首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 180 毫秒
1.
The effect of nucleotides on binding of the B2 kinin (BK) receptor agonist [3H]BK and the antagonist [3H]NPC17731 to particulate fractions of human foreskin fibroblasts was studied. At 0 degrees C, particulate fractions exhibited a single class of binding sites with a Kd of 2.3 nM for [3H]BK and a Kd of 3.8 nM for the antagonist [3H]NPC17731. Incubation with radioligands at 37 degrees C for 5 min gave a reduction of agonist, as well as antagonist, binding that was between 0-40% depending on the preparation, even in the absence of guanosine nucleotides. As shown by Scatchard analysis, this reduction in specific binding was due to a shift in the affinity of at least a fraction of the receptors. The presence at 37 degrees C of the guanine nucleotides GTP, GDP and their poorly hydrolyzable analogs left [3H]NPC17731 binding unaffected, but reduced the receptor affinity for [3H]BK to a Kd of about 15 nM. The maximal number of receptors, however, was unchanged. This affinity change was strongly dependent on the presence of bivalent cations, in particular Mg2+. It was reversed by incubation at 0 degrees C. The rank order of the guanosine nucleotides for [3H]BK binding reduction was GTP[gammaS] = Gpp[NH]p > GTP = GDP > GDP[betaS]. GMP, ATP, ADP and AMP showed no influence on agonist binding. A model for the interaction of the B2 kinin receptor with G proteins is discussed.  相似文献   

2.
Addition of guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) to intact Chinese hamster lung fibroblasts (CCL39) depolarized by high K+ concentrations results in activation of phosphoinositide-specific phospholipase C (PLC) (at GTP gamma S concentrations greater than 0.1 mM), inhibition of adenylate cyclase (between 10 microM and 0.5 mM), and activation of adenylate cyclase (above 0.5 mM). Since GTP gamma S-induced activation of PLC is dramatically enhanced upon receptor-mediated stimulation of PLC by alpha-thrombin, we conclude that in depolarized CCL39 cells GTP gamma S directly activates various guanine nucleotide-binding regulatory proteins (G proteins) coupled to PLC (Gp(s)) and to adenylate cyclase (Gi and Gs). Pretreatment of cells with pertussis toxin strongly inhibits GTP gamma S-induced activation of PLC and inhibition of adenylate cyclase. GTP gamma S cannot be replaced by other nucleotides, except by guanosine 5'-O-(2-thiodiphosphate) (GDP beta S), which mimics after a lag period of 15-20 min all the effects of GTP gamma S, with the same concentration dependence and the same sensitivity to pertussis toxin. We suggest that GDP beta S is converted in cells into GTP beta S, which acts as GTP gamma S. Since cell viability is not affected by a transient depolarization, these observations provide a simple method to examine long-term effects of G protein activation on DNA synthesis. We show that a transient exposure of G0-arrested CCL39 cells to GTP gamma S or GDP beta S under depolarizing conditions is not sufficient by itself to induce a significant mitogenic response, but markedly potentiates the mitogenic action of fibroblast growth factor, a mitogen known to activate a receptor-tyrosine kinase. The potentiating effect is maximal after 60 min of pretreatment with 2 mM GTP gamma S. GDP beta S is equally efficient but only after a lag period of 15-20 min. Mitogenic effects of both guanine nucleotide analogs are suppressed by pertussis toxin. Since the activation of G proteins by GTP gamma S under these conditions vanishes after a few hours, we conclude that a transient activation of G proteins facilitates the transition G0----G1 in CCL39 cells, whereas tyrosine kinase-induced signals are sufficient to mediate the progression into S phase.  相似文献   

