首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel heteroplasmic 7587T-->C mutation in the mitochondrial genome which changes the initiation codon of the gene encoding cytochrome c oxidase subunit II (COX II), was found in a family with mitochondrial disease. This T-->C transition is predicted to change the initiating methionine to threonine. The mutation load was present at 67% in muscle from the index case and at 91% in muscle from the patient's clinically affected son. Muscle biopsy samples revealed isolated COX deficiency and mitochondrial proliferation. Single-muscle-fiber analysis revealed that the 7587C copy was at much higher load in COX-negative fibers than in COX-positive fibers. After microphotometric enzyme analysis, the mutation was shown to cause a decrease in COX activity when the mutant load was >55%-65%. In fibroblasts from one family member, which contained >95% mutated mtDNA, there was no detectable synthesis or any steady-state level of COX II. This new mutation constitutes a new mechanism by which mtDNA mutations can cause disease-defective initiation of translation.  相似文献   

2.
A maternally inherited and practically homoplasmic mitochondrial (mtDNA) mutation, 8527A>G, changing the initiation codon AUG into GUG, normally coding for a valine, was observed in the ATP6 gene encoding the ATPase subunit a. No alternate Met codon could replace the normal translational initiator. The patient harboring this mutation exhibited clinical symptoms suggesting a mitochondrial disease but his mother who carried the same mtDNA mutation was healthy. The mutation was absent from 100 controls and occurred once amongst 44 patients suspected of Leber Hereditary Optic Neuropathy (LHON) but devoid of typical LHON mutations. In patient fibroblasts, no effect of 8527A>G mutation could be demonstrated on the biosynthesis of mtDNA-encoded proteins, on size and the content of ATPase subunit a, on ATP hydrolysis and on mitochondrial membrane potential. In addition, ATP synthesis was barely decreased. Therefore, GUG is a functional initiation codon for the human ATP6 gene.  相似文献   

3.
We have analyzed mitochondrial DNA sequence in 15 Russian LHON patients and found the new mtDNA sequence variant in one family (2 patients) who showed 100% penetrance of the disease in men. This family has a T14484C primary mutation, and four secondary mutations (T4216C, G13708A, G15812A, G15257A), which belong to the European haplogroup J. The new sequence variant of A9016G in the ATPase 6 gene changed highly conserved amino acid of isoleucine to valine, has not been found in the rest of 13 LHON patients and controls. This novel sequence variant may contribute to the 100% penetration of LHON disorder in men of this family.  相似文献   

4.
Myoclonic epilepsy with ragged-red fibers (MERRF) has been associated with an A--G transition at mtDNA nt 8344, within a conserved region of the tRNA(Lys) gene. Although the 8344 mutation is highly prevalent in patients with MERRF, it is not observed in 10%-20% of the cases, suggesting genetic heterogeneity. We have sequenced the tRNA(Lys) gene of five MERRF patients lacking the common 8344 mutation. One of these showed a novel T-->C transition at nucleotide position 8356, disrupting a highly conserved base pair in the T psi C stem. The mutant mtDNA population was essentially homoplasmic in muscle but was heteroplasmic in blood (47%). Neither 20 patients with other mitochondrial diseases nor 25 controls carried this mutation. These findings suggest that tRNA(Lys) alterations may play a specific role in the pathogenesis of MERRF syndrome.  相似文献   

5.
Leber hereditary optic neuropathy (LHON) is due primarily to one of three common point mutations of mitochondrial DNA (mtDNA), but the incomplete penetrance implicates additional genetic or environmental factors in the pathophysiology of the disorder. Both the 11778G-->A and 14484T-->C LHON mutations are preferentially found on a specific mtDNA genetic background, but 3460G-->A is not. However, there is no clear evidence that any background influences clinical penetrance in any of these mutations. By studying 3,613 subjects from 159 LHON-affected pedigrees, we show that the risk of visual failure is greater when the 11778G-->A or 14484T-->C mutations are present in specific subgroups of haplogroup J (J2 for 11778G-->A and J1 for 14484T-->C) and when the 3460G-->A mutation is present in haplogroup K. By contrast, the risk of visual failure is significantly less when 11778G-->A occurs in haplogroup H. Substitutions on MTCYB provide an explanation for these findings, which demonstrate that common genetic variants have a marked effect on the expression of an ostensibly monogenic mtDNA disorder.  相似文献   

