首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
2.
Galectins (gal), a family of soluble beta-galactoside-binding proteins present at the cell surface, are involved in cancer progression and metastasis. Here we investigated the expression of several galectins in normal (PrEC), benign (BPH-1), and malignant (LNCaP) prostate epithelial cells and found that all galectins, except gal1 are differentially expressed. The gal3, 7, and 9 are highly expressed in PrEC, but not in LNCaP cells. Out of seven isoforms of gal8, the proto isoform gal8e and our newly discovered proto isoform gal8g were upregulated in LNCaP cells compared to PrEC, whereas the two tandem-repeat isoforms gal8a and gal8b were equally expressed in these cells. To determine if the silencing of gal3 in LNCaP cells was due to promoter methylation, LNCaP cells were treated with azacytidine. Azacytidine treatment induced the expression of gal3 in LNCaP cells, indicating that the gal3 gene was silenced by methylation of its promoter. To examine further, we evaluated cytosine methylation in gal3 promoter in LNCaP, normal prostate and placenta DNA and observed that it is highly methylated in LNCaP but not in normal cells and azacytidine completely abolished this methylation in LNCaP cells. Similar to prostate cancer cells, gal3 promoter was highly methylated in human prostate cancer tissue but not in normal tissue. To our knowledge, this is the first report indicating that gal3 expression is regulated by promoter methylation in LNCaP cells and prostate tumors. The methylation of gal3 promoter may constitute a powerful tool for early diagnosis of prostate cancer.  相似文献   

3.
Over the past decade, evidence continues to mount showing that N-cadherin is a critical protein in cancer progression and metastasis. In the present study, we evaluated the expression of N-cadherin in human prostate cancer tissue specimens and cell lines. Enhanced expression of N-cadherin was observed in both the malignant and bone-metastasized prostate tissue specimens compared to the healthy prostate tissues. Consistent with the tissue array data, N-cadherin was highly expressed in PC3, but not in Du145 and LNCaP human prostate cell lines. Based on cell to cell binding assay, we found that N-cadherin expression facilitates homotypic interaction between human prostate cancer cells and human microvascular endothelial cells (HMEC). Human angiogenesis antibody array and in vitro angiogenesis assay showed that siRNA-mediated knockdown of N-cadherin reduced the secretion of monocyte chemoattractant protein-1 (MCP-1), which played a potential role in stimulating capillary network formation of HMEC. Additionally, culture supernatant of Du145 cells transfected with full-length N-cadherin expressing plasmid showed increased MCP-1 expression and chemoattractant ability compared to normal Du145 cells. Further, we noticed that blocking PI3K activity inhibited N-cadherin mediated MCP-1 expression. Our data demonstrated that N-cadherin in prostate cancer cell mediates cell–cell adhesion and regulates MCP-1 expression via the PI3K/Akt signaling pathway.  相似文献   

4.
5.
We have previously reported that protease-activated receptor 1 (PAR1 or thrombin receptor) is over-expressed in metastatic prostate cancer cell lines compared to prostate epithelial cells. In this study, we examined 1,074 prostate biopsies by tissue microarray analysis and demonstrated that PAR1 expression is significantly increased in prostate cancer compared to normal prostate epithelial cells and benign prostatic hyperplasia. We hypothesized that PAR1 activation contributed to prostate cancer cell progression. We demonstrated that stimulation of PAR1 by thrombin or thrombin receptor activating peptide (TRAP6), in androgen-independent DU145 and PC-3 cells resulted in increased DNA binding activity of the NFkappaB p65 subunit. IL-6 and IL-8 levels were also elevated in conditioned media by at least two-fold within 4-6 h of PAR1 activation. This induction of cytokine production was abrogated by pretreatment of cells with the NFkappaB inhibitor caffeic acid phorbol ester. The p38 and ERK1/2 MAPK signaling cascades were also activated by PAR1 stimulation, whereas the SAPK/JNK pathway was unaffected. Inhibition of p38 and ERK1/2 by SB-203589 and PD-098059, respectively, did not abrogate NFkappaB activity, suggesting an independent induction of NFkappaB by PAR1 stimulation. Furthermore, TUNEL assay showed that activation of PAR1 attenuated docetaxel induced apoptosis through the upregulation of the Bcl-2 family protein Bcl-xL. Akt activation was not observed, suggesting that drug resistance induced by PAR1 was independent of PI3K signaling pathway. Because thrombin and PAR1 are over-expressed in prostate cancer patients, targeting the inhibition of their interaction may attenuate NFkappaB signaling transduction resulting in decreased drug resistance and subsequent survival of prostate cancer cells.  相似文献   

