首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Serine proteases are now considered as crucial contributors to the development of human colon cancer. We have shown recently that thrombin is a potent growth factor for colon cancer cells through activation of the aberrantly expressed protease-activated receptor 1 (PAR1). Here, we analyzed the signaling pathways downstream of PAR1 activation, which lead to colon cancer cell proliferation in HT-29 cells. Our data are consistent with the following cascade of events on activation of PAR1 by thrombin or specific activating peptide: (a) a matrix metalloproteinase-dependent release of transforming growth factor-alpha (TGF-alpha) as shown with TGF-alpha blocking antibodies and measurement of TGF-alpha in culture medium; (b) TGF-alpha-mediated activation of epidermal growth factor receptor (EGFR) and subsequent EGFR phosphorylation; and (c) activation of extracellular signal-regulated protein kinase 1/2 (ERK1/2) and subsequent cell proliferation. The links between these events are shown by the fact that stimulation of cell proliferation and ERK1/2 on activation of PAR1 is reversed by the MMP inhibitor batimastat, TGF-alpha neutralizing antibodies, EGFR ligand binding domain blocking antibodies, and the EGFR tyrosine kinase inhibitors AG1478 and PD168393. Therefore, transactivation of EGFR seems to be a major mechanism whereby activation of PAR1 results in colon cancer cell growth. Finally, PAR1 activation induces Src phosphorylation, which is reversed by using the Src tyrosine kinase inhibitor PP2, suggesting that Src activation plays a permissive role for PAR1-mediated ERK1/2 activation and cell proliferation probably acting downstream of the EGFR. These data explain how thrombin exerts robust trophic action on colon cancer cells and underline the critical role of EGFR transactivation.  相似文献   

2.
Proteinase-activated receptor (PAR)(2), a G protein-coupled receptor activated by serine proteinases, has been implicated in both intestinal inflammation and epithelial proliferation. Cyclooxygenase (COX)-2 is overexpressed in the gut during inflammation as well as in colon cancer. We hypothesized that PAR(2) drives COX-2 expression in intestinal epithelial cells. Treatment of Caco-2 colon cancer cells with the PAR(2)-activating peptide 2-furoyl-LIGRLO-NH(2) (2fLI), but not by its reverse-sequence PAR(2)-inactive peptide, for 3 h led to an increase in intracellular COX-2 protein expression accompanied by a COX-2-dependent increase in prostaglandin E(2) production. 2fLI treatment for 30 min significantly increased metalloproteinase activity in the culture supernatant. Increased epidermal growth factor receptor (EGFR) phosphorylation was observed in cell lysates following 40 min of treatment with 2fLI. The broad-spectrum metalloproteinase inhibitor marimastat inhibited both COX-2 expression and EGFR phosphorylation. The EGFR tyrosine kinase inhibitor PD153035 also abolished 2fLI-induced COX-2 expression. Although PAR(2) activation increased ERK MAPK phosphorylation, neither ERK pathway inhibitors nor a p38 MAPK inhibitor affected 2fLI-induced COX-2 expression. However, inhibition of either Src tyrosine kinase signaling by PP2, Rho kinase signaling by Y27632, or phosphatidylinositol 3 (PI3) kinase signaling by LY294002 prevented 2fLI-induced COX-2 expression. Trypsin increased COX-2 expression through PAR(2) in Caco-2 cells and in an EGFR-dependent manner in the noncancerous intestinal epithelial cell-6 cell line. In conclusion, PAR(2) activation drives COX-2 expression in Caco-2 cells via metalloproteinase-dependent EGFR transactivation and activation of Src, Rho, and PI3 kinase signaling. Our findings provide a mechanism whereby PAR(2) can participate in the progression from chronic inflammation to cancer in the intestine.  相似文献   