3.
A novel type of regulatory proteins for the rho proteins (rhoA p21 and rhoB p20), ras p21-like small GTP-binding proteins (G proteins), are partially purified from bovine brain cytosol. These regulatory proteins, named rho GDP dissociation stimulator (GDS) 1 and -2, stimulate the dissociation of GDP from rhoA p21 and rhoB p20. rho GDS1 and -2 are inactive for other ras p21/ras p21-like small G proteins including c-Ha-ras p21, smg p21B, and smg p25A. Since we have previously shown that the rate limiting step for the GDP/GTP exchange reaction of the rho proteins is the dissociation of GDP from these proteins, the present results suggest that rho GDS1 and -2 stimulate the GDP/GTP exchange reaction of the rho proteins. rho GDS1 and -2 are distinct from the GAP- and GDI-types of regulatory proteins for the rho proteins previously purified from bovine brain cytosol. rho GAP stimulates the GTPase activity of the rho proteins and rho GDI inhibits the GDP/GTP exchange reaction of the rho proteins. The present results together with these earlier observations indicate that the rho proteins are regulated by at least three different types of regulatory proteins, GDS, GDI, and GAP.  相似文献   

4.
Early studies showed that in addition to GTP, the pyrimidine nucleotides UTP and CTP support activation of the adenylyl cyclase (AC)-stimulating G(s) protein. The aim of this study was to elucidate the mechanism by which UTP and CTP support G(s) activation. As models, we used S49 wild-type lymphoma cells, representing a physiologically relevant system in which the beta(2)-adrenoreceptor (beta(2)AR) couples to G(s), and Sf9 insect cell membranes expressing beta(2)AR-Galpha(s) fusion proteins. Fusion proteins provide a higher sensitivity for the analysis of beta(2)AR-G(s) coupling than native systems. Nucleoside 5'-triphosphates (NTPs) supported agonist-stimulated AC activity in the two systems and basal AC activity in membranes from cholera toxin-treated S49 cells in the order of efficacy GTP > or = UTP > CTP > ATP (ineffective). NTPs disrupted high affinity agonist binding in beta(2)AR-Galpha(s) in the order of efficacy GTP > UTP > CTP > ATP (ineffective). In contrast, the order of efficacy of NTPs as substrates for nucleoside diphosphokinase, catalyzing the formation of GTP from GDP and NTP was ATP > or = UTP > or = CTP > or = GTP. NTPs inhibited beta(2)AR-Galpha(s)-catalyzed [gamma-(32)P]GTP hydrolysis in the order of potency GTP > UTP > CTP. Molecular dynamics simulations revealed that UTP is accommodated more easily within the binding pocket of Galpha(s) than CTP. Collectively, our data indicate that GTP, UTP, and CTP interact differentially with G(s) proteins and that transphosphorylation of GDP to GTP is not involved in this G protein activation. In certain cell systems, intracellular UTP and CTP concentrations reach approximately 10 nmol/mg of protein and are higher than intracellular GTP concentrations, indicating that G protein activation by UTP and CTP can occur physiologically. G protein activation by UTP and CTP could be of particular importance in pathological conditions such as cholera and Lesch-Nyhan syndrome.  相似文献   

5.
The Ras superfamily comprises many guanine nucleotide-binding proteins (G proteins) that are essential to intracellular signal transduction. The guanine nucleotide-dependent intrinsic flexibility patterns of five G proteins were investigated in atomic detail through Molecular Dynamics simulations of the GDP- and GTP-bound states (S(GDP) and S(GTP), respectively). For all the considered systems, the intrinsic flexibility of S(GDP) was higher than that of S(GTP), suggesting that Guanine Exchange Factor (GEF) recognition and nucleotide switch require higher amplitude motions than effector recognition or GTP hydrolysis. Functional mode, dynamic domain, and interaction energy correlation analyses highlighted significant differences in the dynamics of small G proteins and Gα proteins, especially in the inactive state. Indeed, S(GDP) of Gα(t), is characterized by a more extensive energy coupling between nucleotide binding site and distal regions involved in GEF recognition compared to small G proteins, which attenuates in the active state. Moreover, mechanically distinct domains implicated in nucleotide switch could be detected in the presence of GDP but not in the presence of GTP. Finally, in small G proteins, functional modes are more detectable in the inactive state than in the active one and involve changes in solvent exposure of two highly conserved amino acids in switches I and II involved in GEF recognition. The average solvent exposure of these amino acids correlates in turn with the rate of GDP release, suggesting for them either direct or indirect roles in the process of nucleotide switch. Collectively, nucleotide binding changes the information flow through the conserved Ras-like domain, where GDP enhances the flexibility of mechanically distinct portions involved in nucleotide switch, and favors long distance allosteric communication (in Gα proteins), compared to GTP.  相似文献   