6.
We report the first missense mutation in the mtDNA gene for subunit II of cytochrome c oxidase (COX). The mutation was identified in a 14-year-old boy with a proximal myopathy and lactic acidosis. Muscle histochemistry and mitochondrial respiratory-chain enzymology demonstrated a marked reduction in COX activity. Immunohistochemistry and immunoblot analyses with COX subunit-specific monoclonal antibodies showed a pattern suggestive of a primary mtDNA defect, most likely involving CO II, for COX subunit II (COX II). mtDNA-sequence analysis demonstrated a novel heteroplasmic T-->A transversion at nucleotide position 7,671 in CO II. This mutation changes a methionine to a lysine residue in the middle of the first N-terminal membrane-spanning region of COX II. The immunoblot studies demonstrated a severe reduction in cross-reactivity, not only for COX II but also for the mtDNA-encoded subunit COX III and for nuclear-encoded subunits Vb, VIa, VIb, and VIc. Steady-state levels of the mtDNA-encoded subunit COX I showed a mild reduction, but spectrophotometric analysis revealed a dramatic decrease in COX I-associated heme a3 levels. These observations suggest that, in the COX protein, a structural association of COX II with COX I is necessary to stabilize the binding of heme a3 to COX I.  相似文献   

7.
Recent studies suggest that mutations/polymorphisms of mitochondrial DNA (mtDNA) are associated with neuropsychiatric diseases. We identified a patient with major depression and epilepsy. Some family members in the pedigree of the proband had bipolar disorder, depression, suicide, or psychotic disorder not otherwise specified. The mode of inheritance was compatible with maternal inheritance with low penetration. We assumed that the mental disorder in this family might be associated with maternally inherited mitochondrial DNA (mtDNA) mutation. We sequenced the entire mtDNA of the proband. Among the 34 base substitutions detected in the proband, two homoplasmic, nonsynonymous single substitutions of mtDNA, T3394C in MT-ND1 and A9115G in MT-ATP6, were suspected to cause functional impairment, because the former was reported to be disease-related and the latter is vary rare. To study the functional outcome of these substitutions, we examined mitochondrial membrane potential and the activity of mitochondrial ATP synthesis in the transmitochondrial cybrids, but no significant impairment was detected. The data did not support our hypothesis that these disorders in this family are caused by mtDNA mutation(s).  相似文献   

8.
We have identified a novel stop-codon mutation in the mtDNA of a young woman with a multisystem mitochondrial disorder. Histochemical analysis of a muscle-biopsy sample showed virtually absent cytochrome c oxidase (COX) stain, and biochemical studies confirmed an isolated reduction of COX activity. Sequence analysis of the mitochondrial-encoded COX-subunit genes identified a heteroplasmic G-->A transition at nucleotide position 6930 in the gene for subunit I (COX I). The mutation changes a glycine codon to a stop codon, resulting in a predicted loss of the last 170 amino acids (33%) of the polypeptide. The mutation was present in the patient's muscle, myoblasts, and blood and was not detected in normal or disease controls. It was not detected in mtDNA from leukocytes of the patient's mother, sister, and four maternal aunts. We studied the genetic, biochemical, and morphological characteristics of transmitochondrial cybrid cell lines, obtained by fusing of platelets from the patient with human cells lacking endogenous mtDNA (rho0 cells). There was a direct relationship between the proportion of mutant mtDNA and the biochemical defect. We also observed that the threshold for the phenotypic expression of this mutation was lower than that reported in mutations involving tRNA genes. We suggest that the G6930A mutation causes a disruption in the assembly of the respiratory-chain complex IV.  相似文献   

