首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chloroplasts prepared from lysed protoplasts of barley mesophyll contain 2–8% of the total acid proteinase activity. This residual activity is not associated with intact chloroplasts isolated by means of density gradient centrifugation. Vacuoles isolated from lysed protoplasts contain 80–85% of the total acid proteinase activity, indicating that the enzyme(s) which is presumably responsible for the degradation of chloroplastic proteins is located largely in the central vacuoles of mesophyll cells.  相似文献   

2.
Summary Pokeweed (Phytolacca americana L.) and endod (P. dodecandra L'Herit) produce ribosome-inactivating proteins which are sequestered in leaf cell walls. These proteins display strong antiviral activity. To aid in studying the antiviral mechanism, we developed protocols to isolate protoplasts from suspension culture cells and leaves. Ninety-five percent of pokeweed or endod culture cells were converted to protoplasts using 2% cellulase, 0.25% pectinase, 0.2 M mannitol, 2% sucrose, 15 mM CaCl2 Murashige and Skoog salts, pH 5.7. Viability was >85% after 24 h. Culture-derived protoplasts were purified by centrifugation through a 15% sucrose pad. Protoplasts collected from the supernatant were then pelleted in 0.3 M mannitol. Pokeweed leaves provided respectable yields (4×106 protoplasts/g f w) of partially-purified viable protoplasts when digested in solution containing 1% cellulase, 0.2% Pectolyase, 0.4 M mannitol, CPW salts, 0.5 mM MES, pH 5.6. We were unable to completely separate cell debris from mesophyll protoplasts, which were small and easily damaged by centrifugation. Endod leaves were found to be resilient to several digestion enzymes tested.  相似文献   

3.
Division frequency of alginate-embedded pea (Pisum sativum var. Belman) protoplasts derived from embryonic shoot tips was studied quantitatively by image analysis in relation to starch accumulation and protoplast size. Protoplast divisions were observed from day 4 on and the number of protoplasts undergoing division increased in a stepwise manner to 70% the following days. The starch content increased rapidly during the first 3 days of culture prior to the onset of division and resulted a 4.2-fold increase in the intracellular starch area and a 3.0-fold increase (from 27% to 80%) in the number of protoplasts containing starch. Subsequent periods with rapid increases the number of dividing protoplasts were preceded by further starch accumulation. Dividing protoplasts were 33–60% smaller and contained 8–42% less starch than non-dividing protoplasts. However, calculations showed that, in the dividing protoplasts, the relative area covered by starch was 6–12% higher than in non-dividing protoplasts. These data suggest that starch accumulation precedes division of pea protoplasts.  相似文献   

4.
Cold acclimation in plants is a polygenic phenomenon involving increased expression of several genes. The gene products participate either directly or indirectly towards increasing cold tolerance. Evidence of proteins having a direct effect on cold tolerance is emerging but limited. With isolated protoplasts from warm-grown kale (Brassica oleracea) as a model system, we tested protein fractions from winter bittersweet nightshade, Solanum dulcamara, stems for the presence of proteins that have a cryoprotective effect. Purification of one such fraction resulted in isolation of a 25 kDa protein. N-terminal Edman degradation amino acid sequence analysis showed that it has high homology to osmotin and osmotin-like proteins. When added to warm-grown protoplasts, it increased the cryosurvival of frozen-thawed protoplasts by 24% over untreated or BSA-treated controls at –8 °C. A cDNA library which was made in November from stems and leaves of S. dulcamara was successfully screened for the corresponding cDNA clone. The deduced amino acid sequence indicated that the protein consists of 206 amino acid residues including a N-terminal signal sequence and a putative C-terminal propeptide. The mature protein, without the N-terminal signal sequence, was expressed in Escherichia coli. The partially purified protein in the supernatant fraction of the culture medium had cryoprotective activity.  相似文献   

