首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When 32P-labeled human neutrophils were activated by exposure to phorbol myristate acetate, three 48-kDa proteins (designated pp48/6.8, pp48/7.3, and pp48/7.8, from their isoelectric points) were found to have become labeled. With maximal stimulation, labeling was complete by 30 s. With lesser degrees of stimulation, the extent of labeling at 2 min correlated with rates of production by the phorbol-treated cells. Increased labeling of these 48-kDa proteins was also seen in cells exposed to f-Met-Leu-Phe. In phorbol-treated neutrophils from patients with X-linked cytochrome b558-negative chronic granulomatous disease, pp48/7.8 was labeled in a normal fashion, but pp48/6.8 and pp48/7.3 failed to take up 32P. In cells from patients with autosomal recessive cytochrome b558-positive chronic granulomatous disease, however, none of the three proteins took up 32P in response to phorbol. The three proteins appear to be very closely related, as indicated by the findings that phosphoserine was the only phosphoamino acid found in any of the three, and all three yielded identical one-dimensional phosphopeptide maps after digestion with either chymotrypsin or staphylococcal proteinase V8. These results reconcile earlier observations on protein phosphorylation in chronic granulomatous disease and provide further evidence for a relationship between the phosphorylation of this group of 48-kDa proteins and the activation of the respiratory burst oxidase.  相似文献   

2.
Protein phosphorylation and the respiratory burst   总被引:5,自引:0,他引:5  
The exposure of 32P-loaded neutrophils to any of a variety of activating agents induces changes in the levels of phosphorylation of a large number of phosphoproteins. The uptake of phosphate by one set of phosphoproteins in particular, a family whose members migrate at Mr 48K with near neutral pI values, appears to be closely related to the activation of the respiratory burst oxidase, the O2--producing enzyme of phagocytes that is responsible for the generation of microbicidal oxidants by these cells. Evidence for the relationship between the phosphorylation of these proteins and the activation of the respiratory burst oxidase has been furnished by kinetic studies as well as by studies on protein phosphorylation in neutrophils from patients with chronic granulomatous disease, a group of inherited disorders affecting this oxidase. The details of this relationship are obscure, although the evidence suggests that these phosphoproteins act in substoichiometric amounts with respect to the oxidase.  相似文献   

3.
The respiratory burst oxidase is a multicomponent membrane-bound enzyme that uses NADPH to reduce oxygen to O2-. When oxidase-containing membranes from activated neutrophils are treated with 0.3 M KCl, the NADPH-binding component of the oxidase elutes from the membranes in an active form. Treatment of this eluate with [32P]NADPH dialdehyde labels an approximately 32-kDa protein that is absent from eluates obtained from normal resting membranes or from resting or activated membranes from patients with one form of chronic granulomatous disease. We propose that this approximately 32-kDa protein is the NADPH-binding component of the oxidase.  相似文献   

4.
Inflammatory macrophages elicited from the peritoneal cavity of mice injected with endotoxin can avidly ingest E opsonized with IgG antibody (EIgG) or with IgM antibody and C (EIgMC). However, only ingestion of EIgG is associated with activation of the respiratory burst and release of superoxide anion. We compared the endogenous phosphorylation of proteins from macrophages stimulated by interaction with EIgG or EIgMC on the premise that proteins phosphorylated after stimulation by EIgG but not EIgMC could play a role in activating the enzyme (oxidase) responsible for the respiratory burst. Proteins were separated by one-dimensional and two-dimensional electrophoresis in polyacrylamide gels. We found that proteins with approximate Mr of 20 kDa, 23 kDa, 46 kDa, 48 kDa (three proteins), 67 kDa, and 130 kDa were more heavily phosphorylated after EIgG stimulation than after EIgMC stimulation. Exposure to PMA, which activates the respiratory burst oxidase, induced phosphorylation of the 23-kDa, 48-kDa group, and 130-kDa proteins that were phosphorylated after stimulation by EIgG. Activity of protein kinase C was found to be significantly increased in the particulate fraction of macrophages stimulated by EIgG but not in the particulate fraction of EIgMC-stimulated cells. These data are compatible with the hypotheses that phosphorylation of specific cellular proteins, especially with a Mr of approximately 48 kDa, is involved in activation of the respiratory burst oxidase, and that function of protein kinase C also plays a part in this activation process.  相似文献   

