首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This article reports on the optical characterization of Pr3+‐, Er3+‐ and Nd3+‐doped cadmium lead boro tellurite (CLBT) glasses prepared using the melt quenching method. The visible–near infrared (Vis–NIR) absorption spectra of these glasses were analyzed systematically. On measuring the NIR emission spectra of Er3+:CLBT glasses, a broad emission band centered at 1536 nm (4I13/2 → 4I15/2) was observed, as were three NIR emission bands at 900 nm (4F3/2 → 4I9/2), 1069 nm (4F3/2 → 4I11/2) and 1338 nm (4F3/2 → 4I13/2) from Nd3+:CLBT glasses and an NIR emission band at 1334 nm (1G4 → 3H5) from Pr3+:CLBT glasses at an excitation wavelength (λex) of 514.5 nm (Ar+ laser). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Tin oxide (SnO2) nanocrystalline powders doped with erbium ion (Er3+) in different molar ratios (0, 3, 5, and 7 mol%) were prepared using a solid-state reaction technique. These samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet-visible absorption, visible upconversion, and near-infrared luminescence techniques. XRD analysis revealed the tetragonal rutile structure of SnO2 and the average crystallite size was about 32 nm. From Tauc's plots, it was confirmed that the substitution of Er3+ ions into the SnO2 host lattice resulted in the narrowing its band gap. Optical absorption bands at 520 and 654 nm correspond to the 4f electron transitions of Er3+ further confirming visible light absorption. Infrared luminescence spectra showed a broad band centred at 1536 nm which is assigned to the 4I13/24I15/2 transition of Er3+. Visible upconverted emission spectra under 980 nm excitation exhibit a strong red luminescence with a main peak at 672 nm which is attributed to the 4F9/24I15/2 transition of Er3+. Power-dependent upconversion spectra confirmed that two photons participated in the upconversion mechanism. Enhancement in the intensities of both visible and infrared luminescence was observed when raising the concentration. The results pave the way for the potential applications of these nanocrystalline powders in energy harvesting applications such as infrared light upconverting layer in solar cells, light emitting diodes, infrared broadband sources and amplifiers, and biological labelling.  相似文献   

3.
A series of crown ethers containing the azobenzene moiety incorporated into crowns of various sizes [Cr(O6), Cr(O7) and Cr(O8)] and their corresponding alkali metal cation (Li+, Na+, K+, Rb+) complexes have been studied theoretically. The density functional theory (DFT) method was employed to elucidate the stereochemical structural natures and thermodynamic properties of all of the target molecules at the B3LYP/6-31 G(d) and LANL2DZ level for the cation Rb+. The fully optimized geometries had real frequencies, thus indicating their minimum-energy status. In addition, the bond lengths between the metal cation and oxygen atoms, atomic torsion angles and thermodynamic energies for complexes were studied. Natural bond orbital (NBO) analysis was used to explore the origin of the internal forces and the intermolecular interactions for the metal complexes. The calculated results show that the most significant interaction is that between the lone pair electrons of electron-donating oxygens in the cis-forms of azobenzene crown ethers (cis-ACEs) and the LP* (1-center valence antibond lone pair) orbitals of the alkali-metal cations (Li+, Na+, K+ and Rb+). The electronic spectra for the cis-ACEs [cis-Cr(O6), cis-Cr(O7) and cis-Cr(O8)] are obtained by the time-dependent density functional theory (TDDFT) at the B3LYP/6-31 G(d) level. The spectra of the cis-isomers show broad π → π* (S0 → S2) absorption bands at 310–340 nm but weaker n → π* (S0 → S1) bands at 480–490 nm. The calculated results are in good agreement with the experimental results.  相似文献   