9.
Mitochondrial encephalomyopathy and lactic acidosis with strokelike episodes (MELAS) is a severe young onset stroke disorder without effective treatment. We have identified a MELAS patient harboring a 13528A-->G mitochondrial DNA (mtDNA) mutation in the Complex I ND5 gene. This mutation was homoplasmic in mtDNA from patient muscle and nearly homoplasmic (99.9%) in blood. Fibroblasts from the patient exhibited decreased mitochondrial membrane potential (Deltapsim) and increased lactate production, consistent with impaired mitochondrial function. Transfer of patient mtDNA to a new nuclear background using transmitochondrial cybrid fusions confirmed the pathogenicity of the 13528A-->G mutation; Complex I-linked respiration and Deltapsim were both significantly reduced in patient mtDNA cybrids compared with controls. Inhibition of the adenine nucleotide translocase or the F1F0-ATPase with bongkrekic acid or oligomycin caused a loss of potential in patient mtDNA cybrid mitochondria, indicating a requirement for glycolytically generated ATP to maintain Deltapsim. This was confirmed by inhibition of glycolysis with 2-deoxy-D-glucose, which caused depletion of ATP and mitochondrial depolarization in patient mtDNA cybrids. These data suggest that in response to impaired respiration due to the mtDNA mutation, mitochondria consume ATP to maintain Deltapsim, representing a potential pathophysiological mechanism in human mitochondrial disease.  相似文献   

10.
Kato T 《Cell calcium》2008,44(1):92-102
Altered intracellular calcium levels are a consistent finding in studies of bipolar disorder, and recent studies point to the role of mitochondrial dysfunction, leading to the possibility that mitochondrial calcium dysregulation is involved in the pathophysiology of the disease. Although the mitochondrion is a key organelle for calcium accumulation, initial calcium signaling studies in bipolar disorder did not focus on the role of mitochondria. Later, neuroimaging and molecular genetic studies suggested the possibility that altered mitochondrial calcium regulation due to mitochondrial DNA (mtDNA) polymorphisms/mutations might be involved in the pathophysiology of bipolar disorder. Recent studies show that certain mtDNA polymorphisms alter mitochondrial calcium levels. Mutant mtDNA polymerase (Polg) transgenic mice carrying mtDNA mutations in forebrain cells show an increased calcium uptake rate in isolated mitochondria. This was found to be mediated by downregulation of cyclophilin D, a component of the mitochondrial permeability transition pore. In addition, agonist-stimulated calcium response is attenuated in hippocampal neurons of these transgenic mice. The finding that mtDNA polymorphisms and mutations affect mitochondrial calcium regulation supports the idea that mitochondrial calcium dysregulation may be involved in the pathophysiology of bipolar disorder. In this review, the history and recent findings of studies elucidating the role of mitochondrial calcium signaling in bipolar disorder are summarized.  相似文献   

11.
12.
13.
A heteroplasmic G-to-A transition at nucleotide pair (np) 14459 within the mitochondrial DNA (mtDNA)-encoded NADH dehydrogenase subunit 6 (ND6) gene has been identified as the cause of Leber hereditary optic neuropathy (LHON) and/or pediatric-onset dystonia in three unrelated families. This ND6 np 14459 mutation changes a moderately conserved alanine to a valine at amino acid position 72 of the ND6 protein. Enzymologic analysis of mitochondrial NADH dehydrogenase (complex I) with submitochondrial particles isolated from Epstein-Barr virus-transformed lymphoblasts revealed a 60% reduction (P < 0.005) of complex I-specific activity in patient cell lines compared with controls, with no differences in enzymatic activity for complexes II plus III, III and IV. This biochemical defect was assigned to the ND6 np 14459 mutation by using transmitochondrial cybrids in which patient Epstein-Barr virus-transformed lymphoblast cell lines were enucleated and the cytoplasts were fused to a mtDNA-deficient (p 0) lymphoblastoid recipient cell line. Cybrids harboring the np 14459 mutation exhibited a 39% reduction (p < 0.02) in complex I-specific activity relative to wild-type cybrid lines but normal activity for the other complexes. Kinetic analysis of the np 14459 mutant complex I revealed that the Vmax of the enzyme was reduced while the Km remained the same as that of wild type. Furthermore, specific activity was inhibited by increasing concentrations of the reduced coenzyme Q analog decylubiquinol. These observations suggest that the np 14459 mutation may alter the coenzyme Q-binding site of complex I.  相似文献   