5.
A method is described for isolating epidermal protoplasts from the primary leaves of barley (Hordeum vulgare L.). Epidermal protoplasts are lighter than mesophyll protoplasts because of their smaller ratio of cytoplasm to vacuole, and can be separated from the latter by density-gradient centrifugation after complete digestion of the leaves. We have started a basic characterization of the epidermal protoplast fraction in comparison with mesophyll protoplasts. Epidermal protoplasts had a mean diameter of 63.5 m, whereas that of mesophyll protoplasts was 35.7 m. Their respiratory oxygen consumption was not influenced by light. They contained acid hydrolases and cytoplasmic enzymes in relative activities different from those of mesophyll protoplasts. Their polypeptide pattern as judged from two-dimensional separations was, in principle, similar to that of mesophyll cells after elimination of the plastids from the latter by the preparation of vacuoplasts. However, in addition, a considerable number of epidermis-specific polypeptides were observed. Isolated epidermal protoplasts were viable and efficiently incorporated [35S]methionine into newly synthesized proteins. The results show that epidermal protoplasts are suitable for the investigation of the physiological and molecular properties of epidermal cells in leaves.Abbreviation SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis We are grateful to Professor U. Heber (Lehrstuhl Botanik 1, Würzburg) for his continuous support. This work was supported by the DFG and the University of Würzburg within the Sonderforschungsbereich 176.  相似文献   

6.
7.
DNA replication in maize leaf protoplasts   总被引:1,自引:0,他引:1  
Maize leaf protoplasts were investigated for their metabolic competence and capacity to synthesize DNA. When protoplasts were incubated at elevated temperatures, they exhibited a heat shock response with specific proteins being preferentially synthesized. This indicated that the protoplasts were fully metabolically functional and capable of responding to environmental stimuli. Significant DNA synthesis was observed in these protoplasts after incorporation of 3H-thymidine into chromatin by trichloroacetic acid precipitation and by incorporation of 5-bromo-2-deoxyuridine (BrdU), an analog of thymidine, detected by immunofluorescence. The immunocytochemical method revealed that about 50% of nuclei in the maize leaf protoplasts were labelled after 3 days of culture and that most of these nuclei were labelled as intensely as normal mitotic cells. Aphidicolin, an inhibitor of DNA polymerase-, decreased the percentage of labelled nuclei, demonstrating that the labelling was substantially due to replicative DNA synthesis. However, chromosome condensation was not observed. It is proposed that these protoplasts are capable of DNA synthesis, but incapable of nuclear division. Effects of media additives on the number of nuclei entering S phase in these protoplasts were also assessed by the immunocytochemical method. Inclusion of 80mM Ca2+ in the enzyme solution increased protoplast yield and also appeared beneficial to DNA synthesis. The antioxidant, n-propyl gallate, which was used to stabilize the protoplasts, delayed the onset of DNA synthesis. Arginine and spermidine produced a slight increase in DNA synthesis.Abbreviations BrdU 5-bromo-2-deoxyuridine - DMSO dimethyl sulfoxide - n-PG n-propyl gallate - PBS phosphate-buffered saline Dedicated to Dr. Friedrich Constabel on the occasion of his 60th birthday  相似文献   

8.
To clarify the mechanisms of cell wall construction, we used a proteomic approach to investigate the proteins secreted into cell wall spaces during cell wall regeneration from the protoplasts of Arabidopsis suspension-cultured cells. We focused on cell wall proteins loosely bound to the cell wall architecture and extractable with 1 M KCl solutions from: (i) native suspension cultured cells; (ii) protoplasts that had been allowed to regenerate their cell walls for 1 h; and (iii) protoplasts allowed to regenerate their cell walls for 3 h. We adopted a non-destructive extraction procedure without disrupting cellular integrity, thereby avoiding contamination from cytoplasmic proteins. Using two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) and matrix-assisted laser desorption ionization-time-of-flight/mass spectrometry (MALDI-TOF/MS), we separated, mapped and identified 71 proteins derived from the native cell wall, and 175 and 212 proteins derived from the 1 and 3 h regenerated protoplasts, respectively. Quite different sets of proteins with differing status of their post-translational modifications, including phosphorylation and glycosylation, were identified in the three protein fractions. This indicated dynamic in muro changes in the cell wall proteins during cell wall regeneration in the protoplasts. The analysis revealed a set of enzymes specifically involved in cell wall expansion and construction in suspension-cultured cells. This approach has also determined a set of cell wall proteins that had not been predicted to be localized in cell wall spaces.  相似文献   