4.
Ab initio calculations have been performed using the complete basis set model (CBS-QB3) to study the reaction mechanism of butane radical (C4H9•) with oxygen (O2). On the calculated potential energy surface, the addition of O2 to C4H9• forms three intermediates barrierlessly, which can undergo subsequent isomerization or decomposition reaction leading to various products: HOO• + C4H8, C2H5• + CH2CHOOH, OH• + C3H7CHO, OH• + cycle-C4H8O, CH3• + CH3CHCHOOH, CH2OOH• + C3H6. Five pathways are supposed in this study. After taking into account the reaction barrier and enthalpy, the most possible reaction pathway is C4H9• + O2 → IM1 → TS5 → IM3 → TS6 → IM4 → TS7 → OH• + cycle-C4H8O.  相似文献   

5.
Calcium boro fluoro zinc phosphate glasses modified using alkali oxide and doped with Nd3+ and Er3+ ions with the chemical composition of 69.5 (B2O3) + 10 (P2O5) + 10 (CaF2) + 5 (ZnO) + 5 (Na2O/Li2O/K2O) + 0.5 (Er2O3/Nd2O3) were prepared using a conventional melt quenching technique. The results of X-ray diffraction patterns indicated the amorphous nature of all the prepared glasses. The visible–near-infrared red (NIR) absorption spectra of these glasses were analyzed systematically. The NIR emission spectra of Er3+ and Nd3+:calcium boro fluoro zinc phosphate glasses showed prominent emission bands at 1536 nm (4I13/24I15/2) and 1069 nm (4F3/24I11/2) respectively with λexci = 514.5 nm (Ar+ laser) as the excitation source.  相似文献   

6.
 Reactions (25  °C) of galactose oxidase, GOaseox from Fusarium NRRL 2903 with five different primary-alcohol-containing substrates RCH2OH:- D-galactose (I) and 2-deoxy-d-galactose (II) (monosaccharides); methyl-β-d-galactopyranoside (III) (glycoside);d-raffinose (IV) (trisaccharide); and dihydroxyacetone (V) have been studied in the presence of O2. The GOaseox state has a tyrosyl radical coordinated at a square-pyramidal CuII active site, and is a two-equivalent oxidant. Reactant concentrations were [GOaseox] (0.8–10 μM), RCH2OH (1.0–6.0 mM), and O2 (0.14–0.29 mM), with I=0.100 M (NaCl). The reactions, monitored at 450 nm by stopped-flow spectrophotometry, terminated with depletion of the O2. Each trace was fitted to the competing reactions GOaseox+RCH2 OH → GOaseredH2+RCHO (k 1), and GOaseredH2+O2→ GOaseox+H2O2 (k 2), with GOaseredH2 written as the doubly protonated two-electron-reduced CuI product. It was necessary to avoid auto-redox interconversion of GOaseox and GOasesemi . Information obtained at pH 7.5 indicates a 5 : 95 (ox : semi) "native" mix equilibration complete in ∼3 h. At pH >7.5, rate constants 10–4k 1 / M–1 s–1 for the reactions of GOaseox with (I) (1.19), (II) (1.07), (III) (1.29), (IV) (1.81), (V) (2.94) were determined. On decreasing the pH to 5.5, k 1 values decreased by factors of up to a half, and acid dissociation pK as in the range 6.6–6.9 were obtained. UV-Vis spectrophotometric studies on GOaseox gave an independently determined pK a of 6.7. No corresponding reactions of the Tyr495Phe variant were observed, and there are no similar UV-Vis absorbance changes for this variant. The pK a is therefore assigned to protonation of Tyr-495 which is a ligand to the Cu. The rate constant k 2 (1.01×107 M–1 s–1) is independent of pH in the range 5.5–9.0 investigated, suggesting that H+ (or H-atoms) for the O2 → H2O2 change are provided by the active site of GOasered . The CuI of GOasered is less extensively complexed, and a coordination number of three is likely. Received: 4 February 1997 / Accepted: 16 May 1997  相似文献   

