approximately 5.9 mL/mol). At 3 kbar the binding activity increased by greater than 250-fold (volume change -144 mL/mol) and remained 10-fold higher than its starting value after decompression. With rhodamine 123 the binding activity showed an initial linear increase but plateaued at pressures greater than 1.5 kbar (standard volume change -23 mL/mol). These pressure effects were completely reversible. Binding activity with lucigenin increased slightly at low pressures (standard volume change -5.5 mL/mol), but the protein was partially denatured at pressures greater than 2 kbar. Taken in concert with the results of parallel binding studies in crystals of the Mcg dimer, these observations support the concept of a large malleable binding region with broad specificity for aromatic compounds.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Rotavirus infection modifies Ca2+ homeostasis, provoking an increase in Ca2+ permeation, the cytoplasmic Ca2+ concentration ([Ca2+]cyto), and total Ca2+ pools and a decrease in Ca2+ response to agonists. A glycosylated viral protein(s), NSP4 and/or VP7, may be responsible for these effects. HT29 or Cos-7 cells were infected by the SA11 clone 28 strain, in which VP7 is not glycosylated, or transiently transfected with plasmids coding for NSP4-enhanced green fluorescent protein (EGFP) or NSP4. The permeability of the plasma membrane to Ca2+ and the amount of Ca2+ sequestered in the endoplasmic reticulum released by carbachol or ATP were measured in fura-2-loaded cells at the single-cell level under a fluorescence microscope or in cell suspensions in a fluorimeter. Total cell Ca2+ pools were evaluated as 45Ca2+ uptake. Infection with SA11 clone 28 induced an increase in Ca2+ permeability and 45Ca2+ uptake similar to that found with the normally glycosylated SA11 strain. These effects were inhibited by tunicamycin, indicating that inhibition of glycosylation of a viral protein other than VP7 affects the changes of Ca2+ homeostasis induced by infection. Expression of NSP4-EGFP or NSP4 in transfected cells induced the same changes observed with rotavirus infection, whereas the expression of EGFP or EGFP-VP4 showed the behavior of uninfected and untransfected cells. Increased 45Ca2+ uptake was also observed in cells expressing NSP4-EGFP or NSP4, as evidenced in rotavirus infection. These results indicate that glycosylated NSP4 is primarily responsible for altering the Ca2+ homeostasis of infected cells through an initial increase of cell membrane permeability to Ca2+.  相似文献   

13.
Cell division in Toxoplasma gondii occurs by an unusual budding mechanism termed endodyogeny, during which twin daughters are formed within the body of the mother cell. Cytokinesis begins with the coordinated assembly of the inner membrane complex (IMC), which surrounds the growing daughter cells. The IMC is compiled of both flattened membrane cisternae and subpellicular filaments composed of articulin-like proteins attached to underlying singlet microtubules. While proteins that comprise the elongating IMC have been described, little is known about its initial formation. Using Toxoplasma as a model system, we demonstrate that actin-like protein 1 (ALP1) is partially redistributed to the IMC at early stages in its formation. Immunoelectron microscopy localized ALP1 to a discrete region of the nuclear envelope, on transport vesicles, and on the nascent IMC of the daughter cells prior to the arrival of proteins such as IMC-1. The overexpression of ALP1 under the control of a strong constitutive promoter disrupted the formation of the daughter cell IMC, leading to delayed growth and defects in nuclear and apicoplast segregation. Collectively, these data suggest that ALP1 participates in the formation of daughter cell membranes during cell division in apicomplexan parasites.  相似文献   

14.
Matsuyama S  Taguchi F 《Journal of virology》2002,76(23):11819-11826
Although murine coronavirus mouse hepatitis virus (MHV) enters cells by virus-cell membrane fusion triggered by its spike (S) protein, it is not well known how the S protein participates in fusion events. We reported that the soluble form of MHV receptor (soMHVR) transformed a nonfusogenic S protein into a fusogenic one (F. Taguchi and S. Matsuyama, J. Virol. 76:950-958, 2002). In the present study, we demonstrate that soMHVR induces the conformational changes of the S protein, as shown by the proteinase digestion test. A cl-2 mutant, srr7, of the MHV JHM virus (JHMV) was digested with proteinase K after treatment with soMHVR, and the resultant S protein was analyzed by Western blotting using monoclonal antibody (MAb) 10G, specific for the membrane-anchored S2 subunit. A 58-kDa fragment, encompassing the two heptad repeats in S2, was detected when srr7 was digested after soMHVR treatment, while no band was seen when the virus was untreated. The appearance of the proteinase-resistant fragment was dependent on the temperature and time of srr7 incubation with soMHVR and also on the concentration of soMHVR. Coimmunoprecipitation indicated that the direct binding of soMHVR to srr7 S protein induced these conformational changes; this was also suggested by the inhibition of the changes following pretreatment of soMHVR with anti-MHVR MAb CC1. soMHVR induced conformational changes of the S proteins of wild-type (wt) JHMV cl-2, as well as revertants from srr7, srr7A and srr7B; however, a major proportion of these S proteins were resistant to proteinase K even without soMHVR treatment. The implications of this proteinase-resistant fraction are discussed. This is the first report on receptor-induced conformational changes of the membrane-anchored fragment of the coronavirus S protein.  相似文献   