5.
A 63-kDa protein, which behaves as an oxidase activating factor in bovine neutrophils, has been purified to electrophoretic homogeneity. The protein was isolated from the cytosol of resting bovine neutrophils after several steps, including ammonium sulfate precipitation and chromatography on AcA44, DE-52 cellulose, Mono Q, and Superose 12 in the presence of dithiothreitol. The oxidase activating potency of the protein was assayed with a cell-free system consisting of neutrophil membranes, GTP gamma S, arachidonic acid, and a complementary cytosolic fraction. The purification factor was 200 and the yield 3%. During the course of gel filtration on calibrated Superose 12, the 63-kDa protein eluted as a dimer. Its isoelectric point was 6.4 +/- 0.1. Antibodies raised in rabbits against the 63-kDa protein reacted with a protein of similar size in human neutrophils and in HL60 promyelocytic cells induced to differentiate into granulocytes. No immune reaction was observed in cytosol from undifferentiated HL60 cells, in extracts from bovine skeletal muscle, liver, and brain, or in cytosol prepared from neutrophils derived from a patient with an autosomal cytochrome b positive form of chronic granulomatous disease lacking the 67-kDa oxidase activating factor. Immunoblotting with the 63-kDa bovine protein antiserum demonstrated that activation of bovine neutrophil oxidase by phorbol myristate acetate induced the translocation of the 63-kDa protein from cytosol to the membrane.  相似文献   

6.
Phagocytic leukocytes contain an activatable NADPH:O2 oxidoreductase. Components of this enzyme system include cytochrome b558, and three soluble oxidase components (SOC I, SOC II, and SOC III) found in the cytosol of resting cells. Previously, we found that SOC II copurifies with, and is probably identical to, a 47-kDa substrate of protein kinase C. In the present study we investigated the change in location of several of these oxidase components after activation of intact neutrophils with phorbol myristate acetate (PMA) and separation of subcellular fraction on sucrose density gradients. On Western blots with fractions of resting cells, the alpha subunit of cytochrome b558 was detected with a monoclonal antibody as a doublet of Mr 22,000 and 24,000 in the specific granules and as a single band of Mr 24,000 in the plasma membrane. PMA induced an increase of cytochrome b558 in the plasma membrane, including the Mr 22,000 band. PMA also induced translocation of the 47-kDa protein from the cytosol to the membrane fraction, as revealed by in vitro phosphorylation experiments. When NADPH oxidase activity was determined in a cell-free system in the presence of sodium dodecyl sulfate and GTP with plasma membranes from resting cells, cytosol from PMA-treated cells was deficient compared with cytosol from resting cells. This deficiency could be partially restored by the addition of SOC I. Concomitantly, SOC I activity appeared in the plasma membranes of PMA-treated cells. These studies support the hypothesis that PMA stimulation of neutrophils results in assembly of oxidase components from the cytosol and the specific granules in the plasma membrane with subsequent expression of NADPH oxidase activity.  相似文献   

7.
The O2(-)-forming respiratory burst oxidase is present in a dormant state in a fully soluble system containing both cytosol and a deoxycholate extract of membranes from resting human neutrophils. Sodium dodecyl sulfate at low concentrations converts this soluble dormant oxidase into its catalytically active form. The Vmax for the activated oxidase was 2.1 mumol of O2-/min/mg of membrane protein. Michaelis constants for NADPH and NADH (38 microM and 1.7 mM, respectively) were similar to those measured previously in other systems. Oxidase activity was not detected after sodium dodecyl sulfate treatment of systems containing solubilized neutrophil membranes obtained from patients with X-linked chronic granulomatous disease. These results suggest that the deoxycholate extract contains both the resting oxidase and those membrane-associated components needed for its activation, all in functioning states.  相似文献   