6.
The exchange inert coordination complexes, Cr(H2O)4GDP, Cr(H2O)4GTP, Cr(NH3)4GDP, Cr(NH3)4GTP, Co(NH3)4GDP, and Co(NH3)4GTP have been synthesized and characterized. The lambda and delta coordination isomers of Cr(H2O)4GDP, Cr(NH3)4GDP, and the four Cr(H2O)4GTP isomers have been separated by reverse phase HPLC and characterized by their CD spectra. While the isomers of Co(NH3)4GTP have not been successfully separated, 31P NMR spectroscopy reveals the presence of the lambda and delta forms. The complexes, Cr(H2O)4GDP, Co(NH3)4GDP, Cr(H2O)4GTP, and Co(NH3)4GTP, are linear competitive inhibitors of avian phosphoenolpyruvate carboxykinase. The Ki values of 30 microM, 540 microM, 40 microM, and 12 microM, respectively, were determined for these complexes using Mn-IDP as the nucleotide substrate in the phosphoenolpyruvate carboxylation direction or Mn-ITP as nucleotide substrate for the oxalacetate decarboxylation reaction. The lambda and delta isomers of Cr(H2O)4 GDP show little specificity (a twofold maximum difference in Ki) for the enzyme. The isomeric forms of Cr(H2O)4 GTP demonstrate no observed stereoselectivity of interaction with the enzyme. All of the complexes tested, except for Cr(NH3)4GDP and Co(NH3)4GDP, which have larger Ki values, are good substrate analogs for P-enolpyruvate carboxykinase. When the substrate is Mn-GTP, fixed at 0.2 mM at pH 6.0, enzyme activity is stimulated two- to two and a half-fold by Cr(H2O)4GTP. A Dixon plot reveals that the stimulatory effect is saturated at 0.4 mM Cr(H2O)4GTP. The interaction of the enzyme with Cr(H2O)4GTP appears to produce a "memory" effect which is manifest with guanosine nucleotide substrates, but which is not observed with the alternative substrate Mn-ITP.  相似文献   

7.
Heterotrimeric guanine-nucleotide-binding proteins (G proteins) act as molecular switches in signaling pathways by coupling the activation of heptahelical receptors at the cell surface to intracellular responses. In the resting state, the G-protein alpha subunit (Galpha) binds GDP and Gbetagamma. Receptors activate G proteins by catalyzing GTP for GDP exchange on Galpha, leading to a structural change in the Galpha(GTP) and Gbetagamma subunits that allows the activation of a variety of downstream effector proteins. The G protein returns to the resting conformation following GTP hydrolysis and subunit re-association. As the G-protein cycle progresses, the Galpha subunit traverses through a series of conformational changes. Crystallographic studies of G proteins in many of these conformations have provided substantial insight into the structures of these proteins, the GTP-induced structural changes in Galpha, how these changes may lead to subunit dissociation and allow Galpha and Gbetagamma to activate effector proteins, as well as the mechanism of GTP hydrolysis. However, relatively little is known about the receptor-G protein complex and how this interaction leads to GDP release from Galpha. This article reviews the structural determinants of the function of heterotrimeric G proteins in mammalian systems at each point in the G-protein cycle with special emphasis on the mechanism of receptor-mediated G-protein activation. The receptor-G protein complex has proven to be a difficult target for crystallography, and several biophysical and computational approaches are discussed that complement the currently available structural information to improve models of this interaction. Additionally, these approaches enable the study of G-protein dynamics in solution, which is becoming an increasingly appreciated component of all aspects of G-protein signaling.  相似文献   

