首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent advances in instrument control and enrichment procedures have enabled us to quantify large numbers of phosphoproteins and record site-specific phosphorylation events. An intriguing problem that has arisen with these advances is to accurately validate where phosphorylation events occur, if possible, in an automated manner. The problem is difficult because MS/MS spectra of phosphopeptides are generally more complicated than those of unmodified peptides. For large scale studies, the problem is even more evident because phosphorylation sites are based on single peptide identifications in contrast to protein identifications where at least two peptides from the same protein are required for identification. To address this problem we have developed an integrated strategy that increases the reliability and ease for phosphopeptide validation. We have developed an off-line titanium dioxide (TiO(2)) selective phosphopeptide enrichment procedure for crude cell lysates. Following enrichment, half of the phosphopeptide fractionated sample is enzymatically dephosphorylated, after which both samples are subjected to LC-MS/MS. From the resulting MS/MS analyses, the dephosphorylated peptide is used as a reference spectrum against the original phosphopeptide spectrum, in effect generating two peptide spectra for the same amino acid sequence, thereby enhancing the probability of a correct identification. The integrated procedure is summarized as follows: 1) enrichment for phosphopeptides by TiO(2) chromatography, 2) dephosphorylation of half the sample, 3) LC-MS/MS-based analysis of phosphopeptides and corresponding dephosphorylated peptides, 4) comparison of peptide elution profiles before and after dephosphorylation to confirm phosphorylation, and 5) comparison of MS/MS spectra before and after dephosphorylation to validate the phosphopeptide and its phosphorylation site. This phosphopeptide identification represents a major improvement as compared with identifications based only on single MS/MS spectra and probability-based database searches. We investigated an applicability of this method to crude cell lysates and demonstrate its application on the large scale analysis of phosphorylation sites in differentiating mouse myoblast cells.  相似文献   

2.
Improvements to phosphopeptide enrichment protocols employing titanium dioxide (TiO2) are described and applied to identification of phosphorylation sites on recombinant human cyclin-dependent kinase 2 (CDK2). Titanium dioxide binds phosphopeptides under acidic conditions, and they can be eluted under basic conditions. However, some nonphosphorylated peptides, particularly acidic peptides, bind and elute under these conditions as well. These nonphosphorylated peptides contribute significantly to ion suppression of phosphopeptides and also increase sample complexity. We show here that the conversion of peptide carboxylates to their corresponding methyl esters sharply reduces nonspecific binding, improving the selectivity for phosphopeptides, just as has been reported for immobilized metal affinity chromatography (IMAC) columns. We also present evidence that monophosphorylated peptides can be effectively fractionated from multiply phosphorylated peptides, as well as acidic peptides, via stepwise elution from TiO2 using pH step gradients from pH 8.5 to pH 11.5. These approaches were applied to human CDK2 phosphorylated in vitro by yeast CAK1p in the absence of cyclin. We confirmed phosphorylation at T160, a site previously documented and shown to be necessary for CDK2 activity. However, we also discovered several novel sites of partial phosphorylation at S46, T47, T165, and Y168 when ion-suppressing nonphosphorylated peptides were eliminated using the new protocols.  相似文献   

3.
Global analyses of protein phosphorylation require specific enrichment methods because of the typically low abundance of phosphoproteins. To date, immobilized metal ion affinity chromatography (IMAC) for phosphopeptides has shown great promise for large-scale studies, but has a reputation for poor specificity. We investigated the potential of IMAC in combination with capillary liquid chromatography coupled to tandem mass spectrometry for the identification of plasma membrane phosphoproteins of Arabidopsis. Without chemical modification of peptides, over 75% pure phosphopeptides were isolated from plasma membrane digests and detected and sequenced by mass spectrometry. We present a scheme for two-dimensional peptide separation using strong anion exchange chromatography prior to IMAC that both decreases the complexity of IMAC-purified phosphopeptides and yields a far greater coverage of monophosphorylated peptides. Among the identified sequences, six originated from different isoforms of the plasma membrane H(+)-ATPase and defined two previously unknown phosphorylation sites at the regulatory C terminus. The potential for large-scale identification of phosphorylation sites on plasma membrane proteins will have wide-ranging implications for research in signal transduction, cell-cell communication, and membrane transport processes.  相似文献   