8.
The identification and localization of a marker protein for the intermembrane space between the outer and inner chloroplast envelopes is described. This 64-kDa protein is very rapidly labeled by [gamma-32P]ATP at very low (30 nM) ATP concentrations and the phosphoryl group exhibits a high turnover rate. It was possible to establish the presence of the 64-kDa protein in this plastid compartment by using different chloroplast envelope separation and isolation techniques. In addition comparison of labeling kinetics by intact and hypotonically lysed pea chloroplasts support the localization of the 64-kDa protein in the intermembrane space. The 64-kDa protein was present and could be labeled in mixed envelope membranes isolated from hypotonically lysed plastids. Mixed envelope membranes incorporated high amounts of 32P from [gamma-32P]ATP into the 64-kDa protein, whereas separated outer and inner envelope membranes did not show significant phosphorylation of this protein. Water/Triton X-114 phase partitioning demonstrated that the 64-kDa protein is a hydrophilic polypeptide. These findings suggest that the 64-kDa protein is a soluble protein trapped in the space between the inner and outer envelope membranes. After sonication of mixed envelope membranes, the 64-kDa protein was no longer present in the membrane fraction, but could be found in the supernatant after a 110,000 x g centrifugation.  相似文献   

9.
It has been reported that respiratory bursts with N-formylmethionylleucylphenylalanine, A23187, phorbol ester and fatty acids are switched off and on by modulating the net charges of plasma membranes in guinea-pig neutrophils (Miyahara, M. et al. (1987), Biochim. Biophys. Acta, 929, 253-262). In the present study, this was further extended in cells treated with protein kinase C inhibitors which completely suppressed the phorbol ester-dependent respiratory burst. This suggested that the initiation of the respiratory burst, which is generally accepted as linked to protein kinase C activation, might also be implicated in the net charge changes of plasma membranes. The above results were also supported by data obtained with a cell-free system reconstituted with plasma membranes and cytosolic fractions from unstimulated neutrophils, guanosine 5'-[gamma-thio]triphosphate and NADPH. Arachidonate stimulated NADPH oxidase activity accompanied by a marked phosphorylation of membrane proteins. The phosphorylation was sensitive to H-7, but it did not appear to be essential for the respiratory burst, because the oxidase activation was insensitive to H-7. Pretreating the plasma membranes with positively charged cetylamine inhibited the oxidase activation by arachidonate. These results suggest that a charge-dependent process, which does not use protein kinase C, may play an important role in the reaction leading to NADPH oxidase activation, and this may be related to the interaction of plasma membranes with the cytosolic activation factor.  相似文献   

10.
Sodium dodecyl sulfate (SDS) is able to activate the respiratory burst oxidase in a system containing cytosol and solubilized membranes from human neutrophils. When SDS was used to treat cytosol in an otherwise identical system in which the solubilized membrane solution was omitted, the ability of the SDS-treated cytosol to support O2- production was lost in a first-order reaction whose rate constant was virtually identical to the rate constant for the first-order activation of the oxidase in the complete system. Studies with chronic granulomatous disease cytosols showed that the component whose activity was lost was the oxidase-related 67-kDa cytosolic protein. The similarity in the rates of oxidase activation and p67 inactivation suggested that the activation of the respiratory burst oxidase in the cell-free system could involve an SDS-mediated alteration in p67. Further support for this idea was provided by kinetic experiments demonstrating that, although the yield of oxidase showed a 2.5-order dependence on cytosol concentration, oxidase activation was nevertheless kinetically irreversible. These two findings, incompatible in general, can be reconciled by a mechanism in which SDS acts specifically on a single oxidase component (i.e. p67), but with an effect that depends on circumstances: oxidase activation, if the SDS-sensitive component is part of a completely assembled oxidase precursor; loss of p67 activity, if not.  相似文献   