7.
The detailed reaction mechanism for the water-assisted hydrolysis of isocyanic acid, HNCO + (n + 1) H2O → CO2 + NH3 + nH2O (n = 0−6), taking place in the gas phase, has been investigated. All structures were optimized and characterized at the MP2/6-31 + G* level of theory, and then re-optimized at MP2/6-311++G**. The seven explicit water molecules participating in the hydrolysis can be divided into two groups, one directly involved in the proton relay, and the other located in the vicinity of the substrate playing the cooperative role by engaging in hydrogen-bonding to HN = C = O. Two possible reaction pathways, the addition of water molecule across the C = N bond or across the C = O bond, are discussed, and the former is proved to be more favorable energetically. Our calculations suggest that, in the most kinetically favorable pathway for the titled hydrolysis, three water molecules are directly participating in the hydrogen transfer via an eight-membered cyclic transition state, while the other four water molecules catalyze the hydrolysis of HN = C = O by forming three eight-membered cooperative loops near the substrate. This strain-free hydrogen-bond network leads to the best estimated rate-determining activation energy of 24.9 kJ mol−1 at 600 K, in excellent agreement with the gas-phase kinetic experimental result, 25.8 kJ mol−1.  相似文献   

8.
9.
Gold nanoparticle particles in size of 10 nm were used to label the thiol-modified single-stranded DNA aptamer (SH-ssDNA) to obtain an aptamer-modified gold nanoparticle probe (AussDNA) for target DNA (tDNA). In pH 7.4 NaH2PO4–Na2HPO4 buffer solution, the hybridization reaction between AussDNA and tDNA took place to form larger aptamer-modified gold nanoparticle cluster complex. The excess aptamer-modified gold nanoparticle probe in the supernatant solutions was obtained by centrifuging and can be used as nanocatalyst for the 0.276 mmol/L CuSO4-65.4 mmol/L potassium-sodium tartrate-0.37 mmol/L glucose system at 70 °C. The cubic Cu2O particles generated by the nanocatalytic reducing exhibit a strong resonance scattering (RS) peak at 620 nm. In the selected conditions, the RS intensity at 620 nm decreased with addition of tDNA, and the decreased intensity ΔI 620 nm is proportional to tDNA concentration (C tDNA) from 0.12 to 72 pM, with regress equation of ΔI 620 nm = 1.29C tDNA + 4.05, correlation coefficient of 0.9917, and detection limit of 0.084 pM tDNA.  相似文献   

10.
Four different β-galactosidases (previously named BbgI, BbgII, BbgIII and BbgIV) from Bifidobacterium bifidum NCIMB41171 were overexpressed in Escherichia coli, purified to homogeneity and their biochemical properties and substrate preferences comparatively analysed. BbgI was forming a hexameric protein complex of 875 kDa, whereas BbgII, BbgIII and BbgIV were dimers with native molecular masses of 178, 351 and 248 kDa, respectively. BbgII was the only enzyme that preferred acidic conditions for optimal activity (pH 5.4–5.8), whereas the other three exhibited optima in more neutral pH ranges (pH 6.4–6.8). Na+ and/or K+ ions were prerequisite for BbgI and BbgIV activity in Bis–Tris-buffered solutions, whereas Mg++ was strongly activating them in phosphate-buffered solutions. BbgII and BbgIII were slightly influenced from the presence or absence of cations, with Mg++, Mn++ and Ca++ ions exerting the most positive effect. Determination of the specificity constants (k cat/K m) clearly indicated that BbgI (6.11 × 104 s−1 M−1), BbgIII (2.36 × 104 s−1 M−1) and especially BbgIV (4.01 × 105 s−1 M−1) are highly specialised in the hydrolysis of lactose, whereas BbgII is more specific for β-d-(1→6) galactobiose (5.59 × 104 s−1 M−1) than lactose (1.48 × 103 s−1 M−1). Activity measurements towards other substrates (e.g. β-d-(1→6) galactobiose, β-d-(1→4) galactobiose, β-d-(1→4) galactosyllactose, N-acetyllactosamine, etc.) indicated that the β-galactosidases were complementary to each other by hydrolysing different substrates and thus contributing in a different way to the bacterial physiology.  相似文献   