14.
该文探究了线粒体DNA(mtDNA)突变与甲状腺癌的发生发展的相关性,评估了mtDNA拷贝数对甲状腺癌的诊断价值。根据对结节性甲状腺肿、滤泡状甲状腺腺瘤和乳头状甲状腺癌3组病人的mtDNA全基因测序和单倍型分型结果,统计3组病人mtDNA突变率及单倍型的差异,分析乳头状甲状腺癌病人的mtDNA突变率与临床资料的联系,最后通过荧光定量PCR检测3组病人的组织和血液样本中mtDNA的拷贝数。结果显示,乳头状甲状腺癌患者mtDNA的复合体I亚基编码区和tRNA编码区的突变率明显高于结节性甲状腺肿,在乳头状甲状腺癌患者中线粒体单体型M相对于单体型N有更低的淋巴结转移率,荧光定量PCR结果显示,甲状腺腺瘤和甲状腺癌组织中的mtDNA拷贝数明显高于结节性甲状腺肿,而在血液标本中,两者的mtDNA拷贝数均低于结节性甲状腺肿。这些结果表明,mtDNA拷贝数的变化和复合体I亚基编码区的突变可能作为甲状腺癌诊断的生物指标,而线粒体单体型N可能可以作为乳头状甲状腺癌恶性变化的预警指标。  相似文献   

15.
We report the electron transfer properties of the NADH:ubiquinone oxidoreductase complex of the respiratory chain (Complex I) in mitochondria of cells derived from LHON patients with two different mutations in mitochondrial DNA (mtDNA). The mutations occur in the mtDNA genes coding for the ND1 and ND4 subunits of Complex I. The ND1/3460 mutation exhibits 80% reduction in rotenone-sensitive and ubiquinone-dependent electron transfer activity, whereas the proximal NADH dehydrogenase activity of the Complex is unaffected. This is in accordance with the proposal that the ND1 subunit interacts with rotenone and ubiquinone. In contrast, the ND4/11778 mutation had no effect on electron transfer activity of the Complex in inner mitochondrial membrane preparations; also Km for NADH and NADH dehydrogenase activity were unaffected. However, in isolated mitochondria with the ND4 mutation, the rate of oxidation of NAD-linked substrates, but not of succinate, was significantly decreased. This suggests that the ND4 subunit might be involved in specific aggregation of NADH-dependent dehydrogenases and Complex I, which may result in fast ('solid state') electron transfer from the former to the latter.  相似文献   

16.
The complete mitochondrial genome of Acinonyx jubatus was sequenced and mitochondrial DNA (mtDNA) regions were screened for polymorphisms as candidates for the cause of a neurodegenerative demyelinating disease affecting captive cheetahs. The mtDNA reference sequences were established on the basis of the complete sequences of two diseased and two nondiseased animals as well as partial sequences of 26 further individuals. The A. jubatus mitochondrial genome is 17,047-bp long and shows a high sequence similarity (91%) to the domestic cat. Based on single nucleotide polymorphisms (SNPs) in the control region (CR) and pedigree information, the 18 myelopathic and 12 non-myelopathic cheetahs included in this study were classified into haplotypes I, II and III. In view of the phenotypic comparability of the neurodegenerative disease observed in cheetahs and human mtDNA-associated diseases, specific coding regions including the tRNAs leucine UUR, lysine, serine UCN, and partial complex I and V sequences were screened. We identified a heteroplasmic and a homoplasmic SNP at codon 507 in the subunit 5 (MTND5) of complex I. The heteroplasmic haplotype I-specific valine to methionine substitution represents a nonconservative amino acid change and was found in 11 myelopathic and eight non-myelopathic cheetahs with levels ranging from 29% to 79%. The homoplasmic conservative amino acid substitution valine to alanine was identified in two myelopathic animals of haplotype II. In addition, a synonymous SNP in the codon 76 of the MTND4L gene was found in the single haplotype III animal. The amino acid exchanges in the MTND5 gene were not associated with the occurrence of neurodegenerative disease in captive cheetahs.  相似文献   