3.
The regulation of adrenal function, including aldosterone production from adrenal glomerulosa cells, is dependent on a variety of G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs). In many cell types, GPCR-mediated MAPK activation is mediated through transactivation of RTKs, in particular the epidermal growth factor (EGF) receptor (EGF-R). However, the extent to which this cross-communication between GPCRs and RTKs is operative in the adrenal glomerulosa has not been defined. Bovine adrenal glomerulosa cells express receptors for lysophosphatidic acid (LPA) and EGF. In cultured bovine adrenal glomerulosa cells, LPA, which is predominantly coupled to Gi and partially to Gq/protein kinase C alpha and epsilon, caused phosphorylation of Src (at Tyr416), proline-rich tyrosine kinase (Pyk2 at Tyr402), EGF-R, protein kinase B/Akt, extracellularly regulated signal kinases 1/2, and their dependent protein, p90 ribosomal S6 kinase. Overexpression of dominant negative mutants of Ras or EGF-R, and selective inhibition of EGF-R kinase with AG1478, significantly reduced LPA-induced ERK1/2 phosphorylation. However, this was not impaired by inhibition of matrix metalloproteinase (MMP) and heparin-binding EGF. LPA-induced ERK1/2 activation occurs predominantly through EGF-R transactivation by Gi/Src and partly through activation of protein kinase C, which acts downstream of EGF-R and Ras. In contrast, LPA-induced phosphorylation of Shc and ERK1/2 in clonal hepatocytes (C9 cells) was primarily mediated through MMP-dependent transactivation of the EGF-R. These observations in adrenal glomerulosa and hepatic cells demonstrate that LPA phosphorylates ERK1/2 through EGF-R transactivation in a MMP-dependent or -independent manner in individual target cells. This reflects the ability of GPCRs expressed in cell lines and neoplastic cells to utilize distinct signaling pathways that can elicit altered responses compared with those of native tissues.  相似文献   

4.
The aryl hydrocarbon receptor (AhR) mediates many toxic effects of environmental pollutants. AhR also interacts with multiple growth factor-driven signaling pathways. In the course of examining effects of growth factors on proliferation of human colon cancer cells, we identified cross talk between AhR and the epidermal growth factor receptor (EGFR). In the present work, we explored underlying signal transduction mechanisms and functional consequences of this interaction. With the use of two human colon cancer cell lines, H508 and SNU-C4, we examined the effects of AhR ligands including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on cell proliferation and activation of EGFR, ERK1/2, and Src kinases. In colon cancer cells, 5-day incubation with TCDD stimulated a twofold dose-dependent increase in cell proliferation that was detectable with 1 nM and maximal with 30 nM TCDD. TCDD induced dose- and time-dependent phosphorylation of EGFR (Tyr845) and ERK1/2; maximal phosphorylation was observed 5 to 10 min after addition of 30 nM TCDD. Both TCDD-induced ERK1/2 phosphorylation and cell proliferation were abolished by AhR small interfering RNA, AhR-specific inhibitor CH223191, Src kinase inhibitor PP2, neutralizing antibodies against matrix metalloproteinase 7, heparin-binding-EGF-like growth factor and EGFR, EGFR inhibitors (AG1478 and PD168393), and MEK1 inhibitor PD98059. Coimmunoprecipitation experiments revealed that AhR forms a protein complex with Src and regulates Src activity by phosphorylating Src (Tyr416) and dephosphorylating Src (Tyr527). These data support novel observations that, in human colon cancer cells, Src-mediated cross talk between aryl hydrocarbon and EGFR results in ERK1/2 activation, thereby stimulating cell proliferation.  相似文献   