8.
New types of azidoaryl analogs of GTP: gamma-(4-azido)anilide of GTP (I), gamma-(n-(4-azidobenzyl)-N-methyl)amide of GTP (II) and of GDP: beta-(4-azido)anilide of GDP (III), beta-(N-(4-azidobenzyl)-N-methyl)amide of GDP (IV) have been synthesized by treatment of the nucleotide in aqueous solution with N-cyclohexyl-N-beta-(4-methylmorpholinium)-ethylcarbodiimide p-toluene sulfonate and the respective amine. The analog of GTP bearing at the gamma-phosphate an alkylating 2-chloroethylamino group: gamma-(4-N-(2-chloroethyl)-N-methylaminobenzyl)amide of GTP (V) was prepared by the method described previously for the preparation of the analog of ATP (Knorre, D.G., Kurbatov, V.A. and Samukov, V.V. (1976) FEBS Lett. 70, 105-108). Azidoaryl analogs of GTP and GDP as well as the chloroethylaminoaryl analog of GTP compete with GDP in the formation of the binary complex EF-Tu.GDP with the respective Ki values 3.9.10(-7) M (I), 2.9.10(-8)M (II), 6.9.10(-7)M (III), 5.0.10(-7)M (IV) and 3.8.10(-8)M (V) relative to GDP. The dissociation constants of the complexes of the radioactively-labeled GTP analogs I, II and V with elongation factor Tu were calculated to be 8.5.10(-6)M, 3.4.10(-7)M and 4.6.10(-8)M, respectively, or approx. 1740-, 70- and 9-times greater than that of GDP. GTP analogs I, II and V were found to substitute GTP in the stimulation of EF-Tu-dependent binding of aminoacyl-tRNA to the ribosome-mRNA complex.  相似文献   

9.
v-Ha-ras encoded p21 protein (p21V), the cellular c-Ha-ras encoded protein (p21C) and its T24 mutant form p21T were produced in Escherichia coli under the control of the tac promoter. Large amounts of the authentic proteins in a soluble form can be extracted and purified without the use of denaturants or detergents. All three proteins are highly active in GDP binding, GTPase and, for p21V, autokinase activity. Inhibition of [3H]GDP binding to p21C by regio- and stereospecific phosphorothioate analogs of GDP and GTP was investigated to obtain a measure of the relative affinities of the three diphosphate and five triphosphate analogs of guanosine. p21 has a preference for the Sp isomers of GDP alpha S and GTP alpha S. It has low specificity for the Sp isomer of GTP beta S. Together with the data for GDP beta S and GTP gamma S these results are compared with those obtained for elongation factor (EF)Tu and transducin. This has enabled us to probe the structural relatedness of these proteins. We conclude that p21 seems to be more closely related to EF-Tu than to transducin.  相似文献   

10.
Inhibitory effects of ribose-modified GDP and GTP analogs on tubulin polymerization were examined to explore nucleotide structural requirements at the exchangeable GTP binding site. With microtubule-associated proteins and Mg2+, GTP-supported polymerization was only modestly inhibited by GDP, and still weaker inhibitory activity was found with two analogs, dGDP and 9-β-D-arabinofuranosylguanine-5′-diphosphate (araGDP). Omission of Mg2+ significantly enhanced the inhibitory effects of GDP, dGDP and araGDP and resulted in weak inhibition of the reaction by several other GDP analogs. The relative inhibitory activity of the GDP analogs had no discernable relationship to the relative activity of cognate GTP analogs in supporting microtubule-associated protein-dependent polymerization. One GTP analog, 2′,3′-dideoxyguanosine 5′-triphosphate (ddGTP), supports polymerization both with and without microtubule-associated proteins. The inhibitory activity of GDP and GDP analogs in ddGTP-supported polymerization was much greater in the absence of microtubule-associated proteins than in their presence; and both reactions were more readily inhibited than was microtubule-associated protein-dependent, GTP-supported polymerization. Microtubule-associated protein-independent, ddGTP-supported polymerization was also potently inhibited by GTP and a number of GTP analogs. GTP was in fact twice as inhibitory as GDP. The relative inhibitory activity of the GTP analogs was comparable to the relative inhibitory activity of the cognate GDP analogs and very different from their relative activity in supporting polymerization.  相似文献   

