首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two sources of individual Auger electron spectra and an electron track code were used with a simple model of the DNA to successfully simulate the single-strand DNA breakage measured by Martin and Haseltine (1981). The conditions of the calculation were then extended to examine patterns of single-strand breaks in both strands of the DNA duplex to score double-strand breaks. The occurrences of five types of break were scored. The total number of double-strand breaks (dsb) per decay at the site of the decay was 0.90 and 0.65 for the different Auger electron spectra. It was shown that for mammalian cells an additional source of double-strand breaks from low LET radiation added approximately 0.17 dsb/decay to each, giving a final total of 1.07 and 0.85 dsb/decay for mammalian cells depending on the electron spectrum. Further is is shown that the energy deposition in the DNA from the iodine decay is very complex, with a broad range of energy depositions and products. Even for a particular energy deposited in the DNA different types of strand break are produced. These are identified and their probabilities calculated.  相似文献   

2.
The role of mitochondrial DNA in radiation-induced cell death was determined by selective [125I]iododeoxyuridine (125IUdR) incorporation into exclusively nuclear sites compared to labelling in both nuclear and mitochondrial DNA of Chinese hamster cells. Such selectivity was achieved by using berenil (25 micrograms/ml for 24 h), a drug which inhibits mitochondrial DNA synthesis without affecting incorporation of 125IUdR into nuclear DNA but does not result in reduced clonogenicity or cell cycle perturbations or alteration in the X-ray response of cells. There was no difference in cell killing between cells with nuclear labelling alone compared with nuclear plus mitochondrial labelling. The absence of decays in mitochondrial DNA does not affect the ability of 125I to induce lethal cell damage. The two treatment groups have superimposable curves with a D0 of 96 decays/cell. These findings indicate that mitochondrial DNA is not the most sensitive target for radiation-induced cell death from 125I decay.  相似文献   

3.
Doubly labeled [U-14C, 5-125I]iododeoxycytidine (IdC) triphosphate was synthesized and incorporated enzymatically into defined positions of the plasmid pBR322. After storage under various conditions, the stable end products were analyzed using radio-GC, radio-HPLC, and electron microscopy. In addition, solutions of 14C-IdC-labeled DNA containing Na125I as an internal radiation source were studied to investigate the influence of internal radiolysis. Transmutation of the covalently bound 125I leads to complete destruction of the labeled nucleotide, giving rise to 14CO2 and 14CO as major products. Fragmentation of the pyrimidine base is independent of solvent and DNA configuration. Internal radiolysis caused by Na125I leads to only minor damage. Electron microscopy studies reveal that decay-induced double strand breaks (dsb) occur both at the site of decay and in areas as far as hundreds of base pairs apart from that site. Number and distribution of the breaks is strongly dependent on solvent and DNA configuration. A direct correlation exists between the extent of fragmentation of the nucleotide and the mean number of dsb.  相似文献   

4.
5.
Previously, the kinetics of strand break production by (125)I-labeled m-iodo-p-ethoxyHoechst 33342 ((125)IEH) in supercoiled (SC) plasmid DNA had demonstrated that approximately 1 DSB is produced per (125)I decay both in the presence and absence of the hydroxyl radical scavenger DMSO. In these experiments, an (125)IEH:DNA molar ratio of 42:1 was used. We now hypothesize that this DSB yield (but not the SSB yield) may be an overestimate due to subsequent decays occurring in any of the 41 (125)IEH molecules still bound to nicked (N) DNA. To test our hypothesis, (125)IEH was incubated with SC pUC19 plasmids ((125)IEH:DNA ratio of approximately 3:1) and the SSB and DSB yields were quantified after the decay of (125)I. As predicted, the number of DSBs produced per (125)I decay is one-half that reported previously ( approximately 0.5 compared to approximately 1, +/- DMSO) whereas the number of SSBs ( approximately 3/(125)I decay) is similar to that obtained previously ( approximately 90% are generated by OH radicals). Direct visualization by atomic force microscopy confirms formation of L and N DNA after (125)IEH decays in SC DNA and supports the strand break yields reported. These findings indicate that although SSB production is independent of the number of (125)IEH bound to DNA, the DSB yield can be augmented erroneously by (125)I decays occurring in N DNA. Further analysis indicates that 17% of SSBs and 100% of DSBs take place within the plasmid molecule in which an (125)IEH molecule decays, whereas 83% of SSBs are formed in neighboring plasmid DNA molecules.  相似文献   

6.
7.
Yurke B  Mills AP  Cheng SL 《Bio Systems》1999,52(1-3):165-174
A DNA representation of Boolean logic for which the input strands are separate from the operator strands is described and used to construct a two-bit DNA adder. The successful operation of the adder for several test inputs demonstrates that digital molecular computation with a complexity of order 30 gates is feasible.  相似文献   

8.
盆腔恶性肿瘤复发并不少见,肿瘤复发意味着盆腔局部治疗失败.对于盆腔恶性肿瘤,临床上大多数采取根治性手术和/或者根治量的放疗来进行治疗,其往往伴有顽固性疼痛、严重出血、瘘管形成及复发的高风险;因此该类肿瘤的复发临床处理棘手,大多数采取姑息性治疗.本文将综述盆腔复发肿瘤的125I内放射介入治疗进展.  相似文献   