11.
Degranulation of neutrophils involves the differential regulation of the exocytosis of at least two populations of granules. Low molecular weight GTP-binding proteins (LMW-GBPs) have been implicated in the regulation of vesicular traffic in the secretory pathways of several types of cells. In the present study we identify distinct subsets of LMW-GBPs associated with the membranes of neutrophil-specific and azurophilic granules. Ninety-four percent of total [35S]guanosine 5'-(3-O-thio)triphosphate (GTP gamma S) binding activity was equally distributed between the plasma membrane and cytosol with the remaining 6% localized in the granules. In contrast, the cytosol contained only 10% of the total GTPase activity while the specific granules accounted for 13%. [alpha-32P]GTP binding to proteins transferred to nitrocellulose revealed LMW-GBPs in all fractions except the azurophilic granules. The specific granules contained three out of four bands which were found in the plasma membrane; these ranged from 20 to 23 kDa and all were resistant to alkaline extraction. Photoaffinity labeling with [alpha-32P]8-azido-GTP in the presence of micromolar Al3+ identified proteins of 25 and 26 kDa unique to azurophilic granules; these could not be labeled with [alpha-32P]8-azido-ATP and could be extracted by acidic but not alkaline pH. Botulinum C3-mediated [32P]ADP-ribosylation identified proteins of 16, 20, and 24 kDa both in plasma membranes and those of specific granules. An anti-ras monoclonal antibody, 142-24E5, recognized a 20-kDa protein localized to the plasma and specific granule membranes which could not be extracted by alkaline pH, was not a substrate for botulinum C3 ADP-ribosyltransferase, and was translocated from specific granules to plasma membrane after exposure of neutrophils to phorbol myristate acetate. We conclude that neutrophil-specific and azurophilic granules contain distinct subsets of LMW-GBPs which are uniquely situated to regulate the differential exocytosis of these two compartments.  相似文献   

12.
Several soluble mediators, including endotoxin, prime neutrophils for an enhanced respiratory burst in response to subsequent stimulation. Priming of neutrophils occurs in vitro, and primed neutrophils are found in vivo. We previously localized the anion transporter ClC-3 to polymorphonuclear leukocytes (PMN) secretory vesicles and demonstrated that it is required for normal NADPH oxidase activation in response to both particulate and soluble stimuli. We now explore the contribution of the NADPH oxidase and ClC-3 to endotoxin-mediated priming. Lipooligosaccharide (LOS) from Neisseria meningitidis enhances the respiratory burst in response to formyl-Met-Leu-Phe, an effect that was impaired in PMNs lacking functional ClC-3 and under anaerobic conditions. Mobilization of receptors to the cell surface and phosphorylation of p38 MAPK by LOS were both impaired in PMN with the NADPH oxidase chemically inhibited or genetically absent and in cells lacking functional ClC-3. Furthermore, inhibition of the NADPH oxidase or ClC-3 in otherwise unstimulated cells elicited a phenotype similar to that seen after endotoxin priming, suggesting that basal oxidant production helps to maintain cellular quiescence. In summary, NADPH oxidase activation was required for LOS-mediated priming, but basal oxidants kept unstimulated cells from becoming primed. ClC-3 contributes to both of these processes.  相似文献   