5.
Numerous external stimuli, including G protein-coupled receptor agonists, cytokines, growth factors, and steroids activate mitogen-activated protein kinases (MAPKs) through phosphorylation of the epidermal growth factor receptor (EGF-R). In immortalized hypothalamic neurons (GT1-7 cells), agonist binding to the gonadotropin-releasing hormone receptor (GnRH-R) causes phosphorylation of MAPKs that is mediated by protein kinase C (PKC)-dependent transactivation of the EGF-R. An analysis of the mechanisms involved in this process showed that GnRH stimulation of GT1-7 cells causes release/shedding of the soluble ligand, heparin binding epidermal growth factor (HB-EGF), as a consequence of metalloprotease activation. GnRH-induced phosphorylation of the EGF-R and, subsequently, of Shc, ERK1/2, and its dependent protein, p90RSK-1 (p90 ribosomal S6 kinase 1 or RSK-1), was abolished by metalloprotease inhibition. Similarly, blockade of the effect of HB-EGF with the selective inhibitor CRM197 or a neutralizing antibody attenuated signals generated by GnRH and phorbol 12-myristate 13-acetate, but not those stimulated by EGF. In contrast, phosphorylation of the EGF-R, Shc, and ERK1/2 by EGF and HB-EGF was independent of PKC and metalloprotease activity. The signaling characteristics of HB-EGF closely resembled those of GnRH and EGF in terms of the phosphorylation of EGF-R, Shc, ERK1/2, and RSK-1 as well as the nuclear translocation of RSK-1. However, neither the selective Src kinase inhibitor PP2 nor the overexpression of negative regulatory Src kinase and dominant negative Pyk2 had any effect on HB-EGF-induced responses. In contrast to GT1-7 cells, human embryonic kidney 293 cells expressing the GnRH-R did not exhibit metalloprotease induction and EGF-R transactivation during GnRH stimulation. These data indicate that the GnRH-induced transactivation of the EGF-R and the subsequent ERK1/2 phosphorylation result from ectodomain shedding of HBEGF through PKC-dependent activation of metalloprotease(s) in neuronal GT1-7 cells.  相似文献   

6.
Stimulation of the angiotensin II (Ang II) type 1 receptor (AT1-R) causes phosphorylation of extracellularly regulated kinases 1 and 2 (ERK1/2) via epidermal growth factor receptor (EGF-R) transactivation-dependent or -independent pathways in Ang II target cells. Here we examined the mechanisms involved in agonist-induced EGF-R transactivation and subsequent ERK1/2 phosphorylation in clone 9 (C9) hepatocytes, which express endogenous AT1-R, and COS-7 and human embryonic kidney (HEK) 293 cells transfected with the AT1-R. Ang II-induced ERK1/2 activation was attenuated by inhibition of Src kinase and of matrix metalloproteinases (MMPs) in C9 and COS-7 cells, but not in HEK 293 cells. Agonist-mediated MMP activation in C9 cells led to shedding of heparin-binding EGF (HB-EGF) and stimulation of ERK1/2 phosphorylation. Blockade of HB-EGF action by neutralizing antibody or its selective inhibitor, CRM197, attenuated ERK1/2 activation by Ang II. Consistent with its agonist action, HB-EGF stimulation of these cells caused marked phosphorylation of the EGF-R and its adapter molecule, Shc, as well as ERK1/2 and its dependent protein, p90 ribosomal S6 kinase, in a manner similar to that elicited by Ang II or EGF. Although the Tyr319 residue of the AT1-R has been proposed to be an essential regulator of EGF-R transactivation, stimulation of wild-type and mutant (Y319F) AT1-R expressed in COS-7 cells caused EGF-R transactivation and subsequent ERK1/2 phosphorylation through release of HB-EGF in a Src-dependent manner. In contrast, the noninvolvement of MMPs in HEK 293 cells, which may reflect the absence of Src activation by Ang II, was associated with lack of transactivation of the EGF-R. These data demonstrate that the individual actions of Ang II on EGF-R transactivation in specific cell types are related to differential involvement of MMP-dependent HB-EGF release.  相似文献   