9.
Miao Y  Jiang L 《Nature protocols》2007,2(10):2348-2353
Transient expression of fluorescent fusion proteins in plant cells has dramatically facilitated our study of newly identified genes and proteins. This protocol details an in vivo transient expression system to study the subcellular localization and dynamic associations of plant proteins using protoplasts freshly prepared from Arabidopsis or tobacco BY-2 suspension cultured cells. The method relies on the transformation of DNA constructs into protoplasts via electroporation. The whole protocol is comprised of three major stages: protoplast generation and purification, transformation of DNA into protoplasts via electroporation and incubation of protoplasts for protein analysis. Similar to stably transformed cell lines, transformed protoplasts are compatible with protein localization studies, pharmaceutical drug treatment and western blot analysis. This protocol can be completed within 11-24 h from protoplast production to protein detection.  相似文献   

10.
Plasma-membrane dynamics in live protoplasts from maize (Zea mays L.) roots were characterized and examined for relationships as to the ability of the protoplasts to synthesize new cell walls and develop to cells capable of division. The lateral diffusion-coefficients and mobile fractions of fluorescence-labeled plasma-membrane proteins and lipids were measured by fluorescence photobleaching recovery. Small but significant effects on the diffusion of membrane proteins were observed after treatments with oryzalin or amiprophosmethyl, microtubule-disrupting drugs that increased the mobile fraction, and after treatments with cytochalasins B or D, microfilament-disrupting drugs that decreased the diffusion coefficient. A number of parameters were tested for correlative effects on membrane dynamics and protoplast performance in culture. Protoplasts isolated with a cellulase preparation from Trichoderma viride showed faster membrane-protein diffusion and a lower frequency of development to cells capable of division than did protoplasts isolated with a cellulase preparation from T. reesei. Membrane proteins in maize A632, a line less capable of plant regeneration from callus, diffused with a smaller diffusion coefficient but a greater mobile fraction than did membrane proteins in maize A634, a line with greater regeneration capacity. The plasma membranes of A632 and A634 protoplasts also differed with regard to lateral-diffusion characteristics of phospholipid and sterol probes, although the presence of both rapidly and slowly diffusing lipid components indicated the apparent existence of lipid domains in both A632 and A634. The protoplasts of the two lines did not differ significantly, however, in either wall regeneration or frequency of development to cells capable of division.Abbreviations and symbols D lateral diffusion coefficient - FITC fluorescein-5-isothiocyanate - FPR fluorescence photobleaching recovery - LY Lucifer yellow - LY-Chol dilithium 4-amino-N-[(-(carbo(5-cholesten-3-yl)oxy)hydrazinocarbonyl)aminol]-1,8-naphthalimide-3,6-disulfonate - LY-DC16:0PE dilithium 4-amino-N-[3-(-(dipalmitoyl-sn-glycero-3-phosphoethanol-amino)ethylsulfonyl)phenyl]-1,8-naphthalimide-3,6-disulfonate  相似文献   

11.
Factors affecting the division of cells derived from leaf and cotyledon protoplasts from Brassica oleracea L. var. italica (Green Comet hybrid broccoli) were examined to optimize conditions for plant regeneration and to determine whether there was a genetic basis for improved regeneration from protoplasts derived from plants previously regenerated from tissue cultures [15]. When leaf protoplasts from different plants grown from hybrid seed were isolated and cultured simultaneously, division efficiencies of 1–95% were obtained. Cells from some plants showed high division efficiencies in consecutive experiments while cells from other plants had consistently low division rates. More plants from hybrid seed gave high division efficiencies when cotyledon protoplasts were used. However, cotyledon or leaf protoplasts from selfed progeny of regenerated plants produced more vigorous calli and more shoots than protoplasts from hybrid seed. These results suggest that there may be a genetic component to the increased totipotency of Brassica oleracea protoplasts.  相似文献   