4.
The photosynthetic membranes of spinach (Spinacia oleracea L.) chloroplasts were incubated with [gamma-32P] ATP. When the thylakoid membrane kinase was activated with light, the 25- and 27-kDa forms of the light-harvesting chlorophyll a/b protein (LHC II) were phosphorylated on their amino termini. Treatment of the membranes with proteinase K or thermolysin released phosphopeptides which were purified by ferric ion affinity chromatography and reverse phase high performance liquid chromatography. Sequencing of the phosphopeptides was performed with tandem quadrupole mass spectrometry. Three different phosphopeptides Ac-RKTAGKPKT, Ac-RKTAGKPKN, and Ac-RKSAGKPKN originating from class I LHC II were examined after release by thermolysin. One phosphopeptide, Ac-RRTVKSAPQ, originating from class II LHC II was examined after release by proteinase K. Each of the four LHC II phosphopeptides was derived from the amino terminus of a distinct protein. Peptides were acetylated at their amino-terminal arginine and were phosphorylated on either threonine or serine in the third position. We conclude that proteolytic processing of pre-LHC II occurs at a conserved methionyl-arginyl bond and is followed by amino-terminal acetylation of the arginine and nearby phosphorylation of the mature LHC II. Eight different peptides were synthesized in acetylated and nonacetylated forms as substrates for the thylakoid membrane kinase. From a comparison of the kinetics of phosphate incorporation into the peptides, we conclude that basic residues on both sides of the phosphorylation site are important for enzyme recognition. Acetylation of the amino terminus is not required for phosphorylation.  相似文献   

5.
Global profiling of phosphopeptides by titania affinity enrichment   总被引:1,自引:0,他引:1  
Protein phosphorylation is a ubiquitous post-translational modification critical to many cellular processes. Large-scale unbiased characterization of phosphorylation status remains a major technical challenge in proteomics. In the present work, we evaluate and optimize titania-based affinity enrichment for global profiling of phosphopeptides from complex biological mixtures. We demonstrate that inclusion of glutamic acid in the sample loading buffer substantially reduced nonspecific binding of nonphosphorylated peptides to the titania while retaining the high binding affinity for phosphopeptides. The reduction in nonspecific peptide binding enhanced overall phosphopeptide recovery, ranging from 22 to 85%, and led to substantial improvement in large-scale global profiling. In addition, we observed that the overall identification of phosphopeptides was significantly enhanced by neutral loss-triggered MS (3) scans and respective use of multiple charge- and mass-dependent filtering criteria for MS (2) and MS (3) spectra. In conjunction with strong-cation exchange chromatography (SCX) for prefractionation, a total of 4002 distinct phosphopeptides were identified from SKBr3 breast cancer cells at false-positive rates of 3.7% and 5.5%, respectively, for singly and doubly phosphorylated peptides.  相似文献   

6.
In the mammalian central nervous system, the structure known as the postsynaptic density (PSD) is a dense complex of proteins whose function is to detect and respond to neurotransmitter released from presynaptic axon terminals. Regulation of protein phosphorylation in this molecular machinery is critical to the activity of its components, which include neurotransmitter receptors, kinases/phosphatases, scaffolding molecules, and proteins regulating cytoskeletal structure. To characterize the phosphorylation state of proteins in PSD samples, we combined strong cation exchange (SCX) chromatography with IMAC. Initially, tryptic peptides were separated by cation exchange and analyzed by reverse phase chromatography coupled to tandem mass spectrometry, which led to the identification of phosphopeptides in most SCX fractions. Because each of these individual fractions was too complex to characterize completely in single LC-MS/MS runs, we enriched for phosphopeptides by performing IMAC on each SCX fraction, yielding at least a 3-fold increase in identified phosphopeptides relative to either approach alone (SCX or IMAC). This enabled us to identify at least one site of phosphorylation on 23% (287 of 1,264) of all proteins found to be present in the postsynaptic density preparation. In total, we identified 998 unique phosphorylated peptides, mapping to 723 unique sites of phosphorylation. At least one exact site of phosphorylation was determined on 62% (621 of 998) of all phosphopeptides, and approximately 80% of identified phosphorylation sites are novel.  相似文献   