7.
Many G protein coupled receptors (GPCRs) cause phosphorylation of MAP kinases through transactivation of the epidermal growth factor receptor (EGF-R), leading to increased cell survival and growth, motility, and migration. Phosphoinositide 3-kinase (PI3K) is one of the important cell survival signaling molecules activated by EGF-R stimulation. However, the extent to which EGF-R transactivation is essential for GPCR agonist-stimulated PI3K activation is not known. Here we examined the mechanism of PI3K activation that elicits GPCR-mediated ERK1/2 activation by pathways dependent and/or independent of EGF-R transactivation in specific cell types. Immortalized hypothalamic neurons (GT1-7 cells) express endogenous gonadotropin-releasing hormone receptors (GnRH-R) and their stimulation causes marked phosphorylation of ERK1/2 and Akt (Ser 473) through transactivation of the EGF-R and recruitment of PI3K. In C9 hepatocytes, agonist activation of AT1 angiotensin II (AT1-R), lysophosphatidic acid (LPA), and EGF receptors caused phosphorylation of Akt through activation of the EGF-R in a PI3K-dependent manner. However, ERK1/2 activation by these agonists in these cells was independent of PI3K activation. In contrast, agonist stimulation of HEK 293 cells stably expressing AT1-R caused ERK1/2 phosphorylation that was independent of EGF-R transactivation but required PI3K activation. LPA signaling in these cells showed partial and complete dependence on EGF-R and PI3K, respectively. These data indicate that GPCR-induced ERK1/2 phosphorylation is dependent or independent of PI3K in specific cell types, and that the involvement of PI3K during ERK1/2 activation is not dependent solely on agonist-induced transactivation of the EGF-R.  相似文献   

8.
Epidermal growth factor receptor (EGF-R) is a receptor tyrosine kinase that can be activated by molecules other than its cognate ligands. This form of crosstalk called transactivation is frequently observed in both physiological and pathological cellular responses, yet it involves various mechanisms. Using the RWPE-1 cell line as a model of non-transformed prostate epithelial progenitor cells, we observed that interleukin-6 (IL-6) is able to promote cell proliferation and ERK1/2 activation provided that EGF-R kinase activity is not impaired. Treatment with GM6001, a general matrix metalloprotease inhibitor, indicated that IL-6 activates EGF-R through cleavage and release of membrane-anchored EGF-R ligands. Several inhibitors were used to test implication of “a disintegrin and metalloprotease” ADAM10 and ADAM17. GW280264X that targets both ADAM10 and ADAM17 blocked IL-6-induced proliferation and ERK1/2 phosphorylation with same potency as GM6001. However, ADAM10 inhibitor GI254023X and ADAM17 inhibitor TAPI-2 were less efficient in inhibiting response of RWPE-1 cells to IL-6, indicating possible cooperation of ADAM17 with ADAM10 or other metalloproteases. Accordingly, our findings suggest that IL-6 stimulates shedding of EGF-R ligands and transactivation of EGF-R in normal prostate epithelial cells, which may be an important mechanism to promote cell proliferation in inflammatory prostate.  相似文献   

9.
Insulin-like growth factor-I (IGF-I) plays an important role in proliferation of vascular smooth muscle cells (VSMCs). However, the mechanism that IGF-I induces VSMCs proliferation is not completely understood. In this study, we determined (a) whether and how IGF-I induces transactivation of epidermal growth factor receptor (EGFR) in primary rat aortic VSMCs, (b) the contribution of EGFR to IGF-I-stimulated activation of extracellular signal-regulated kinase (ERK) and cell proliferation, and (c) the role of reactive oxygen species (ROS) in the cellular function. We showed that IGF-I induced phosphorylation of EGFR and ERK1/2 in VSMCs. AG1478, an EGFR inhibitor, inhibited IGF-I-induced phoshorylation of EGFR and ERK1/2. IGF-I stimulated ROS production and Src activation. Antioxidants inhibited IGF-I-induced ROS generation and activation of EGFR, ERK, and Src. Src kinase inhibitor PP1 and Src siRNA blocked IGF-I-induced activation of EGFR and ERK1/2. Inhibition of IGF-I-stimulated EGFR activation inhibited IGF-I-induced VSMC proliferation. These results suggest that (1) IGF-I induces EGFR activation through production of ROS and ROS-mediated Src activation in VSMCs, and (2) EGFR transactivation is required for IGF-I-induced VSMC proliferation.  相似文献   