12.
Summary Protoplasts isolated from celery cell suspension cultures, were mixed with fungal protoplasts, from either the saprophytic speciesAspergillus nidulans or the pathogenic speciesFusarium oxysporum. The incubation of protoplast mixtures with PEG caused close adhesion between plant and fungal protoplasts. Subsequent dilution of PEG resulted in the uptake of protoplasts from either fungal species into the plant protoplast cytoplasm. A range of PEG concentrations, incubation times and dilution rates were tested to maximise adhesion and uptake frequencies. Identification of uptake was achieved either by fluorescent staining of nuclei or by electron-microscopy. A maximum of 10% celery protoplasts had taken upA. nidulans protoplasts after PEG treatment. Fungal protoplasts were taken up into celery protoplast cytoplasm by endocytosis, and were maintained within vesicles; two bounding membranes were observed by electron microscopy. Plant protoplast viability was determined during prolonged incubation following fungal protoplast uptake. The presence ofA. nidulans protoplasts tended to maintain celery protoplast viability and although some morphological disintegration occurred intact celery protoplasts remained for at least 92 h after uptake. The uptake ofF. oxysporum protoplasts markedly depressed celery protoplast viability after 24 h incubation and greater celery protoplast disintegration occurred.Abbreviations PEG Polyethylene glycol - DAPI 4,6-diaminido-2-phenylindole - 2,4-D 2,4-dichlorophenoxyacetic acid  相似文献   

13.
A method was developed for electrofusion of higher-plant protoplasts from celery and protoplasts from the filamentous fungus Aspergillus nidulans. Initially, methods for the fusion of protoplasts from ecch species were determined individually and, subsequently, electrical parameters for fusion between the species were determined. Pronase-E treatment and the presence of calcium ions markedly increased celery protoplast stability under the electrical conditions required and increased fusion frequency with A. nidulans protoplasts. A reduction in protoplast viability was observed after electrofusion but the majority of the protoplasts remained viable over a 24-h incubation period. A small decline in protoplast respiration rate occurred during incubation but those celery protoplasts fused with A. nidulans protoplasts showed elevated respiration rates for 3 h after electrofusion.Abbreviations AC alternating current - DC direct current  相似文献   

14.
A system for plant regeneration from protoplasts of the moss, Atrichum undulatum (Hedw.) P. Beauv. in vitro, is first reported. Viable protoplasts were isolated at about 9 × 105 protoplasts g−1 fresh weight from 10 to 18 days protonemata. For regeneration of protoplasts, viable protoplasts were cultured in liquid–solid medium containing surface liquid medium MS (0.4 M mannitol) and subnatant solid medium Benecke (0.3 M mannitol) at 20 °C under a 16-h photoperiod white light after 12 h preculture in darkness at 20 °C. The great majority of protoplasts follow a regenerative sequence: formation of asymmetric cells in 2–3 days; division of the asymmetric cells to 2–3 cells in 4–5 days, and further develop to produce a new chloronemal filament in 15 days. Juvenile gametophyte can be visible in 20 days. The plating ratio of cell cluster regenerated from protoplasts reaches up to 45%. Transient expression experiments indicate the electroporation uptake of DNA is possible.  相似文献   

15.
Protoplasts were isolated from field and in vitro-grown leaves, cotyledons and cell suspension cultures (of ovule callus origin) of the scion apple cultivars Starkrimson, Rainier, Qiujin and Liaofu. Fast-growing calluses were obtained from leaf, cotyledon and cell suspension derived protoplasts of the four genotypes. The best proliferation responses were obtained from cell suspension protoplasts. For all genotypes tested, nodular calluses were obtained from protoplasts that had originally been cultured on K8P medium, but only those of cultivar Starkrimson underwent organogenesis. In this cultivar shoot buds were produced on callus derived from both cotyledon and cell suspension protoplasts and complete plants. This is the first example of whole plant regeneration from protoplasts isolated from an undifferentiated tissue in apple.Abbreviations BA 6-benzylaminopurine - 2,4-d 2,4-dichlorophenoxyacetic acid - IAA 3-indole acetic acid - IBA 3-indole butyric acid - LH lactalbumin hydrolysate - MS Murashige & Skoog (1962) - NAA 1-naphthaleneacetic acid - TDZ thidiazuron - VC L(+) ascorbic acid  相似文献   