6.
Cell mechanical activity generated from the interplay between the extracellular matrix (ECM) and the actin cytoskeleton is essential for the regulation of cell adhesion, spreading and migration during normal and cancer development. Keratins are the intermediate filament (IF) proteins of epithelial cells, expressed as pairs in a lineage/differentiation manner. Hepatic epithelial cell IFs are made solely of keratins 8/18 (K8/K18), hallmarks of all simple epithelia. Notably, our recent work on these epithelial cells has revealed a key regulatory function for K8/K18 IFs in adhesion/migration, through modulation of integrin interactions with ECM, actin adaptors and signaling molecules at focal adhesions. Here, using K8-knockdown rat H4 hepatoma cells and their K8/K18-containing counterparts seeded on fibronectin-coated substrata of different rigidities, we show that the K8/K18 IF-lacking cells lose their ability to spread and exhibit an altered actin fiber organization, upon seeding on a low-rigidity substratum. We also demonstrate a concomitant reduction in local cell stiffness at focal adhesions generated by fibronectin-coated microbeads attached to the dorsal cell surface. In addition, we find that this K8/K18 IF modulation of cell stiffness and actin fiber organization occurs through RhoA-ROCK signaling. Together, the results uncover a K8/K18 IF contribution to the cell stiffness-ECM rigidity interplay through a modulation of Rho-dependent actin organization and dynamics in simple epithelial cells.  相似文献   

7.
8.
microRNAs (miRNAs) are a growing class of small non-coding RNAs that exhibit widespread dysregulation in prostate cancer. We profiled miRNA expression in syngeneic human prostate cancer cell lines that differed in their metastatic potential in order to determine their role in aggressive prostate cancer. miR-888 was the most differentially expressed miRNA observed in human metastatic PC3-ML cells relative to non-invasive PC3-N cells, and its levels were higher in primary prostate tumors from cancer patients, particularly those with seminal vesicle invasion. We also examined a novel miRNA-based biomarker source called expressed prostatic secretions in urine (EPS urine) for miR-888 expression and found that its levels were preferentially elevated in prostate cancer patients with high-grade disease. These expression studies indicated a correlation for miR-888 in disease progression. We next tested how miR-888 regulated cancer-related pathways in vitro using human prostate cancer cell lines. Overexpression of miR-888 increased proliferation and migration, and conversely inhibition of miR-888 activity blocked these processes. miR-888 also increased colony formation in PC3-N and LNCaP cells, supporting an oncogenic role for this miRNA in the prostate. Our data indicates that miR-888 functions to promote prostate cancer progression and can suppress protein levels of the tumor suppressor genes RBL1 and SMAD4. This miRNA holds promise as a diagnostic tool using an innovative prostatic fluid source as well as a therapeutic target for aggressive prostate cancer.  相似文献   

9.
G J Wu  M W Wu  S W Wang  Z Liu  P Qu  Q Peng  H Yang  V A Varma  Q C Sun  J A Petros  S D Lim  M B Amin 《Gene》2001,279(1):17-31
Ectopical expression of huMUC18, a cell adhesion molecule in the immunoglobulin gene superfamily, causes a non-metastatic human melanoma cell line to become metastatic in a nude mouse system. To determine if MUC18 expression correlates with the development and malignant progression of prostate cancer, we investigated differential expression of human MUC18 (huMUC18) in normal prostate epithelial cells, prostate cancer cell lines, and prostatic normal and cancer tissues. We cloned and characterized the human MUC18 (huMUC18) cDNA gene from three human prostate cancer cell lines and three human melanoma cell lines. The cDNA sequences from the six human cancer cell lines were identical except differences in one to five nucleotides. The deduced amino acid sequences of the longest ORF were 646 amino acids that were identical in these cDNAs except for one to three amino acid residues. The amino acid sequences of all our huMUC18 cDNA genes are similar to that cloned by other group (GenBank access #M28882) except differences in the same seven amino acids. We conclude that huMUC18 cDNA gene reported here represents the gene product from a major allele. The MUC18 mRNA and protein was expressed in three metastatic prostate cancer cell lines (TSU-PR1, DU145, and PC-3), but not in one non-metastatic prostate cancer cell line (LNCaP.FGC). The expression of huMUC18 in these four cell lines is positively related to their extent of in vitro motility and invasiveness and in vivo metastasis in nude mice. HuMUC18 protein was also expressed at high levels in extracts prepared from tissue sample sections containing high grade prostatic intraepithelial neoplasia (PIN), but weakly expressed in extracts prepared from cultured primary normal prostatic epithelial cells and the normal prostate gland. Immunohistochemical analysis showed that huMUC18 was expressed at higher levels in the epithelial cells of high-grade PIN and prostatic carcinomas, and in cells of a perineural invasion, a lymph node, and a lung metastases compared to that in normal or benign hyperplastic epithelium (BPH). We therefore conclude that MUC18 expression is increased during prostate cancer initiation (high grade PIN) and progression to carcinoma, and in metastatic cell lines and metastatic carcinoma. Increased expression of MUC18 is implicated to play an important role in developing and malignant progression of human prostate cancer. Furthermore, the lacking of predominant cytoplasmic membrane expression of MUC18 appeared to correlate with malignant progression of prostate cancer.  相似文献   