10.
Protease-activated receptor 2 (PAR2), a G protein-coupled receptor for trypsin, contributes to growth, anti-apoptosis, and migration in lung cancer. Given that PAR2 activation in airway epithelial cells compromises the airway epithelium barrier by disruption of E-cadherin adhesion, PAR2 may be involved in epithelial-mesenchymal transition (EMT) in lung adenocarcinoma cells. Although PAR2 is known to promote the migration of lung cancer cells, the detailed mechanism of this event is still not clear. Here, we found that PAR2 is highly expressed in several lung adenocarcinoma cell lines. In two lung adenocarcinoma cell lines, CL1-5 and H1299 cells, activation of PAR2 induces migration and Slug-mediated EMT. The underlying mechanisms involved in PAR2-induced migration and EMT in CL1-5 cells were further investigated. We showed that PAR2-induced migration of CL1-5 cells is mediated by the Src/p38 mitogen-activated protein kinase (p38 MAPK) signaling pathway. β-arrestin 1, not G protein, is involved in this PAR2-mediated Src/p38 MAPK signaling pathway. PAR2-induced EMT in CL1-5 cells is dependent on the activation of extracellular-signal-regulated kinase 2 (ERK2). The activation of ERK2 further mediates Slug stabilization through suppressing the activity of glycogen synthase kinase 3β. In addition, a poor prognosis was observed in lung adenocarcinoma patients with a high expression of PAR2. Thus, PAR2 regulates migration through β-arrestin 1-dependent activation of p38 MAPK and EMT through ERK2-mediated stabilization of Slug in lung adenocarcinoma cells. Our finding also suggests that PAR2 might serve as a therapeutic target for metastatic lung adenocarcinoma and a potential biomarker for predicting the prognosis of lung adenocarcinoma.  相似文献   

11.
12.
Xiao D  Qu X  Weber HC 《Cellular signalling》2003,15(10):945-953
Bombesin and its mammalian homologue gastrin-releasing peptide have been shown to be highly expressed and secreted by neuroendocrine cells in prostate cancer, and are thought to be related to the carcinogenesis and progression of this disease. We found, in this study, bombesin specifically induced mitogen-activated protein (MAP) kinase activation as shown by increased extracellular regulated kinase (ERK) phosphorylation and epidermal growth factor (EGF) receptor transactivation in prostate cancer cells, which express functional gastrin-releasing peptide receptor. The transactivation of EGF receptor was required for bombesin-induced ERK phosphorylation. Furthermore, non-receptor tyrosine kinase Src and cellular Ca2+ were shown to be involved in bombesin-induced EGF receptor transactivation and ERK phosphorylation. Inhibition of either EGF receptor transactivation or ERK activation blocked bombesin-induced DNA synthesis in these cells. Taken together, these data suggest bombesin may act as a mitogen in prostate cancer by activating MAP kinase pathway via EGFR transactivation.  相似文献   