11.
Nucleoside-diphosphate (NDP) kinase-associated [alpha-32P]GTP-incorporating proteins from HeLa S3 cells have been biochemically characterized. Two distinct NDP-kinases (F-I and F-II) had been partially purified from HeLa S3 cells by Sephacryl S-300 gel filtration and DEAE-cellulose column chromatography. The [alpha-32P]GTP-incorporating proteins (approx. Mr 20,000) could be separated from NDP-kinases (approx. Mr 80,000) by 5-25% glycerol density-gradient centrifugation analysis after treatment with 7 M urea in the presence of 1 mM EDTA. [alpha-32P]GTP incorporation into these two proteins (G1 and G2) from NDP-kinases required 5 mM Mg2+ and was highly inhibited by either GDP or GTP analogues, such as guanylyl imidodiphosphate and guanylyl methylenediphosphate. [3H]GDP, but no other nucleoside 5'-diphosphates, was also bound to these two proteins in the presence of Mg2+ (5 mM). Moreover, incubation of [alpha-32P]GTP with either G1 or G2 in the presence of Mg2+ (5 mM) resulted in the formation of [32P]GDP and Pi. The data presented here indicated that the guanine nucleotide-binding activity, the GTPase activity, and the molecular weight (approx. Mr 20,000) of NDP-kinase-associated proteins from HeLa S3 cells are similar to those reported for ras oncogene products (p21 proteins).  相似文献   

12.
In phagocytes, activation of the respiratory burst by chemoattractants requires ATP and involves a pertussis toxin-sensitive G protein. ATP is also required for the response elicited in permeabilized neutrophils by nonhydrolyzable GTP analogs, indicating that at least one of the ATP-dependent steps lies downstream of the receptor-coupled G protein(s). A respiratory burst can also be produced in a reconstituted cell-free system by addition of arachidonic acid. Most investigators find this response to be independent of ATP, yet stimulated by GTP analogs, implying that the ATP-dependent steps observed in the unbroken cells must precede the guanine nucleotide-requiring event. To resolve this apparent discrepancy, we studied the ATP and guanine nucleotide dependence of the oxidative response elicited by arachidonic acid in electrically permeabilized human neutrophils. Two components of the response were apparent: one was ATP-dependent, the other ATP-independent. The ATP-dependent component was partially inhibited by staurosporine, suggesting involvement of protein kinase C. This kinase signals activation of the NADPH oxidase without intervening G proteins, since stimulation by phorbol ester was unaffected by guanosine 5'-(beta-thio)diphosphate (GDP beta S). Although nonhydrolyzable GTP analogs failed to stimulate the oxidase in the absence of ATP, the ATP-independent response stimulated by arachidonic acid was found to require GTP or one of its analogs and to be inhibited by GDP beta S. The relative potency of the guanine nucleotides to support the arachidonic acid response in the absence of ATP (5'-guanylyl imidodiphosphate (GMP-PNP) greater than or equal to guanosine 5'-(gamma-thio)triphosphate GTP gamma S) greater than or equal to (GTP) differed from their efficacy to stimulate the burst in the presence of ATP (GTP gamma S greater than GMP-PNP much greater than GTP). These observations suggest the involvement of two distinct GTP-binding proteins in oxidase activation: a receptor-coupled, heterotrimeric, pertussis toxin-sensitive G protein, and a second GTP-binding protein(s) located downstream of the ATP-requiring steps, which may lie in close proximity to the NADPH oxidase. This secondary GTP-binding protein could be part of the pathway activated by chemoattractants, but does not mediate stimulation via protein kinase C. Therefore multiple parallel routes may exist for activation of the NADPH oxidase.  相似文献   

13.
Regulation of hormone-sensitive GTP-dependent regulatory proteins by chloride   总被引:10,自引:0,他引:10  
The activities of GTP-dependent regulatory proteins (G proteins) are modulated by anions. Thus, NaCl stimulated the intensity of the intrinsic tryptophan fluorescence of Go alpha with bound guanosine 5'-(3-O-thio)triphosphate (GTP gamma S) and GTP, but not GDP. This mimics the effect of Mg2+. The salt also increased the affinity of Go alpha for GTP gamma S and GTP, but not GDP, an effect primarily due to decreases in rates of dissociation of the nucleotides. Among the effects of NaCl on the hydrolysis of GTP was an inhibition of the catalytic rate. The modulation of these activities occurred with half-maximal effects in the range of 3-20 mM NaCl. Salts of both chloride and bromide increased the affinity of Go alpha for GTP gamma S; fluoride and iodide were essentially ineffective. Nitrates produced only small and variable effects while SO4(2-) always reduced the affinity. The different cations utilized altered the effect of the anions slightly. The demonstration of direct effects of anions on the alpha subunit of Go suggests that G proteins are one site of action for anion modulation of systems that utilize these proteins. The effects of chloride at modest concentrations suggest potential physiological importance. Chloride may allow activation of G proteins with GTP in the absence of Mg2+ and without subsequent hydrolysis of the nucleotide.  相似文献   