13.
The effects of carbobenzyloxy-leucine-tyrosine-chloromethylketone (zLYCK), an inhibitor of chymotrypsin, were investigated on the activation pathways of the human neutrophil respiratory burst. At 10 microM zLYCK, a parallel inhibition was observed of superoxide production stimulated with the chemo-attractant FMLP and of chymotrypsin-like activity of human neutrophils. By contrast, superoxide production induced by PMA was minimally affected by zLYCK. The known transduction pathways triggered by FMLP were analyzed. zLYCK did not affect either the FMLP-induced cytosolic free calcium transient, inositol 1,4,5 trisphosphate formation, nor the PMA-induced phosphorylation of the 47-kDa substrate of protein kinase C. zLYCK did not affect the activity of protein kinase C extracted from neutrophils. In Ca(2+)-depleted cells, in which phosphatidylinositol 4,5-biphosphate breakdown does not occur, zLYCK inhibited the FMLP-induced respiratory burst in cells primed by low doses of PMA. The activity of the NADPH oxidase tested with active membranes from stimulated neutrophils or in a cell-free system was not inhibited by zLYCK. We conclude that: 1) zLYCK inhibits superoxide production through the inhibition of a chymotrypsin-like protease of the neutrophil, 2) zLYCK inhibits FMLP-induced activation of NADPH oxidase through a pathway independent of PtdInsP2 breakdown and cytosolic free calcium, and 3) zLYCK may prove a useful probe for the characterization of its target protease in neutrophil activation.  相似文献   

14.
Activation of the phagocytic cell superoxide-generating NADPH oxidase requires interaction of cytosolic and membrane-associated components. With most stimuli activation of the oxidase is accompanied by multisite phosphorylation of the 47-kDa cytosolic oxidase factor (p47) which translocates from cytosol to membranes. Native p47 is a highly basic protein that undergoes stepwise charge shifts with successive phosphorylation events. Phosphorylation of p47 was studied by immunoprecipitation from neutrophil cytosol and membrane fractions followed by two-dimensional gel electrophoresis and autoradiography. In the resting cell p47 was not phosphorylated. In the cytosol of phorbol myristate acetate-activated neutrophils eight distinct p47 phosphoproteins were present. The membrane fraction from these activated cells contained a family of p47 phosphoproteins of electrophoretic mobilities identical to those seen in cytosol plus an additional, more acidic p47 phosphoprotein not present in cytosol. Very early after activation (30 s) only the four most acidic p47 phosphoproteins were present in the membrane fraction. Only at later times (5-15 min) was the full spectrum of p47 phosphoproteins present in the membrane fraction. In contrast, the full spectrum of p47 phosphoproteins was present in the cytosol over the entire time course we studied. In neutrophils from patients with cytochrome b558-deficient chronic granulomatous disease p47 phosphorylation was incomplete and p47 translocation to membrane did not occur. These studies demonstrated that the cytochrome was essential for formation of the three most acidic p47 phosphoproteins and greatly augmented formation of the fourth most acidic p47 phosphoprotein found in normal neutrophils. The temporal correlation between specific p47 phosphorylation events and p47 translocation to membrane is consistent with a model of oxidase activation in which a series of p47 phosphorylation events which occurs in cytosol precedes and may be required for p47 interaction with membrane.  相似文献   

15.
Cytochrome b-245, the only clearly identified component of the microbicidal oxidase system of phagocytes, is a heterodimer consisting of a 23 kDa (alpha) and a 76-92 kDa (beta) subunit. This study was conducted to examine whether, in common with a number of proteins, the subunits of the cytochrome were phosphorylated upon activation of the oxidase. Both subunits were phosphorylated after activation of neutrophils or macrophages with phorbol myristate acetate or a phagocytic stimulus, although the time course of this process did not parallel that of the oxidase. Phosphorylation of these proteins was normal in cells from two patients with autosomal recessive chronic granulomatous disease, in whom phosphorylation of a 47 kDa protein is defective.  相似文献   