11.
Efficient nitrification and denitrification of wastewater containing 1,700 mgl−1 of ammonium-nitrogen was achieved using aerobic granular sludge cultivated at medium-to-high organic loading rates. The cultivated granules were tested in a sequencing batch reactor (SBR) fed with 6.4 or 10.2 kg NH4+-N m−3 day−1, a loading significantly higher than that reported in literature. With alternating 2 h oxic and 2 h anoxic operation (OA) modes, removal rate was 45.5 mg NH4+-N g−1 volatile suspended solids−1 h−1 at 6.4 kg NH4+-N m−3 day−1 loading and 41.3 ± 2.0 at 10.2 kg NH4+-N m−3 day−1 loading. Following the 60 days SBR test, granules were intact. The fluorescence in situ hybridization and confocal laser scanning microscopy results indicate that the SBR-OA granules have a distribution with nitrifers outside and heterotrophs outside that can effectively expose functional strains to surrounding substrates at high concentrations with minimal mass transfer limit. This microbial alignment combined with the smooth granule surface achieved nitrification–denitrification of wastewaters containing high-strength ammonium using aerobic granules. Conversely, the SBR continuous aeration mode yielded a distribution with nitrifers outside and heterotrophs inside with an unsatisfactory denitrification rate and floating granules as gas likely accumulated deep in the granules.  相似文献   

12.
The biodegradation potential of an innovative enclosed tubular biofilm photobioreactor inoculated with a Chlorella sorokiniana strain and an acclimated activated sludge consortium was evaluated under continuous illumination and increasing pretreated (centrifuged) swine slurry loading rates. This photobioreactor configuration provided simultaneous and efficient carbon, nitrogen, and phosphorous treatment in a single-stage process at sustained nitrogen and phosphorous removals efficiencies ranging from 94% to 100% and 70–90%, respectively. Maximum total organic carbon (TOC), NH4 +, and PO4 3− removal rates of 80 ± 5 g C mr −3 day−1, 89 ± 5 g N mr −3 day−1, and 13 ± 3 g P mr −3 day−1, respectively, were recorded at the highest swine slurry loadings (TOC of 1,247 ± 62 mg L−1, N–NH4 + of 656 ± 37 mg L−1, P–PO4 3+ of 117 ± 19 mg L−1, and 7 days of hydraulic retention time). The unusual substrates diffusional pathways established within the phototrophic biofilm (photosynthetic O2 and TOC/NH4 + diffusing from opposite sides of the biofilm) allowed both the occurrence of a simultaneous denitrification/nitrification process at the highest swine slurry loading rate and the protection of microalgae from any potential inhibitory effect mediated by the combination of high pH and high NH3 concentrations. In addition, this biofilm-based photobioreactor supported efficient biomass retention (>92% of the biomass generated during the pretreated swine slurry biodegradation).  相似文献   

13.
In the pH 6.6 Na2HPO4–NaH2PO4 buffer solutions and in the presence of urease catalyst, urea can be decomposed to form NH4 +. The NH4 + reacted with sodium tetraphenyl boron (NaTPB) to form the association particles that exhibited a resonance scattering (RS) peak at 474 nm. When the urea concentration increased, NH4 + increased, and RS intensity at 474 nm enhanced linearly. Under the chosen conditions, the increased RS intensity (ΔI 474 nm) had a linear response to the urea concentration in the range of 0.125–15 μM, with a detection limit of 0.058 μM urea, and a regression equation of ΔI 474 nm = 31.6C + 2.1, a correlation coefficient of 0.9986. This catalytic RS method was applied for the detection of urea in human serum sample, with good selectivity and sensitivity, and the results were consistent with the reference method.  相似文献   