14.
Commercial preparations of adenosine 5'-(beta, gamma-imino)triphosphate (App(NH)p) were found to be contaminated with a GTP-like substance(s) as well as a phosphate donor(s) for GDP. Thus, when these preparations were used as substrate with no purification, GDP was as effective as GTP in promoting PGE1 stimulation of human platelet adenylate cyclase. With purified App(NH)p as substrate, the effect of PGE1 with GDP was reduced but still observable, while that with GTP was unaltered. PGE1 also caused a stimulation in the presence of guanosine 5'-o-(2-thiodiphosphate)(GDP beta S) with ATP as substrate. Both of the PGE1-stimulated activities observed with GDP and its analog were completely lost by the addition of UDP, thereby, inhibiting GTP formation catalyzed by membrane-associated nucleoside diphosphate kinase. The results demonstrate that the stimulatory effects of PGE1 observed with GDP and App(NH)p, and with GDP beta S and ATP were transphosphorylation dependent and, therefore, the analogs must be used with special caution in adenylate cyclase studies.  相似文献   

15.
We have incorporated, for the first time, FtsZ and FtsA (the soluble proto-ring proteins from Escherichia coli) into bacterial giant unilamellar inner membrane vesicles (GUIMVs). Inside the vesicles, the structural organization and spatial distribution of fluorescently labeled FtsZ and FtsA were determined by confocal microscopy. We found that, in the presence of GDP, FtsZ was homogeneously distributed in the lumen of the vesicle. In the presence of GTP analogs, FtsZ assembled inside the GUIMVs, forming a web of dense spots and fibers. Whereas isolated FtsA was found adsorbed to the inner face of GUIMVs, the addition of FtsZ together with GTP analogs resulted in its dislodgement and its association with the FtsZ fibers in the lumen, suggesting that the FtsA-membrane interaction can be modulated by FtsZ polymers. The use of this novel in vitro system to probe interactions between divisome components will help to determine the biological implications of these findings.  相似文献   

16.
Membranes of myeloid differentiated human leukemia (HL 60) cells contain receptors for the chemotactic peptide, fMet-Leu-Phe (fMet, N-formylmethionine), interacting with pertussis-toxin-sensitive guanine-nucleotide-binding proteins (G proteins). Agonist activation of the receptors increases binding of the GTP analog, guanosine 5'-[gamma-thio]triphosphate (GTP[S]), to membrane G proteins, at 30 degrees C only in the presence of exogenous GDP. In contrast, at 0 degrees C fMet-Leu-Phe stimulated binding of GTP[S] to G proteins maximally without addition of GDP. Under conditions resulting in marked degradation of membrane-bound GDP, control binding of GTP[S] measured at 0 degrees C was significantly increased, whereas the extent of agonist-stimulated binding was reduced. Furthermore, there was a rapid spontaneous release of membrane-bound GDP at 30 degrees C, but not at 0 degrees C. The data suggest that in intact membranes of HL 60 cells G proteins are initially in a GDP-liganded form, which state allows the receptor-induced exchange of bound GDP for GTP[S] at low temperature. In contrast, at or near physiological temperature, bound GDP is rapidly released (and degraded), resulting in unligated G proteins to which GTP[S] will bind independently of agonist-activated receptors.  相似文献   

17.
We have recently purified from bovine brain cytosol a novel type of regulatory protein for smg p25A, named smg p25A GDP dissociation inhibitor (GDI), that regulates the GDP/GTP exchange reaction of smg p25A by inhibiting the dissociation of GDP from and thereby the subsequent binding of GTP to it. This smg p25A GDI is inactive for other ras p21/ras p21-like small GTP-binding proteins (G proteins) including c-Ha-ras p21, smg p21, rhoA p21 and rhoB p20. In human platelet membranes, smg p25A was not detected but a G protein with an apparent Mr value of 24,000 (24KG) was recognized by smg p25A GDI and the dissociation of GDP from and the binding of GTP to 24KG were inhibited by smg p25A GDI. The doses of smg p25A GDI necessary for these activities for both 24KG and smg p25A were the same. This 24KG was not recognized by an anti-smg p25A monoclonal antibody. The GDI activity for human platelet 24KG and smg p25A was detected in human platelet cytosol. This human platelet GDI was recognized by an anti-smg p25A GDI polyclonal antibody. These results indicate that there is a 24KG-24KG GDI system similar to a smg p25A-smg p25A GDI system in human platelets.  相似文献   