7.
Phosphopeptides can be difficult to detect and sequence by mass spectrometry (MS) due to low ionization efficiency and suppression effects in the MS mode, and insufficient fragmentation in the tandem MS (MS/MS) mode, respectively. To address this problem, we have developed a technique called Phosphatase-directed Phosphorylation-site Determination (PPD), which combines on-target phosphatase reactions, MALDI MS/MS of IMAC beads on target, and hypothesis-driven MS (HD-MS). In this method, on-target dephosphorylation experiments are conducted on IMAC-bound phosphopeptides, because dephosphorylated peptides have, in general, higher MS sensitivities than the corresponding phosphopeptides. The detected dephosphorylated peptides are sequenced by MS/MS, which identifies the potentially phosphorylated peptide and the total number of Ser, Thr, or Tyr residues that could hypothetically be phosphorylated within that peptide. On the basis of this information, a mass list containing every possible phosphorylation state of each observed peptide (where 1 HPO(3) = 80 Da) is used to direct MALDI-MS/MS on the phosphorylated peptides bound to IMAC beads at each theoretical mass from the list. If the peptide is present, the resulting MS/MS spectrum reveals the exact site(s) of phosphorylation in the peptide. We have demonstrated the applicability of PPD to the detection of in vivo phosphorylation sites on the Drosophila Stem Loop Binding Protein (dSLBP), and the complementarity of this new technique to conventional MS phosphorylation site mapping methods, since the phosphorylation sites in dSLBP could not be detected by other methods.  相似文献   

8.
Four commercially available immobilized metal ion affinity chromatography (IMAC) methods for phosphopeptide enrichment were compared using small volumes and concentrations of phosphopeptide mixtures with or without extra-added bovine serum albumin (BSA) nonphosphorylated peptides. Addition of abundant tryptic BSA peptides to the phosphopeptide mixture increases the demand for selective IMAC capture. While SwellGel gallium Discs, IPAC Metal Chelating Resin, and ZipTipMC Pipette Tips allow for the possibility of enriching phosphopeptides, the Gyrolab MALDI IMAC1 also presents the possibility of verifying existing phosphopeptides after a dephosphorylation step. Phosphate-containing peptides are identified through a mass shift between phosphorylated and dephosphorylated spectra of 80 Da (or multiples of 80 Da). This verification is useful if the degree of phosphorylation is low in the sample or if the ionization is unfavorable, which often is the case for phosphopeptides. A peptide mixture in which phosphorylated serine, threonine, and tyrosine were represented was diluted in steps and thereafter enriched using the four different IMAC methods prior to analyses with matrix assisted laser desorption/ionization mass spectrometry. The enrichment of phosphopeptides using SwellGel Gallium Discs or Gyrolab MALDI IMAC1 was not significantly affected by the addition of abundant BSA peptides added to the sample mixture, and the achieved detection limits using these techniques were also the lowest. All four of the included phosphopeptides were detected by MALDI-MS only after enrichment using the Gyrolab MALDI IMAC1 compact disc (CD) and detection down to low femtomole levels was possible. Furthermore, selectivity, reproducibility, and detection for a number of other phosphopeptides using the IMAC CD are reported herein. For example, two phosphopeptides sent out in a worldwide survey performed by the Proteomics Research Group (PRG03) of the Association of Biomolecular Resource Facilities (ABRF) were detected and verified by means of the 80 Da mass shift achieved by on-column dephosphorylation.  相似文献   

9.
Hormone-dependent phosphorylation of the avian progesterone receptor   总被引:4,自引:0,他引:4  
Progesterone receptors are phosphoproteins, in which phosphorylation has been proposed as a control mechanism for some stages of hormone action. Progesterone administration was shown to increase phosphorylation of the receptor from both cytosol and nuclear extracts of whole cells. We have analyzed the receptor phosphopeptides generated by chemical and proteolytic cleavage to assess the number of phosphorylation sites and their approximate location in the receptor. Progesterone receptor was labeled in situ in the presence or absence of hormone in medium containing [32P] orthophosphate, isolated by immunoprecipitation, and then digested with several proteases. The resulting 32P-labeled peptides were resolved by either two-dimensional electrophoresis:chromatography or by reverse-phase high performance liquid chromatography. Multiple phosphopeptides (3-6) were detected after cleavage with trypsin, chymotrypsin, or V8 protease. Major increases in phosphorylation occurred at existing sites since after hormone treatment no new phosphopeptides were found. Individual phosphopeptides showed variable increases in phosphorylation of 1.5-5-fold. The A and B receptor forms showed identical phosphorylation patterns, indicating similar processing in vivo. The phosphopeptide pattern for receptor in nuclear extracts resembled that of cytosol receptor. Chemical cleavage was used to assess the distribution of phosphorylation sites. Cyanogen bromide produced a large 40-kDa polypeptide which contained all of the phosphorylation sites and comprised the residues 129-449. Hydroxylamine was used to cleave a unique bond, Asn-372-Gly-373, in the 40-kDa polypeptide. All of the phosphorylation sites were located on the amino-terminal side of the cleavage. Thus, all of the phosphorylation sites were localized to a specific region (Met-129 to Asn-372) of the progesterone receptor that does not include either the DNA or steroid binding domains.  相似文献   