10.
As a key glycolytic enzyme, enolase 1 (ENO1) is critical for cellular energy metabolism. Recent studies have revealed its important role in growth and metastasis of lung, head and neck, and breast cancer. However, the regulatory mechanisms of ENO1 expression and secretion remain unclear. We observed that conditioned medium from estradiol-stimulated prostate stromal cells significantly promoted the migration of prostate cancer (PCa) cells. Two-dimensional protein electrophoresis, mass spectrometry, and immunodepletion assays identified one of the major active factors in the conditioned medium as α-type enolase (α-enolase, or ENO1). Moreover, in prostate stromal cells, estradiol not only enhanced the stability of ENO1 at the protein level in an estrogen receptor-α-dependent manner but also promoted its secretion to the extracellular matrix. Furthermore, recombinant ENO1 bound to the surface of PCa cells and promoted cell migration via their plasminogen receptor activity in a paracrine manner. Immunohistochemistry suggested that stromal ENO1 levels increased in PCa compared with those in normal tissue.  相似文献   

11.
12.
The mechanisms by which androgens stimulate proliferation of prostate cancer cells are poorly understood. It has been proposed that androgen stimulation may induce the mitogen-activated protein (MAP) kinase system in prostate cancer cells and lead to cellular proliferation. We attempted to evaluate the role of the extracellular signal-regulated kinase (ERK) pathway in the stimulation by androgens of prostate cancer cell proliferation. Androgen-sensitive prostate cancer cell line (LNCaP) cells plated on sterile glass coverslips were treated with 10(-8) M dihydrotestosterone (DHT) or epidermal growth factor (EGF) (10 ng/ml) for periods ranging from 1 min to 96 h. The proliferative index of the cells, evaluated by immunoperoxidase staining of cells with an antibody to Ki-67, was increased at least two-fold at all time points from 5 min to 48 h following exposure to either DHT or EGF. Immunohistochemical evaluation of ERK1/2 and pERK (activated ERK) demonstrated high levels of ERK1/2 in untreated LNCaP cells, while pERK was expressed at much lower levels. Following treatment with DHT, no change in staining intensity for either ERK1/2 or pERK was observed, while treatment with EGF resulted in no change in ERK1/2, but significantly increased cytoplasmic staining for pERK at all time points beyond 2 min. These results were confirmed by Western blot analysis of ERK1/2 and pERK expression in these cell lines following treatment with DHT or EGF. Our findings suggest that the proliferative response of prostate cancer cells to androgens, unlike the proliferative response to EGF, is not mediated by the activation of ERK1/2, and that currently undefined pathways other than those involving ERK1/2 are involved.  相似文献   

13.
Tumor progression to the invasive phenotype occurs secondary to upregulated signaling from growth factor receptors that drive key cellular responses like proliferation, migration, and invasion. We hypothesized that Protein kinase Cdelta (PKCdelta)-mediated transcellular contractility is required for migration and invasion of prostate tumor cells. Two invasive human prostate cancer cell lines, DU145 cells overexpressing wildtype human EGFR (DU145WT) and PC3 cells, were studied. PKCdelta is overexpressed in these cells relative to normal prostate epithelial cells, and is activated downstream of EGFR leading to cell motility via modulation of myosin light chain activity. Abrogation of PKCdelta using Rottlerin and specific siRNA significantly decreased migration and invasion of both cell lines in vitro. Both PKCdelta and phosphorylated PKCdelta protein levels were higher in human prostate cancer tissue relative to normal donor prostate as assessed by Western blotting and immunohistochemistry. Thus, we conclude that PKCdelta inhibition can limit migration and invasion of prostate cancer cells.  相似文献   