13.
Adrenoceptors (ARs) are involved in the regulation of gonadotropin-releasing hormone (GnRH) release from native and immortalized hypothalamic (GT1-7) neurons. However, the AR-mediated signaling mechanisms and their functional significance in these cells are not known. Stimulation of GT1-7 cells with the alpha1-AR agonist, phenylephrine (Phe), causes phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) mitogen-activated protein (MAP) kinases that is mediated by protein kinase C (PKC)-dependent transactivation of the epidermal growth factor receptor (EGF-R). Phe stimulation causes shedding of the soluble ligand, heparin-binding EGF (HB-EGF), as a consequence of matrix metalloproteinase (MMP) activation. Phe-induced phosphorylation of the EGF-R, and subsequently of Shc and ERK1/2, was attenuated by inhibition of MMP or HB-EGF with the selective inhibitor, CRM197, or by a neutralizing antibody. In contrast, phosphorylation of the EGF-R, Shc and ERK1/2 by EGF and HB-EGF was independent of PKC and MMP activity. Moreover, inhibition of Src attenuated ERK1/2 responses by Phe, but not by HB-EGF and EGF, indicating that Src acts upstream of the EGF-R. Consistent with a potential role of reactive oxygen species (ROS), Phe-induced phosphorylation of EGF-R was attenuated by the antioxidant, N-acetylcysteine. These data suggest that activation of the alpha1-AR causes phosphorylation of ERK1/2 through activation of PKC, ROS and Src, and shedding of HB-EGF, which binds to and activates the EGF-R.  相似文献   

14.
Many G protein-coupled receptors (GPCRs) activate MAP kinases by stimulating tyrosine kinase signaling cascades. In some systems, GPCRs stimulate tyrosine phosphorylation by inducing the "transactivation" of a receptor tyrosine kinase (RTK). The mechanisms underlying GPCR-induced RTK transactivation have not been clearly defined. Here we report that GPCR activation mimics growth factor-mediated stimulation of the epidermal growth factor receptor (EGFR) with respect to many facets of RTK function. beta(2)-Adrenergic receptor (beta(2)AR) stimulation of COS-7 cells induces EGFR dimerization, tyrosine autophosphorylation, and EGFR internalization. Coincident with EGFR transactivation, isoproterenol exposure induces the formation of a multireceptor complex containing both the beta(2)AR and the "transactivated" EGFR. beta(2)AR-mediated EGFR phosphorylation and subsequent beta(2)AR stimulation of extracellular signal-regulated kinase (ERK) 1/2 are sensitive to selective inhibitors of both EGFR and Src kinases, indicating that both kinases are required for EGFR transactivation. beta(2)AR-dependent signaling to ERK1/2, like direct EGF stimulation of ERK1/2 activity, is sensitive to inhibitors of clathrin-mediated endocytosis, suggesting that signaling downstream of both the EGF-activated and the GPCR-transactivated EGFRs requires a productive engagement of the complex with the cellular endocytic machinery. Thus, RTK transactivation is revealed to be a process involving both association of receptors of distinct classes and the interaction of the transactivated RTK with the cells endocytic machinery.  相似文献   

15.
Heregulins are a family of ligands for the ErbB3/ErbB4 receptors that play important roles in breast cancer cell proliferation and tumorigenesis. Limited information is available on the contribution of Rho GTPases to heregulin-mediated signaling. In breast cancer cells, heregulin beta1 (HRG) causes a strong activation of Rac; however, it does so with striking differences in kinetics compared to epidermal growth factor, which signals through ErbB1 (epidermal growth factor receptor [EGFR]). Using specific ErbB receptor inhibitors and depletion of receptors by RNA interference (RNAi), we established that, surprisingly, activation of Rac by HRG is mediated not only by ErbB3 and ErbB2 but also by transactivation of EGFR, and it is independent of ErbB4. Similar receptor requirements are observed for HRG-induced actin cytoskeleton reorganization and mitogenic activity via extracellular signal-regulated kinase (ERK). HRG-induced Rac activation was phosphatidylinositol 3-kinase dependent and Src independent. Furthermore, inactivation of Rac by expression of the Rac GTPase-activating protein beta2-chimerin inhibited HRG-induced ERK activation, mitogenicity, and migration in breast cancer cells. HRG mitogenic activity was also impaired by depletion of Rac1 using RNAi. Our studies established that Rac is a critical mediator of HRG mitogenic signaling in breast cancer cells and highlight additional levels of complexity for ErbB receptor coupling to downstream effectors that control aberrant proliferation and transformation.  相似文献   