16.
Neutrophils contain several distinct classes of secretory granules that may sequentially fuse with the phagosome after the ingestion of particulates, or that may be differentially exocytosed after cellular activation with soluble stimuli. The exocytosis of neutrophil secretory granules has been shown to be GTP-dependent at a step distal to activation of the transductional G proteins. Inasmuch as ras-related low molecular mass GTP-binding proteins have been shown to play regulatory roles in vesicle sorting in the secretory pathway in yeast, the differential mobilization of neutrophil granules might be regulated by distinct GTP-binding proteins. We therefore explored the distribution and identity of low molecular mass GTP-binding proteins in neutrophil secretory granules and other subcellular fractions. After lysis by nitrogen cavitation, four highly resolved fractions were harvested from discontinuous Percoll gradients: a microsomal fraction enriched for plasma membranes, specific granules, primary granules, and cytosol. At least seven bands of distinct Mr were detected by probing protein blots with [32P]GTP. Microsomes contained a prominent GTP-binding band at 26 kDa and weaker ones at 24 and 22.5 kDa; specific granules contained bands at 26, 24, 22, and 20 kDa; primary granules showed bands at 24 and 23 kDa; cytosol showed strong bands at 23.5 and 19 kDa and a weak band at 26 kDa. Antiserum against ADP-ribosylation factor reacted strongly with the 19-kDa band in cytosol but with none of the membrane fractions. None of these proteins was recognized by antibodies against ras or against Sec4p. Botulinum exoenzyme C3 labeled bands of molecular mass 20 and 21 kDa in cytosol and microsomes that have distinct mobilities from all the blotted [32P]GTP-binding proteins. The highly compartmentalized subcellular distribution of the blotted [32P]GTP-binding proteins in neutrophils is consistent with a regulatory role in the differential mobilization of granule compartments during cellular activation.  相似文献   

17.
ADP-ribosylation of rat adipocyte plasma membrane proteins was investigated following incubation of membranes with [alpha-32P]NAD and cholera toxin in the presence and absence of various guanine nucleotides. In membranes incubated without guanine nucleotides, cholera toxin induced incorporation of 32P into three discrete proteins of 48, 45, and 41 kDa. In membranes containing 100 microM GTP or GDP, toxin-catalyzed incorporation of 32P into the 41-kDa protein was inhibited. GMP and Gpp(NH)p (100 microM) allowed moderate incorporation of 32P into the 41-kDa protein. Toxin-catalyzed labeling of all proteins was rapid, reaching maximal levels between 5 and 10 min. Toxin-catalyzed ADP-ribosylation of the 48- and 45-kDa proteins was stimulated by GTP, reaching maximal levels at 10(-5) M GTP. Inhibition of toxin-dependent labeling of the 41-kDa protein required GTP concentrations above 10(-7) M with complete inhibition occurring between 10(-5) and 10(-4) M GTP. Cholera toxin catalyzed ADP-ribosylation was increased up to 2-fold in membranes supplemented with adipocyte cytosol. These results indicate that cholera toxin catalyzes ADP-ribosylation of three distinct adipocyte plasma membrane proteins, each of which is regulated by the amount and type of added guanine nucleotides.  相似文献   

18.
Neutrophils treated with optimal amounts of tumor promoters that activate protein kinase C (e.g. mezerein) release large quantities of superoxide (O2-) and exhibit an intense phosphorylation of two proteins with molecular masses of approximately 47 and 49 kDa. These cells can also be stimulated synergistically to release a comparable amount of O2-. This involves treatment with a suboptimal amount of a tumor promoter and an agent capable of elevating cellular Ca2+. Neutrophils treated in the former fashion exhibit a redistribution of the activity of protein kinase C from a soluble to a particulate fraction that is stable in the presence of Ca2+ chelators, whereas cells stimulated synergistically do not do so to an appreciable extent (Badwey, J. A., Robinson, J. M., Horn, W., Soberman, R. J., Karnovsky, M. J., and Karnovsky, M. L. (1988) J. Biol. Chem. 263, 2779-2786). In this paper, we report that neutrophils stimulated synergistically do exhibit a significant incorporation of 32P into the 47-kDa protein, but with little labeling of the 49-kDa species. This labeling of the 47-kDa protein was greater than the sum of those observed with each agent added separately but was less than that observed in cells stimulated with optimal amounts of tumor promoters alone. An inhibitor of protein kinase C (1-(5-isoquinolinylsulfonyl)-2-methylpiperazine) blocked O2- release and the phosphorylation of the 47-kDa protein under all conditions of stimulation mentioned, whereas an inhibitor of cyclic nucleotide-dependent kinases had no effect on these phenomena. Thus, labeling of the 47-kDa protein can occur in the absence of a "tight" translocation of protein kinase C to membrane and was always observed during synergy. The data support a role for protein kinase C and the 47-kDa phosphoprotein in the synergistic stimulation of neutrophils.  相似文献   