17.
Clinical and molecular findings in children with complex I deficiency   总被引:12,自引:0,他引:12  
Isolated complex I deficiency, the most frequent OXPHOS disorder in infants and children, is genetically heterogeneous. Mutations have been found in seven mitochondrial DNA (mtDNA) and eight nuclear DNA encoded subunits, respectively, but in most of the cases the genetic basis of the biochemical defect is unknown. We analyzed the entire mtDNA and 11 nuclear encoded complex I subunits in 23 isolated complex I-deficient children, classified into five clinical groups: Leigh syndrome, progressive leukoencephalopathy, neonatal cardiomyopathy, severe infantile lactic acidosis, and a miscellaneous group of unspecified encephalomyopathies. A genetic definition was reached in eight patients (35%). Mutations in mtDNA were found in six out of eight children with Leigh syndrome, indicating a prevalent association between this phenotype and abnormalities in ND genes. In two patients with leukoencephalopathy, homozygous mutations were detected in two different nuclear-encoded complex I genes, including a novel transition in NDUFS1 subunit. In addition to these, a child affected by mitochondrial encephalomyopathy had heterozygous mutations in NDUFA8 and NDUFS2 genes, while another child with neonatal cardiomyopathy had a complex rearrangement in a single NDUFS7 allele. The latter cases suggest the possibility of unconventional patterns of inheritance in complex I defects.  相似文献   

18.
We report the de novo occurrence of a heteroplasmic 12706T-->C (12705C) ND5 mutation associated with the clinical expression of fatal Leigh syndrome. Phylogenetic analysis of several cases having the 12706C mutation confirmed that this mutation occurred independently in distinctive mtDNA backgrounds. In each of these cases, the low level of heteroplasmy and the association of the mutation with a deleterious phenotype indicated that the 12706C had a primary role in the expression of LS/MELAS in its carriers. Secondary structure analysis of the ND5 protein further supported the deleterious role of the 12706C mutation, as it was found to affect a functionally significant transmembrane domain that is likely responsible for the proton-translocation function of complex I.  相似文献   

19.
The mitochondrial DNA (mtDNA) depletion syndrome is a quantitative defect of mtDNA resulting from dysfunction of one of several nuclear-encoded factors responsible for maintenance of mitochondrial deoxyribonucleoside triphosphate (dNTP) pools or replication of mtDNA. Markedly decreased succinyl-CoA synthetase activity due to a deleterious mutation in SUCLA2, the gene encoding the beta subunit of the ADP-forming succinyl-CoA synthetase ligase, was found in muscle mitochondria of patients with encephalomyopathy and mtDNA depletion. Succinyl-CoA synthetase is invariably in a complex with mitochondrial nucleotide diphosphate kinase; hence, we propose that a defect in the last step of mitochondrial dNTP salvage is a novel cause of the mtDNA depletion syndrome.  相似文献   

20.
Dilated cardiomyopathy (DCM) is widely accepted as a pluricausal or multifactorial disease. Because of the linkage between energy metabolism in the mitochondria and cardiac muscle contraction, it is reasonable to assume that mitochondrial abnormalities may be responsible for some forms of DCM. We analysed the whole mitochondrial genome in a series of 45 patients with DCM for alterations and compared the findings with those of 62 control subjects. A total of 458 sequence changes could be identified. These sequence changes were distributed among the whole mitochondrial DNA (mtDNA). An increased number of novel missense mutations could be detected nearly in all genes encoding for protein subunits in DCM patients. In genes coding for NADH dehydrogenase subunits the number of mtDNA mutations detected in patients with DCM was significantly increased (p < 0.05) compared with control subjects. Eight mutations were found to occur in conserved amino acids in the above species. The c.5973G > A (Ala-Trp) and the c.7042T > G (Val-Asp) mutations were located in highly conserved domains of the gene coding for cytochrome c oxidase subunit. Two tRNA mutations could be detected in the mtDNA of DCM patients alone. The T-C transition at nt 15,924 is connected with respiratory enzyme deficiency, mitochondrial myopathy, and cardiomyopathy. The c.16189T > C mutation in the D-loop region that is associated with susceptibility to DCM could be detected in 15.6% of patients as well as in 9.7% of controls. Thus, mutations altering the function of the enzyme subunits of the respiratory chain can be relevant for the pathogenesis of dilated cardiomyopathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号