10.
We have developed an efficient, sensitive, and specific method for the detection of phosphopeptides present in peptide mixtures by MALDI Q-TOF mass spectrometry. Use of the MALDI Q-TOF enables selection of phosphopeptides and characterization by CID of the phosphopeptides performed on the same sample spot. However, this type of experiment has been limited by low ionization efficiency of phosphopeptides in positive ion mode while selecting precursor ions of phosphopeptides. Our method entails neutralizing negative charges on acidic groups of nonphosphorylated peptides by methyl esterification before mass spectrometry in positive and negative ion modes. Methyl esterification significantly increases the relative signal intensity generated by phosphopeptides in negative ion mode compared with positive ion mode and greatly increases selectivity for phosphopeptides by suppressing the signal intensity generated by acidic peptides in negative ion mode. We used the method to identify 12 phosphopeptides containing 22 phosphorylation sites from low femtomolar amounts of a tryptic digest of beta-casein and alpha-s-casein. We also identified 10 phosphopeptides containing five phosphorylation sites from an in-gel tryptic digest of 100 fmol of an in vitro autophosphorylated fibroblast growth factor receptor kinase domain and an additional phosphopeptide containing another phosphorylation site when 500 fmol of the digest was examined. The results demonstrate that the method is a fast, robust, and sensitive means of characterizing phosphopeptides present in low abundance mixtures of phosphorylated and nonphosphorylated peptides.  相似文献   

11.
Although neurofilaments are among the most highly phosphorylated proteins extant, relatively little is known about the kinases involved in their phosphorylation. The majority of the phosphates present on the two higher-molecular-mass neurofilament subunits are added to multiply repeated sequence motifs in the tail. We have examined the specificity of a neurofilament-associated kinase (NFAK) partially purified from chicken spinal cord that selectively phosphorylates the middle-molecular-mass neurofilament subunit, NF-M. Two-dimensional phosphopeptide mapping of 32P-labeled NF-M shows that, in vitro, NFAK phosphorylates a subset of peptides phosphorylated in vivo in cultured neurons. The absence of a complete complement of labeled phosphopeptides following in vitro phosphorylation, compared with phosphorylation in vivo, is not due to a lack of availability of phosphorylation sites because the same maps are obtained when enzymatically dephosphorylated NF-M is used as an in vitro substrate. Phosphopeptide maps from in vitro-phosphorylated NF-M and those from a recombinant fusion protein containing only a segment of the tail piece of chicken NF-M reveal identical labeled peptides. The fusion protein lacks a segment containing 17 KXX(S/T)P putative phosphorylation sites contained in the tail of chicken NF-M but contains a segment that includes four KSPs and a KSD site also present in the intact tail. These results suggest (a) that NFAK mediates the phosphorylation of some, but not all, potential phosphorylation sites within the tail of NF-M and (b) that multiple kinases are necessary for complete phosphorylation of the NF-M tail.  相似文献   

12.
Villén J  Gygi SP 《Nature protocols》2008,3(10):1630-1638
The success in profiling the phosphoproteome by mass spectrometry-based proteomics has been intimately related to the availability of methods that selectively enrich for phosphopeptides. To this end, we describe a protocol that combines two sequential enrichment steps. First, strong cation exchange (SCX) chromatography separates peptides by solution charge. Phosphate groups contribute to solution charge by adding a negative charge at pH 2.7. Therefore, at that pH, phosphopeptides are expected to elute earlier than their nonphosphorylated homologs. Second, immobilized metal affinity chromatography (IMAC) takes advantage of phosphate's affinity for metal ions such as Fe(3+) to uniformly enrich for phosphopeptides from the previously collected SCX fractions. We have successfully employed the SCX/IMAC enrichment strategy in the exploration of phosphoproteomes from several systems including mouse liver and Drosophila embryos characterizing over 5,500 and 13,000 phosphorylation events, respectively. The SCX/IMAC enrichment protocol requires 2 days, and the entire procedure from cells to a phosphorylation data set can be completed in less than 10 days.  相似文献   