14.
The mechanisms by which androgens stimulate proliferation of prostate cancer cells are poorly understood. It has been proposed that androgen stimulation may induce the mitogen-activated protein (MAP) kinase system in prostate cancer cells and lead to cellular proliferation. We attempted to evaluate the role of the extracellular signal-regulated kinase (ERK) pathway in the stimulation by androgens of prostate cancer cell proliferation. Androgen-sensitive prostate cancer cell line (LNCaP) cells plated on sterile glass coverslips were treated with 10?8 M dihydrotestosterone (DHT) or epidermal growth factor (EGF) (10 ng/ml) for periods ranging from 1 min to 96 h. The proliferative index of the cells, evaluated by immunoperoxidase staining of cells with an antibody to Ki-67, was increased at least two-fold at all time points from 5 min to 48 h following exposure to either DHT or EGF. Immunohistochemical evaluation of ERK1/2 and pERK (activated ERK) demonstrated high levels of ERK1/2 in untreated LNCaP cells, while pERK was expressed at much lower levels. Following treatment with DHT, no change in staining intensity for either ERK1/2 or pERK was observed, while treatment with EGF resulted in no change in ERK1/2, but significantly increased cytoplasmic staining for pERK at all time points beyond 2 min. These results were confirmed by Western blot analysis of ERK1/2 and pERK expression in these cell lines following treatment with DHT or EGF. Our findings suggest that the proliferative response of prostate cancer cells to androgens, unlike the proliferative response to EGF, is not mediated by the activation of ERK1/2, and that currently undefined pathways other than those involving ERK1/2 are involved.  相似文献   

15.
16.
We studied the expression level and cell-specific expression patterns of 5alpha-reductase (5alpha-R) types 1 and 2 iso-enzymes in human hyperplastic and malignant prostate tissue by semi-quantitative RT-PCR and in situ hybridisation analyses. In situ hybridisation established that 5alpha-R1 mRNA is preferentially expressed by epithelial cells and little expressed by stromal cells whereas 5alpha-R2 mRNA is expressed by both epithelium and stroma. Semi-quantitative RT-PCR has been performed on total RNA from different zones of normal prostate, BPH tissues and liver. We found that 5alpha-R1 and 5alpha-R2 mRNAs expression was near the same in all zones of normal prostate. In BPH tissue, 5alpha-R1 and 5alpha-R2 mRNAs expression was slightly but significantly increased, when it was compared to the levels recorded for normal prostate. In cancer samples, 5alpha-R1 mRNA expression was higher than in normal and hyperplastic prostate but the level of 5alpha-R2 mRNA was not statistically different from that observed in the different zones of normal prostate. In liver, 5alpha-R2 mRNA level was similar to that measured in BPH but 5alpha-R1 mRNA expression was ten times higher. The increase observed in 5alpha-R isoenzymes expression in BPH tissue could play an important role in the pathogenesis and/or maintenance of the disease.  相似文献   

17.
Prostate cancer cells release atypically large extracellular vesicles (EVs), termed large oncosomes, which may play a role in the tumor microenvironment by transporting bioactive molecules across tissue spaces and through the blood stream. In this study, we applied a novel method for selective isolation of large oncosomes applicable to human platelet-poor plasma, where the presence of caveolin-1-positive large oncosomes identified patients with metastatic disease. This procedure was also used to validate results of a miRNA array performed on heterogeneous populations of EVs isolated from tumorigenic RWPE-2 prostate cells and from isogenic non-tumorigenic RWPE-1 cells. The results showed that distinct classes of miRNAs are expressed at higher levels in EVs derived from the tumorigenic cells in comparison to their non-tumorigenic counterpart. Large oncosomes enhanced migration of cancer-associated fibroblasts (CAFs), an effect that was increased by miR-1227, a miRNA abundant in large oncosomes produced by RWPE-2 cells. Our findings suggest that large oncosomes in the circulation report metastatic disease in patients with prostate cancer, and that this class of EV harbors functional molecules that may play a role in conditioning the tumor microenvironment.  相似文献   