16.
The agonist-induced internalization of several G protein-coupled receptors is an obligatory requirement for their activation of MAPKs. Studies on the relationship between endocytosis of the angiotensin II (Ang II) type 1 receptor (AT1-R) and Ang II-induced ERK1/2 activation were performed in clone 9 (C9) rat hepatic cells treated with inhibitors of endocytosis [sucrose, phenylarsine oxide (PAO), and concanavalin A]. Although Ang II-induced endocytosis of the AT1-R was prevented by sucrose and PAO, and was partially inhibited by concanavalin A, there was no impairment of Ang II-induced ERK activation. However, the specific epidermal growth factor receptor (EGF-R) kinase inhibitor, AG1478, abolished Ang II-induced activation of ERK1/2. Sucrose and PAO also inhibited EGFinduced internalization of the EGF-R in C9 cells, and the inability of these agents to impair EGF-induced ERK activation suggested that the latter is also independent of receptor endocytosis. In COS-7 cells transiently expressing the rat AT1A-R, Ang II also caused ERK activation through EGF-R transactivation. Furthermore, a mutant AT1A-R with truncated carboxyl terminus and impaired internalization retained full ability to activate ERK1/2 in response to Ang II stimulation. These findings demonstrate that Ang II-induced ERK1/2 activation in C9 hepatocytes is independent of both AT1-R and EGF-R endocytosis and is mediated by transactivation of the EGF-R.  相似文献   

17.
Muscarinic receptors (CHRM) are overexpressed in colon cancer. To explore a role for muscarinic receptor signaling in colon cancer metastasis, we used human H508 and HT29 colon cancer cells that coexpress epidermal growth factor (ERBB) and CHRM3 receptors. In a wound closure model, following 8-h incubation of H508 cells with 100 μM ACh we observed a threefold increase in cell migration indistinguishable from the actions of epidermal growth factor (EGF). Atropine blocked the actions of ACh but not of EGF. In SNU-C4 colon cancer cells that express ERBB but not CHRM, EGF caused a threefold increase in migration; ACh had no effect. ACh-induced cell migration was attenuated by chemical inhibitors of ERBB1 activation, by anti-ERBB1 antibody, and by inhibitors of ERK and phosphatidylinositol 3-kinase (PI3K) signaling. Consistent with matrix metalloproteinase-7 (MMP7)-mediated release of an ERBB1 ligand, heparin binding epidermal growth factor-like growth factor (HBEGF), ACh-induced migration was inhibited by an MMP inhibitor and by anti-MMP7 and -HBEGF antibodies. ACh-induced cell migration was blocked by inhibiting RhoA and ROCK, key proteins that interact with the actin cytoskeleton. ACh-induced RhoA activation was attenuated by agents that inhibit ERBB1, ERK, and PI3K activation. Collectively, these findings indicate that ACh-induced cell migration is mediated by MMP7-mediated release of HBEGF, an ERBB ligand that activates ERBB1 and downstream ERK and PI3K signaling. In a cell invasion model, ACh-induced HT29 cell invasion was blocked by atropine. In concert with previous observations, these findings indicate that muscarinic receptor signaling plays a key role in colon cancer cell proliferation, survival, migration, and invasion.  相似文献   