13.
Reversible protein phosphorylation ranks among the most important post-translational modifications, and elucidation of phosphorylation sites is essential to understand the regulation of key cellular processes such as signal transduction. Enrichment of phosphorylated peptides is a prerequisite for successful analysis due to their low stoichiometry, heterogeneity, and low abundance. Enrichment is often performed manually, which is inherently labor-intensive and a major hindrance in large-scale analyses. Automation of the enrichment method would vastly improve reproducibility and thereby facilitate 'high-throughput' phosphoproteomics research. Here, we describe a robust and automated online TiO 2-based two-dimensional chromatographic approach to selectively enrich phosphorylated peptides from digests of complete cellular lysates. We demonstrate method enhancement for both adsorption and desorption of phosphorylated peptides resulting in lower limits of detection. Phosphorylated peptides from a mere 500 attomole tryptic digest of a protein mixture were easily detected. With the combination of strong cation exchange chromatography with the online TiO 2 enrichment, 2152 phosphopeptides were enriched from 250 microg of protein originating for the cell lysate of Drosophila melanogaster S2 cells. This is a 4-fold improvement when compared to an enrichment strategy based solely on strong cation exchange/LC-MS. Phosphopeptide enrichment methods are intrinsically biased against relatively basic phosphopeptides. Analysis of the p I distributions of the enriched/detected phosphopeptides showed that the p I profile resembles that of a total Drosophila protein digest, revealing that the current described online procedure does not discriminate against either more acidic or basic phosphopeptides. However, careful comparison of our new and existing phosphopeptide enrichment techniques also reveal that, like many enrichment techniques, we are still far from comprehensive phosphoproteomics analyses, and we describe several factors that still require to be addressed. Still, as the online approach allows the complementary measurements of phosphopeptides and their nonphosphorylated counterparts in subsequent analyses, this method is well-suited for automated quantitative phosphoproteomics.  相似文献   

14.
Sterols are membrane-bound isoprenoid lipids that are required for cell viability and growth. In plants, it is generally assumed that 3-hydroxy-3-methylglutaryl-CoA-reductase (HMGR) is a key element of their biosynthesis, but the molecular regulation of that pathway is largely unknown. In an attempt to identify regulators of the biosynthetic flux from acyl-CoA toward phytosterols, we compared the membrane phosphoproteome of wild-type Arabidopsis thaliana and of a mutant being deficient in HMGR1. We performed a N-terminal labeling of microsomal peptides with a trimethoxyphenyl phosphonium (TMPP) derivative, followed by a quantitative assessment of phosphopeptides with a spectral counting method. TMPP derivatization of peptides resulted in an improved LC-MS/MS detection due to increased hydrophobicity in chromatography and ionization efficiency in electrospray. The phosphoproteome coverage was 40% higher with this methodology. We further found that 31 proteins were in a different phosphorylation state in the hmgr1-1 mutant as compared with the wild-type. One-third of these proteins were identified based on novel phosphopeptides. This approach revealed that phosphorylation changes in the Arabidopsis membrane proteome targets major cellular processes such as transports, calcium homeostasis, photomorphogenesis, and carbohydrate synthesis. A reformatting of these processes appears to be a response of a genetically reduced sterol biosynthesis.  相似文献   