19.
The effect of phorbol 12-myristate 13-acetate (PMA), calcium ionophore (A23187), opsonized zymosan (OZ), and N-formylmethionyl-leucyl-phenylalanine (f-Met-Leu-Phe) on protein phosphorylation was examined in purified eosinophils (eos) isolated from human peripheral blood. Eos were prelabeled with [32P]orthophosphate, stimulated with several activating agents for varying periods of time. The soluble proteins were then analyzed by one-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and autoradiography. In resting eos, there was phosphorylation of endogenous soluble proteins with molecular weights of 12, 16, 21, 40, and 66 kilodaltons (kDa). PMA, a potent activator of oxidative metabolism, induced phosphorylation of 19-, 40-, and 67-kDa proteins. A23187, a strong degranulating stimulus, caused phosphorylation of 40-, 53-, and 67-kDa proteins. OZ, a relatively weak stimulus for eos function, caused phosphorylation of 30-34-, 59-, 67-, and 93-kDa proteins. In addition, all the above stimuli caused a time-dependent dephosphorylation of 21-kDa protein. In contrast, f-Met-Leu-Phe caused neither phosphorylation of new proteins nor dephosphorylation of preexisting eos proteins. These findings demonstrate that selected stimuli affect phosphorylation of soluble eos protein. These results also suggest that phosphorylation of specific proteins in eos is an intermediary step in external stimulus-induced cell activation, which may involve many different cell functions.  相似文献   

20.
The superoxide-generating respiratory burst oxidase (NADPH oxidase) from human neutrophils can be activated in a cell-free system consisting of plasma membranes, cytosol, and an anionic amphiphile such as sodium dodecyl sulfate (SDS) or arachidonate, and guanosine 5'-(3-O-thio)triphosphate (GTP(gamma)S) augments activation. We report herein that short-chain diacylglycerols (e.g. dioctanoylglycerol (diC8)) synergize with SDS in the activation of superoxide generation in a dose- and time-dependent manner, resulting in rates up to 1400 nmol/min/mg plasma membrane protein, or 250-700% higher than the rate seen with SDS alone. diC8 did not affect significantly the dose response for either cytosol or SDS, indicating that the activation was not due to increased sensitivity of the oxidase toward either of these components. At optimal concentrations of SDS and diC8, additional activation was observed in the presence of GTP(gamma)S, indicating that diC8 and GTP activate by separate mechanisms. In contrast to diC8, other known activators of protein kinase C (phorbol myristate acetate and mezerein) augmented SDS activation only minimally (typically 20-30%), and neither diacylglycerols nor tumor promoters activated in the absence of SDS. Activation by diC8 was calcium and phosphatidylserine independent, and the specificity for neutral lipids was atypical for protein kinase C. Inhibitors of protein kinase C (staurosporine and a peptide substrate analog) also failed to inhibit the response. Nevertheless, phosphorylation of several neutrophil proteins including p47phox was seen with both SDS and diC8, and synergistic phosphorylation of p47phox was seen when both activating factors were present. Thus, diacylglycerol synergizes with SDS in activating both superoxide generation and p47phox phosphorylation in the cell-free activation system, but the activation is atypical of a protein kinase C mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号