18.
G protein-coupled receptors (GPCRs) can interact with regulator of G protein signaling (RGS) proteins. However, the effects of such interactions on signal transduction and their physiological relevance have been largely undetermined. Ligand-bound GPCRs initiate by promoting exchange of GDP for GTP on the Gα subunit of heterotrimeric G proteins. Signaling is terminated by hydrolysis of GTP to GDP through intrinsic GTPase activity of the Gα subunit, a reaction catalyzed by RGS proteins. Using yeast as a tool to study GPCR signaling in isolation, we define an interaction between the cognate GPCR (Mam2) and RGS (Rgs1), mapping the interaction domains. This reaction tethers Rgs1 at the plasma membrane and is essential for physiological signaling response. In vivo quantitative data inform the development of a kinetic model of the GTPase cycle, which extends previous attempts by including GPCR-RGS interactions. In vivo and in silico data confirm that GPCR-RGS interactions can impose an additional layer of regulation through mediating RGS subcellular localization to compartmentalize RGS activity within a cell, thus highlighting their importance as potential targets to modulate GPCR signaling pathways.  相似文献   

19.
The activation of heterotrimeric G proteins induced by G protein coupled receptors (GPCR) is generally believed to occur by a GDP/GTP exchange at the G protein α -subunit. Nevertheless, nucleoside diphosphate kinase (NDPK) and the β-subunit of G proteins (Gβ) participate in G protein activation by phosphate transfer reactions leading to the formation of GTP from GDP. Recent work elucidated the role of these reactions. Apparently, the NDPK isoform B (NDPK B) forms a complex with β; γ; dimers in which NDPK B acts as a histidine kinase phosphorylating G#x03B2; at His266. Out of this high energetic phosphoamidate bond the phosphate can be transferred specifically onto GDP. The formed GTP binds to the G protein α -subunit and thus activates the respective G protein. Evidence is presented, that this process occurs independent of the classical GPCR-induced GTP/GTP exchange und thus contributes, e.g. to the regulation of basal cAMP synthesis in cells.  相似文献   

20.
A direct interaction of alpha beta gamma trimeric GTP binding proteins (G proteins; G0 and Gs) with nucleoside diphosphate kinase (NDP kinase) was investigated with homogeneously purified proteins. There was a progressive release of 32Pi from [gamma-32P]ATP when GDP-bound G0 was incubated together with NDP kinase. The Pi release induced by the interaction of G0 with NDP kinase was not accompanied by the dissociation of GDP bound to the alpha-subunit of G0. This was a sharp contrast to G protein-catalyzed GTP hydrolysis observed with GTP as the substrate; the dissociation of bound GDP was essentially required for the following binding of the substrate, GTP, to be hydrolyzed. A kinetic analysis displayed different properties for the substrate of NDP kinase between free GDP and G protein-bound GDP. NDP kinase-dependent phosphorylation of GDP on G0 was indeed demonstrated with adenosine 5'-(3-O-thio)triphosphate as the phosphate donor; there was a formation of guanosine 5'-(3-O-thio)triphosphate-bound G0 from the ATP analogue. Moreover, purified Gs was readily ADP-ribosylated by cholera toxin in the presence of NDP kinase, ATP, and an ADP-ribosylation factor, also suggesting that the nucleotide form on Gs was certainly GTP. These results indicate that NDP kinase can transfer the gamma-phosphate of ATP directly to GDP bound to G proteins and that this phosphorylation results in the activation of the signal-coupling proteins. A possible role of the new activation mechanism of G proteins is discussed in comparison with the previously characterized GDP-GTP exchange pathway by the agonist-receptor complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号