15.
The mass spectrometric analysis of protein phosphorylation is still far from being routine, and the outcomes thereof are often unsatisfying. Apart from the inherent problem of substoichiometric phosphorylation, three arguments as to why phosphorylation analysis is so problematic are often quoted, including (a) increased hydrophilicity of the phosphopeptide with a concomitant loss during the loading onto reversed-phase columns, (b) selective suppression of the ionization of phosphopeptides in the presence of unmodified peptides, and (c) lower ionization/detection efficiencies of phosphopeptides as compared with their unmodified cognates. Here we present the results of a study investigating the validity of these three arguments when using electrospray ionization mass spectrometry. We utilized a set of synthetic peptide/phosphopeptide pairs that were quantitated by amino acid analysis. Under the applied conditions none of the experiments performed supports the notions of (a) generally increased risks of losing phosphopeptides during the loading onto the reversed-phase column because of decreased retention and (b) the selective ionization suppression of phosphopeptides. The issue of ionization/detection efficiencies of phosphopeptides versus their unphosphorylated cognates proved to be less straightforward when using electrospray ionization because no evidence for decreased ionization/detection efficiencies for phosphopeptides could be found.  相似文献   

16.
Worthington J  Cutillas PR  Timms JF 《Proteomics》2011,11(23):4583-4587
Protein regulation by reversible phosphorylation is fundamental in nature, and large-scale phosphoproteomic analyses are becoming routine in proteomics laboratories. These analyses utilise phosphopeptide separation and enrichment techniques linked to LC-MS/MS. Herein, we report that IMAC and TiO(2) also enrich for non-phosphorylated modified peptides such as acetylated, deamidated and carbamylated peptides. Urea and digestion conditions commonly used in phosphoproteomic workflows are the likely sources of the induced modifications (deamidation and carbamylation) and can easily modify phosphopeptides. Including these variable modifications in database searches increased the total number of identified phosphopeptides by 15%. We also show that strong cation exchange fractionation provides poor resolution of phosphopeptides and actually enriches these alternatively modified peptides. By switching to reverse-phase chromatography, we show a significant improvement in the number of identified phosphopeptides. We recommend that the users of phosphopeptide enrichment strategies avoid using urea as a denaturant and that careful consideration is given to chromatographic conditions and the types of variable modifications used in database searches. Thus, the capacity of IMAC and TiO(2) to enrich phosphopeptides bearing modifications other than phosphorylation is a previously unappreciated property of these chromatographies with practical implications for the field of phosphoproteomics.  相似文献   

17.
A common strategy in proteomics to improve the number and quality of peptides detected by mass spectrometry (MS) is to desalt and concentrate proteolytic digests using reversed phase (RP) chromatography prior to analysis. However, this does not allow for detection of small or hydrophilic peptides, or peptides altered in hydrophilicity such as phosphopeptides. We used microcolumns to compare the ability of RP resin or graphite powder to retain phosphopeptides. A number of standard phosphopeptides and a biologically relevant phosphoprotein, dynamin I, were analyzed. MS revealed that some phosphopeptides did not bind the RP resin but were retained efficiently on the graphite. Those that did bind the RP resin often produced much stronger signals from the graphite powder. In particular, the method revealed a doubly phosphorylated peptide in a tryptic digest of dynamin I purified from rat brain nerve terminals. The detection of this peptide was greatly enhanced by graphite micropurification. Sequencing by tandem MS confirmed the presence of phosphate at both Ser-774 and Ser-778, while a singly phosphorylated peptide was predominantly phosphorylated only on Ser-774. The method further revealed a singly and doubly phosphorylated peptide in dynamin III, analogous to the dynamin I sequence. A pair of dynamin III phosphorylation sites were found at Ser-759 and Ser-763 by tandem MS. The results directly define the in vivo phosphorylation sites in dynamins I and III for the first time. The findings indicate a large improvement in the detection of small amounts of phosphopeptides by MS and the approach has major implications for both small- and large-scale projects in phosphoproteomics.  相似文献   