9.
10.
We labeled the DNA of Chinese hamster lung V79 cells with 125I in the form of iododeoxyuridine and subsequently measured the elution of the DNA through polycarbonate filters at pH 9.6 and pH 7.2. Since decay of incorporated 125I produces predominantly double-strand breaks (DSB) in DNA at a rate close to one DSB per 125I decay, this measurement provides an absolute calibration for the assay of DSBs by neutral filter elution. Neutral elution profiles are not first order with respect to elution time; thus we have examined the relationships between accumulated 125I decays and several functions of retention of DNA on the filter at various times during the elution process. At both pH 9.6 and pH 7.2 there were linear relationships between accumulated decays and certain retention functions. The retention function most closely correlated to 125I decays for both pH values was the logarithm of the ratio of the retention of control DNA to that of 125I-labeled DNA, both evaluated at the 9th fraction (13.5 h of elution). The linear relationship between this ratio and 125I decays allows DSB induction to be determined directly from retention values. The calibration was used to measure DSBs induced by X rays.  相似文献   

11.
12.
13.
Homologous recombination consists of exchanging DNA strands of identical or almost identical sequence. This process is important for both DNA repair and DNA segregation. In prokaryotes, it involves the formation of long helical filaments of the RecA protein on DNA. These filaments incorporate double-stranded DNA from the cell's genetic material, recognize sequence homology and promote strand exchange between the two DNA segments. DNA processing by these nucleofilaments is characterized by large amplitude deformations of the double helix, which is stretched by 50% and unwound by 40% with respect to B-DNA. In this article, information concerning the structure and interactions of the RecA, DNA and ATP molecules involved in DNA strand exchange is gathered and analyzed to present a view of their possible arrangement within the filament, their behavior during strand exchange and during ATP hydrolysis, the mechanism of RecA-promoted DNA deformation and the role of DNA deformation in the process of homologous recombination. In particular, the unusual characteristics of DNA within the RecA filament are compared to the DNA deformations locally induced by architectural proteins which bind in the DNA minor groove. The possible role and location of two flexible loops of RecA are discussed.  相似文献   

14.
Asymmetric substitution patterns in the two DNA strands of bacteria   总被引:35,自引:10,他引:25  
  相似文献   

15.
F Razvi  G Gargiulo  A Worcel 《Gene》1983,23(2):175-183
Ligation of a 5'-labeled DNA restriction fragment results in a circular DNA molecule carrying the two 32Ps at the reformed restriction site. Double digestions of the circular DNA with the original enzyme and a second restriction enzyme cleavage near the labeled site allows direct chemical sequencing of one 5'-labeled DNA strand. Similar double digestions, using an isoschizomer that cleaves differently at the 32P-labeled site, allows direct sequencing of the now 3'-labeled complementary DNA strand. It is possible to directly sequence both strands of cloned DNA inserts by using the above protocol and a multiple cloning site vector that provides the necessary restriction sites. The simultaneous and parallel visualization of both DNA strands eliminates sequence ambiguities. In addition, the labeled circular molecules are particularly useful for single-hit DNA cleavage studies and DNA footprint analysis. As an example, we show here an analysis of the micrococcal nuclease-induced breaks on the two strands of the somatic 5S RNA gene of Xenopus borealis, which suggests that the enzyme may recognize and cleave small AT-containing palindromes along the DNA helix.  相似文献   

16.
Chinese hamster ovary cells were synchronized at the G1/S-phase boundary of the cell cycle and pulse-labeled for 10 min with 125I-iododeoxyuridine 30 min after entering the S phase. Cell samples were harvested for freezing and 125I-decay accumulation at intervals ranging from 15 to 480 min after termination of labeling. The survival data showed a marked shift from cell killing characteristic of low-LET radiation to that more characteristic of killing by high-LET radiation with increasing intervals between DNA pulse-labeling and decay accumulation. Cells harvested and frozen within 1 h after pulse-labeling yielded a low-LET radiation survival response with a pronounced shoulder and a large D0 of up to 0.9 Gy. With longer chase periods the shoulder and the D0 decreased progressively, and cells harvested 5 h after pulse-labeling or later exhibited a high-LET survival response (D0: 0.13 Gy). Two interpretations for these findings are discussed. (1) If DNA is the sole target for radiation death, the results indicate that DNA maturation increases radiation damage to DNA or reduces damage repair. (2) If radiation cell death involves damage to higher-order structures in the cell nucleus, the findings suggest that newly replicated DNA is not attached to these structures during the initial low-LET period, but 125I starts to induce high-LET radiation effects as labeled DNA segments become associated with the target structure(s). On balance, or data favor the latter interpretation.  相似文献   

17.
Jovin and co-workers have demonstrated that DNA strands containing guanine-adenine repeats generate a parallel-stranded homoduplex. Here we propose that the homoduplex is a dimer of the ordered single strand discovered by Fresco and co-workers at acid pH. The Fresco single strand is shown here to be stabilized in aqueous ethanol where adenine is not protonated. Furthermore, we demonstrate that the strands dimerize at higher salt concentrations without significantly changing their conformation, so that the dimerization is non-cooperative. Hence, the Jovin homoduplex can form through a non-cooperative dimerization of two cooperatively melting single strands. The available data indicate that the guanines stabilize the Fresco single strand whereas the adenines cause dimerization owing to their known intercalation or clustering tendency. The guanine-adenine repeat dimer seems to be a DNA analog of the leucine zipper causing dimerization of proteins.  相似文献   

18.
19.
The seminal papers by Watson and Crick in 1953 on the structure and function of DNA clearly enunciated the challenge their model presented of how the intertwined strands of DNA are unwound and separated for replication to occur. We first give a historical overview of the major discoveries in the past 50 years that address this challenge. We then describe in more detail the cellular mechanisms responsible for the unlinking of DNA. No single strategy on its own accounts for the complete unlinking of chromosomes required for DNA segregation to proceed. Rather, it is the combined effects of topoisomerase action, chromosome organization and DNA-condensing proteins that allow the successful partitioning of chromosomes into dividing cells. Finally, we propose a model of chromosome structure, consistent with recent findings, that explains how the problem of unlinking is alleviated by the division of chromosomal DNA into manageably sized domains.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号