15.
The expression and localisation of MIC4, or an immuno-cross reacting MIC4-like protein, was examined in the enteric forms of Toxoplasma gondii using immunocytochemistry. In addition to being located within the micronemes of the merozoites, MIC4 or the MIC4-like protein was present within the macrogamete and was associated with the developing oocyst wall. The macrogamete is characterised by two types of structurally distinct wall forming bodies (WFB1 and 2). However, by immuno-electron microscopy, it was possible to identify two populations of dense granules (WFB1) which appear to form sequentially during macrogamete development. The first granules to form (WFB1a) stained positively with anti-MIC4 and were followed by MIC4 negative granules (WFB1b). During oocyst wall formation, the WFB1a and b sequentially released their contents onto the surface with WFB1a material forming an anti-MIC4 positive outer veil, while the WFB1b forms the electron dense outer layer of the oocyst wall. The inner layer was formed by WFB2. Thus, for the first time, it was possible to identify two populations of dense granules (WFB1a and b) involved in the formation of different parts of the oocyst wall. It was not possible to analyse the contents of macrogametes by western blot to unequivocally identify the antigen recognised by the polyclonal antisera as MIC4.  相似文献   

16.
17.
A system for the expression and purification of soluble VP8*, part of the human rotavirus (HRV) spike protein, was established by expressing VP8* as a fusion protein with glutathione S-transferase (GST). VP8 cDNA, from the Wa strain of HRV, was prepared by RT-PCR, cloned into a pUC18 plasmid, and inserted into a pGEX-4T-2 GST fusion vector. The GST-VP8* fusion protein was expressed in Escherichia coli, and the VP8* was purified by Glutathione Sepharose 4B affinity chromatography, yielding 1.8 mg VP8*/L culture. The purified VP8* was used to vaccinate chickens, eliciting antibodies which displayed high neutralization activity against the Wa strain of HRV, suggesting its use for the induction of specific neutralizing antibodies for potential immunotherapeutic applications for the prevention of HRV infection.  相似文献   

18.
The rotavirus spike protein VP4 mediates attachment to host cells and subsequent membrane penetration. The VP8(*) domain of VP4 forms the spike tips and is proposed to recognize host-cell surface glycans. For sialidase-sensitive rotaviruses such as rhesus (RRV), this recognition involves terminal sialic acids. We show here that the RRV VP8(*)(64-224) protein competes with RRV infection of host cells, demonstrating its relevance to infection. In addition, we observe that the amino acids revealed by X-ray crystallography to be in direct contact with the bound sialic acid derivative methyl alpha-D-N-acetylneuraminide, and that are highly conserved amongst sialidase-sensitive rotaviruses, are residues that are also important in interactions with host-cell carbohydrates. Residues Arg101 and Ser190 of the RRV VP8(*) carbohydrate-binding site were mutated to assess their importance for binding to the sialic acid derivative and their competition with RRV infection of host cells. The crystallographic structure of the Arg(101)Ala mutant crystallized in the presence of the sialic acid derivative was determined at 295 K to a resolution of 1.9 A. Our multidisciplinary study using X-ray crystallography, saturation transfer difference nuclear magnetic resonance spectroscopy, isothermal titration calorimetry, and competitive virus infectivity assays to investigate RRV wild-type and mutant VP8(*) proteins has provided the first evidence that the carbohydrate-binding cavity in RRV VP8(*) is used for host-cell recognition, and this interaction is not only with the sialic acid portion but also with other parts of the glycan structure.  相似文献   

19.
Low-density lipoprotein receptor-related protein 4 (Lrp4) is a member of a family of structurally related, single-pass transmembrane proteins that carry out a variety of functions in development and physiology, including signal transduction and receptor-mediated endocytosis. Lrp4 is expressed in multiple tissues in the mouse, and is important for the proper development and morphogenesis of limbs, ectodermal organs, lungs and kidneys. We show that Lrp4 is also expressed in the post-synaptic endplate region of muscles and is required to form neuromuscular synapses. Lrp4-mutant mice die at birth with defects in both presynaptic and postsynaptic differentiation, including aberrant motor axon growth and branching, a lack of acetylcholine receptor and postsynaptic protein clustering, and a failure to express postsynaptic genes selectively by myofiber synaptic nuclei. Our data show that Lrp4 is required during the earliest events in postsynaptic neuromuscular junction (NMJ) formation and suggest that it acts in the early, nerveindependent steps of NMJ assembly. The identification of Lrp4 as a crucial factor for NMJ formation may have implications for human neuromuscular diseases such as myasthenia syndromes.  相似文献   

20.
Rotavirus nonstructural protein 4 (NSP4) can induce diarrhea in mice. To get insight into the biological effects of NSP4, production of large quantities of this protein is necessary. We first tried to produce the protein in Escherichia coli, but the nsp4 gene proved to be unstable. The capacity of the generally regarded as safe organism Lactococcus lactis to produce NSP4 either intra- or extracellularly was then investigated by using the nisin-controlled expression system. Production of recombinant NSP4 (rNSP4) was observed in L. lactis for both locations. In spite of a very low secretion efficiency, the highest level of production was obtained with the fusion between a lactococcal signal peptide and rNSP4. Cultures of the rNSP4-secreting strain were injected into rabbits, and a specific immune response was elicited. The anti-rNSP4 antibodies produced in these rabbits recognized NSP4 in MA104 cells infected by rotavirus. We showed that L. lactis is able to produce antigenic and immunogenic rNSP4 and thus is a good organism for producing viral antigens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号