18.
Melanocortin 1 receptor (MC1R), a Gs protein-coupled receptor expressed in melanocytes, is a major determinant of skin pigmentation, phototype and cancer risk. Upon stimulation by αMSH, MC1R triggers the cAMP and ERK1/ERK2 MAPK pathways. In mouse melanocytes, ERK activation by αMSH binding to Mc1r depends on cAMP, and melanocytes are considered a paradigm for cAMP-dependent ERK activation. However, human MC1R variants associated with red hair, fair skin [red hair color (RHC) phenotype], and increased skin cancer risk display reduced cAMP signaling but activate ERKs as efficiently as wild type in heterologous cells, suggesting independent signaling to ERKs and cAMP in human melanocytes. We show that MC1R signaling activated the ERK pathway in normal human melanocytes and melanoma cells expressing physiological levels of endogenous RHC variants. ERK activation was comparable for wild-type and mutant MC1R and was independent on cAMP because it was neither triggered by stimulation of cAMP synthesis with forskolin nor blocked by the adenylyl cyclase inhibitor 2',5'-dideoxyadenosine. Stimulation of MC1R with αMSH did not lead to protein kinase C activation and ERK activation was unaffected by protein kinase C inhibitors. Conversely, pharmacological interference, small interfering RNA studies, expression profiles, and functional reconstitution experiments showed that αMSH-induced ERK activation resulted from Src tyrosine kinase-mediated transactivation of the stem cell factor receptor, a receptor tyrosine kinase essential for proliferation, differentiation, and survival of melanocyte precursors, thus demonstrating a functional link between the stem cell factor receptor and MC1R. Moreover, this transactivation phenomenon is unique because it is unaffected by natural mutations impairing canonical MC1R signaling through the cAMP pathway.  相似文献   

19.
G-protein coupled receptors may mediate their effects on neuronal growth and differentiation through activation of extracellular signal-regulated kinases 1/2 (ERK1/2), often elicited by transactivation of growth factor receptor tyrosine kinases. This elaborate signaling process includes inducible formation and trafficking of multiprotein signaling complexes and is facilitated by pre-ordained membrane microdomains, in particular lipid rafts. In this study, we have uncovered novel signaling interactions of cannabinoid receptors with fibroblast growth factor receptors, which depended on lipid rafts and led to ERK1/2 activation in primary neurons derived from chick embryo telencephalon. More specifically, the cannabinoid 1 receptor (CB1R) agonist methanandamide induced tyrosine phosphorylation and transactivation of fibroblast growth factor receptor (FGFR)1 via Src and Fyn, which drove an amplification wave in ERK1/2 activation. Transactivation of FGFR1 was accompanied by the formation of a protein kinase C ε-dependent multiprotein complex that included CB1R, Fyn, Src, and FGFR1. Recruitment of molecules increased with time of exposure to methanandamide, suggesting that in addition to signaling it also served trafficking of receptors. Upon agonist stimulation we also detected a rapid incorporation of CB1R, as well as activated Src and Fyn, and FGFR1 in lipid rafts. Most importantly, lipid raft integrity was a pre-requisite for CB1R-dependent complex formation. Our data provide evidence that lipid rafts may organize CB1 receptor proximal signaling events, namely activation of Src and Fyn, and transactivation of FGFR1 towards activation of ERK1/2 and induction of neuronal differentiation.  相似文献   

20.
Thrombin is involved in abnormal proliferation of vascular smooth muscle cells (VSMCs) associated with pathogenic vascular remodeling. Thrombin stimulation results in extracellular signal-regulated kinase (ERK)1/2 activation through transactivation of the epidermal growth factor receptor (EGFR). Here, using specific antibodies and inhibitors, we investigated the thrombin-induced phosphorylation of Src family kinases, nonreceptor proline-rich tyrosine kinase (Pyk2), EGFR, and ERK1/2. Our results show that Src and Pyk2 are involved upstream of the EGFR transactivation that is required for ERK1/2 phosphorylation. The investigation of the role of intracellular calcium concentration ([Ca2+]i) and calcium mobilization with the Ca2+ chelator BAPTA and thapsigargin, respectively, indicated that thrombin- and thapsigargin-induced phosphorylation of the EGFR but not ERK1/2 is dependent on an increase in [Ca2+]i. Moreover, only after BAPTA-AM pretreatment was thrombin-induced activation of ERK1/2 partially preserved from the effects of EGFR and PKC inhibition but not Src family kinase inhibition. These results suggest that BAPTA, by preventing [Ca2+]i elevation, unmasks a new pathway of Src family kinase-dependent thrombin-stimulated ERK1/2 phosphorylation that is independent of EGFR and PKC activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号