16.
R. Cooke  Y. Meyer 《Planta》1981,152(1):1-7
Tobacco mesophyll protoplasts cultivated in vitro do not synthesize a measurable quantity of chloroplastic ribosomal RNA, but actively synthesize cytoplasmic ribosomal RNA, polyadenylated RNA, and proteins. These syntheses are essentially independent of the presence of hormones in the culture medium and are thus related to the ageing phenomenon induced by isolation from the plant and in-vitro culture. At all stages of culture and in all culture media, protoplasts incorporate low levels of thymidine into their DNA. However, the incorporation of considerable quantities of thymidine, indicative of the S phase, only takes place after 25–30 h and requires the presence of auxin and cytokinin.Abbreviations 6-BA 6-benzyladenine - 2,4-D 2,4 dichlorophenoxyacetic acid - DPC diethylpyrocarbonate - OD optical density; oligo-dT cellulose-oligothymidylic acid-cellulose - poly A+ RNA polyadenylated RNA - poly A- RNA non-polyadenylated RNA - tRNA ribosomal RNA - SDS sodium dodecyl sulphate - TCA trichloroacetic acid - Tris buffer Tris (hydroxymethyl)aminomethane - tRNA transfer RNA  相似文献   

17.
W. Müller  K. Wegmann 《Planta》1978,139(2):155-158
Four independent kinds of observations indicate that the cell wall regenerated by oat (Avena sativa L.) and corn (Zea mays L.) protoplasts in culture is less well developed than that regenerated by tobacco (Nicotiana tabacum L.) protoplasts. Following wall regeneration the cereal protoplasts remained susceptible to osmotic shock upon transfer to water, showed great enlargement, stained poorly with calcofluor white, and maintained a positive internal electrical potential. The development of a negative membrane potential by tobacco protoplasts in culture often occurred simultaneously with the onset of cell division. Since division was observed only in protoplasts which had regenerated good cell walls and had re-established negative membrane potentials it is suggested that culture conditions which favor these two processes should improve protoplast viability.  相似文献   

18.
Summary The cell wall regeneration on protoplasts derived from maize mesophyll cells was compared with wall regeneration on protoplasts derived from suspension cultured cells using light microscopy, transmission electron microscopy, and mass spectrometry. The time course of cell wall regeneration has shown that the mesophyll protoplasts regenerated walls much slower than the protoplasts derived from cultured cells. Moreover, cell wall materials on the mesophyll protoplasts were often unevenly distributed. Electron microscopy has further demonstrated that the mesophyll protoplasts have less organized and compact walls than the protoplasts from cultured cells. Chemical analysis revealed that the mesophyll protoplasts had a lower ratio ofβ-(1–3)-glucan toβ-(1–4)-glucan than protoplasts from cultured cells. The significance of these results for the viability and development of protoplasts in culture is discussed. National Research Council of Canada paper no. 32458.  相似文献   

19.
Optimisation of Protoplast Production in White Lupin   总被引:1,自引:0,他引:1  
The influence, was investigated, of abiotic parameters on the isolation of protoplasts from in vitro seedling cotyledons of white lupin. The protoplasts were found to be competent in withstanding a wide range of osmotic potentials of the enzyme medium, however, −2.25 MPa (0.5 M mannitol), resulted in the highest yield of protoplasts. The pH of the isolation medium also had a profound effect on protoplast production. Vacuum infiltration of the enzyme solution into the cotyledon tissue resulted in a progressive drop in the yield of protoplasts. The speed and duration of orbital agitation of the cotyledon tissue played a significant role in the release of protoplasts and a two step (stationary-gyratory) regime was found to be better than the gyratory-only system. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Summary Attachment of virions of tobacco mosaic virus to protoplasts isolated from dividing suspension cultured cells ofNicotiana sylvestris was estimated using quantitative autoradiography of individual protoplasts. Additionally, the position of each protoplast in the cell cycle was assessed by Feulgen microspectrophotometry. At pH 5.6, after preincubation with 4 g 1–1 poly-L-ornithine, protoplasts in the G1 and G2 phases bound more virions than protoplasts in the S-phase. The possibility that such differential binding was caused by cyclical variation in the net charge on the protoplast membrane has been investigated. It was found that S-phase protoplasts ofN. sylvestris can be separarated from protoplasts of other cycle stages by partition in aqueous, two-phase, immiscible polymer systems, presumably because they differ in charge. Also, electrophoretic studies suggest that G1 phase protoplasts bear higher surface charge than some non-G1 protoplasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号