18.
The mechanisms by which androgens stimulate proliferation of prostate cancer cells are poorly understood. It has been proposed that androgen stimulation may induce the mitogen-activated protein (MAP) kinase system in prostate cancer cells and lead to cellular proliferation. We attempted to evaluate the role of the extracellular signal-regulated kinase (ERK) pathway in the stimulation by androgens of prostate cancer cell proliferation. Androgen-sensitive prostate cancer cell line (LNCaP) cells plated on sterile glass coverslips were treated with 10-8 M dihydrotestosterone (DHT) or epidermal growth factor (EGF) (10 ng/ml) for periods ranging from 1 min to 96 h. The proliferative index of the cells, evaluated by immunoperoxidase staining of cells with an antibody to Ki-67, was increased at least two-fold at all time points from 5 min to 48 h following exposure to either DHT or EGF. Immunohistochemical evaluation of ERK1/2 and pERK (activated ERK) demonstrated high levels of ERK1/2 in untreated LNCaP cells, while pERK was expressed at much lower levels. Following treatment with DHT, no change in staining intensity for either ERK1/2 or pERK was observed, while treatment with EGF resulted in no change in ERK1/2, but significantly increased cytoplasmic staining for pERK at all time points beyond 2 min. These results were confirmed by Western blot analysis of ERK1/2 and pERK expression in these cell lines following treatment with DHT or EGF. Our findings suggest that the proliferative response of prostate cancer cells to androgens, unlike the proliferative response to EGF, is not mediated by the activation of ERK1/2, and that currently undefined pathways other than those involving ERK1/2 are involved.  相似文献   

19.
Brahma-related gene 1 (BRG1) is one of two mutually exclusive ATPases that function as the catalytic subunit of human SWItch/Sucrose NonFermentable (SWI/SNF) chromatin remodeling enzymes. BRG1 has been identified as a tumor suppressor in some cancer types but has been shown to be expressed at elevated levels, relative to normal tissue, in other cancers. Using TCGA (The Cancer Genome Atlas) prostate cancer database, we determined that BRG1 mRNA and protein expression is elevated in prostate tumors relative to normal prostate tissue. Only 3 of 491 (0.6%) sequenced tumors showed amplification of the locus or mutation in the protein coding sequence, arguing against the idea that elevated expression due to amplification or expression of a mutant BRG1 protein is associated with prostate cancer. Kaplan-Meier survival curves showed that BRG1 expression in prostate tumors inversely correlated with survival. However, BRG1 expression did not correlate with Gleason score/International Society of Urological Pathology (ISUP) Grade Group, indicating it is an independent predictor of tumor progression/patient outcome. To experimentally assess BRG1 as a possible therapeutic target, we treated prostate cancer cells with a biologic inhibitor called ADAADi (active DNA-dependent ATPase A Domain inhibitor) that targets the activity of the SNF2 family of ATPases in biochemical assays but showed specificity for BRG1 in prior tissue culture experiments. The inhibitor decreased prostate cancer cell proliferation and induced apoptosis. When directly injected into xenografts established by injection of prostate cancer cells in mouse flanks, the inhibitor decreased tumor growth and increased survival. These results indicate the efficacy of pursuing BRG1 as both an indicator of patient outcome and as a therapeutic target.  相似文献   

20.
Lysyl oxidase pro-enzyme is secreted by tumor cells and normal cells as a 50 kDa pro-enzyme into the extracellular environment where it is cleaved into the ~30 kDa mature enzyme (LOX) and 18 kDa pro-peptide (LOX-PP). Extracellular LOX enzyme activity is required for normal collagen and elastin extracellular cross-linking and maturation of the extracellular matrix. Extracellular LOX-PP acts as a tumor suppressor and can re-enter cells from the extracellular environment to induce its effects. The underlying hypothesis is that LOX-PP has the potential to promote bone cell differentiation, while inhibiting cancer cell effects in bone. Here we investigate the effect of LOX-PP on bone marrow cell proliferation and differentiation towards osteoblasts or osteoclasts, and LOX-PP modulation of prostate cancer cell conditioned media-induced alterations of proliferation and differentiation of bone marrow cells in vitro. Effects of overexpression of rLOX-PP in DU145 and PC3 prostate cancer cell lines on bone structure in vivo after intramedullary injections were determined. Data show that prostate cancer cell conditioned media inhibited osteoblast differentiation in bone marrow-derived cells, which was reversed by rLOX-PP treatment. Prostate cancer conditioned media stimulated osteoclast differentiation which was further enhanced by rLOX-PP treatment. rLOX-PP stimulated osteoclast differentiation by inhibiting OPG expression, up-regulating CCN2 expression, and increasing osteoclast fusion. In vivo studies indicate that rLOX-PP expression by PC3 cells implanted into the tibia of mice further enhanced PC3 cell ability to resorb bone, while rLOX-PP expression in DU145 cells resulted in non-significant increases in net bone formation. rLOX-PP enhances both osteoclast and osteoblast differentiation. rLOX-PP may serve to enhance coupling interactions between osteoclasts and osteoblasts helping to maintain a normal bone turnover in health, while contributing to bone abnormalities in disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号