18.
Phosphorylation of the insulin receptor was studied in intact well differentiated hepatoma cells (Fao) and in a solubilized and partially purified receptor preparation obtained from these cells by affinity chromatography on wheat germ agglutinin agarose. Tryptic peptides containing the phosphorylation sites of the beta-subunit of the insulin receptor were analyzed by reverse-phase high performance liquid chromatography. Phosphoamino acid content of these peptides was determined by acid hydrolysis and high voltage electrophoresis. Separation of the phosphopeptides from unstimulated Fao cells revealed one major and two minor phosphoserine-containing peptides and a single minor phosphothreonine-containing peptide. Insulin (10(-7) M) increased the phosphorylation of the beta-subunit of the insulin receptor 3- to 4-fold in the intact Fao cell. After insulin stimulation, two phosphotyrosine-containing peptides were identified. Tyrosine phosphorylation reached a steady state within 20 s after the addition of insulin and remained nearly constant for 1 h. Under our experimental conditions, no significant change in the amount of [32P]phosphoserine or [32P]phosphothreonine associated with the beta-subunit was found during the initial response of cells to insulin. When the insulin receptor was extracted from the Fao cells and incubated in vitro with [gamma-32P]ATP and Mn2+, very little phosphorylation occurred in the absence of insulin. In this preparation, insulin rapidly stimulated autophosphorylation of the receptor on tyrosine residues only and high performance liquid chromatography analysis of the beta-subunit digested with trypsin revealed one minor and two major phosphopeptides. The elution position of the minor peptide corresponded to that of the major phosphotyrosine-containing peptide obtained from the beta-subunit of the insulin-stimulated receptor labeled in vivo. In contrast, the elution position of one of the major phosphopeptides that occurred during in vitro phosphorylation corresponded to the minor phosphotyrosine-containing peptide phosphorylated in vivo. The other major in vitro phosphotyrosine-containing peptide was not detected in vivo. Our results indicate that: tyrosine phosphorylation of the insulin receptor occurs rapidly following insulin binding to intact cells; the level of tyrosine phosphorylation remains constant for up to 1 h; the specificity of the receptor kinase or accessibility of the phosphorylation sites are different in vivo and in vitro.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Ligand stimulation of PDGF beta-receptors leads to autophosphorylation of the regulatory tyrosine 857 and of tyrosine residues that in their phosphorylated form serve as docking sites for Src homology 2 domain-containing proteins. Regulation of the PDGF beta-receptor by protein-tyrosine phosphatases is poorly understood. We have investigated PDGF beta-receptor dephosphorylation by receptor-like protein-tyrosine phosphatase DEP-1 using a cell line with inducible DEP-1 expression and by characterizing in vitro dephosphorylation of the PDGF beta-receptor and of receptor-derived phosphopeptides by DEP-1. After DEP-1 induction PDGF beta-receptor.DEP-1 complexes and reduced receptor tyrosine phosphorylation were observed. Phosphopeptide analysis of the PDGF beta-receptors from DEP-1-expressing cells and of the receptors dephosphorylated in vitro by DEP-1 demonstrated that dephosphorylation of autophosphorylation sites of the receptor differed and revealed that the regulatory Tyr(P)(857) was not a preferred site for DEP-1 dephosphorylation. When dephosphorylation of synthetic receptor-derived peptides was analyzed, the selectivity was reproduced, indicating that amino acid sequence surrounding the phosphorylation sites is the major determinant of selectivity. This notion is supported by the observation that the poorly dephosphorylated Tyr(P)(562) and Tyr(P)(857), in contrast to other analyzed phosphorylation sites, are surrounded by basic amino acid residues at positions -4 and +3 relative to the tyrosine residue. Our study demonstrates that DEP-1 dephosphorylation of the PDGF beta-receptor is site-selective and may lead to modulation, rather than general attenuation, of signaling.  相似文献   

20.
Due to the dynamic nature and low stoichiometry of protein phosphorylation, enrichment of phosphorylated peptides from proteolytic mixtures is often necessary prior to their characterization by mass spectrometry. Immobilized metal affinity chromatography (IMAC) is a popular way to enrich phosphopeptides; however, conventional IMAC lacks enough specificity for efficient phosphoproteome analysis. In this study, novel Fe 3O 4@TiO 2 microspheres with well-defined core-shell structure were prepared and developed for highly specific purification of phosphopeptides from complex peptide mixtures. The enrichment conditions were optimized using tryptic digests of beta-casein, and the high specificity of the Fe 3O 4@TiO 2 core-shell microspheres was demonstrated by effectively enriching phosphopeptides from the digest mixture of alpha-casein and beta-casein, as well as a five-protein mixture containing nonphosphoproteins (bovine serum albumin (BSA), myoglobin, cytochrome c) and phosphoproteins (ovalbumin and beta-casein). The Fe 3O 4@TiO 2 core-shell microspheres were further successfully applied for the nano-LC-MS/MS analysis of rat liver phosphoproteome, which resulted in identification of 56 phosphopeptides (65 phosphorylation sites) in mouse liver lysate in a single run, indicating the excellent performance of the Fe 3O 4@TiO 2 core-shell microspheres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号