14.
In this study, Bi3+ incorporation in NaYbF4:Er lattice and its influence on upconversion luminescence properties have been investigated in detail using techniques such as temperature‐dependent luminescence, Fourier transform infrared spectroscopy and X‐ray diffraction (XRD). The study was carried out to develop phosphors with improved upconversion luminescence. From photoluminescence and lifetime measurements it is inferred that luminescence intensity from NaYbF4:Er increases with Bi3+ addition. The sample containing 50 at.% Bi3+ ions exhibited optimum upconversion luminescence. Increased distance between Yb3+–Yb3+ and Er3+–Er3+ due to Bi3+ incorporation into the lattice and associated decrease in the extent of dipolar interaction/self‐quenching are responsible for increase in lifetime values and luminescence intensities from Er3+ ions. Incorporation of Bi3+ into NaYbF4:Er lattice reduced self‐quenching among Yb3+–Yb3+ions and this facilitated energy transfer from Yb3+ to Er3+. This situation also explains decrease in the extent of temperature‐assisted quenching of emission from thermally coupled 2H11/2 and 4S3/2 levels of Er3+. Based on Rietveld refinement of XRD patterns it was confirmed that a maximum of 10 at.% of Bi3+added was incorporated into the NaYbF4:Er lattice and the remaining complex co‐exists as a BiOF phase. These results are of significant interest in the area of development of phosphors based on Yb3+–Er3+ upconversion luminescence.  相似文献   

15.
The effects of elevated CO2 concentrations on stomatal movement, anion- and K+-channel activities were examined in guard cells from epidermal strips of Vicia faba. Membrane voltage was measured using intracellular, double-barrelled microelectrodes and ion-channel currents were recorded under voltage clamp during exposure to media equilibrated with ambient (350 μl · l−1), 1000 μl · l−1 and 10 000 μl · l−1 CO2 in 20% O2 and 80% N2. The addition of 1000 μl · l−1 CO2 to the bathing solution caused stomata to close with a halftime of approx. 40 min, and with 10 000 μl · l−1 CO2 closure occurred with a similar time course. Under voltage clamp, exposure to 1000 μl · l−1 and 10 000 μl · l−1 CO2 resulted in a rapid increase (mean, 1.5 ± 0.2-fold, n = 8; range 1.3- to 2.5-fold) in the magnitude of current carried by outward-rectifying K+ channels (IK,out). The effect of CO2 on IK,out was essentially complete within 30 s and was independent of clamp voltage, but was associated with 25–40% (mean, 30 ± 4%) decrease in the halftime for current activation. Exposure to CO2 also resulted in a four-fold increase in background current near the free-running membrane voltage, recorded as the instantaneous current at the start of depolarising and hyperpolarising voltage steps, and a decrease in the magnitude of current carried by inward-rectifying K+ channels (IK,in). The effect of CO2 on IK,in was generally slower than on IK,out; it was allied with a transient acceleration of its activation kinetics during the first 60–120 s of treatment; and it was associated with a negative shift in the voltage-sensitivity of gating over a period of 3–5 min. Measurements carried out to isolate the background currents attributable to anion channels (ICl), using tetraethylammonium chloride and CsCl, showed that CO2 also stimulated ICl and dramatically altered its relaxation kinetics. Within the timeframe of CO2 action at the membrane, no significant effect was observed on cytosolic pH, measured using the fluorescent dye 2′,7′-bis-(2-carboxyethyl)-5,6-carboxyflourescein (BCECF) and ratio fluorescence microphotometry. These results are broadly consistent with the pattern of guard-cell response to abscisic acid, and indicate that guard cells control both anion and K+ channels to achieve net solute loss in CO2. By contrast with the effects of abscisic acid, however, the data indicate that CO2 action is not mediated through changes in cytosolic pH and thereby implicate new and, as yet, unidentified pathway(s) for channel regulation in the guard cells. Received: 8 January 1997 / Accepted: 28 February 1997  相似文献   

16.
Undoped and Er-doped NaY(WO4)2 disordered single crystals have been grown by the Czochralski technique. The specific heat and thermal conductivity (κ) of these crystals have been characterized from T = 4 K to 700 K and 360 K, respectively. It is shown that κ exhibits anisotropy characteristic of single crystals as well as a κ(T) behavior observed in glasses, with a saturation mean free phonon path of 3.6 Å and 4.5 Å for propagation along a and c crystal axes, respectively. The relative energy positions and irreducible representations of Stark Er3+ levels up to 4G7/2 multiplet have been determined by the combination of experimental low (<10 K) temperature optical absorption and photoluminescence measurements and simulations with a single-electron Hamiltonian including both free-ion and crystal field interactions. Absorption, emission and gain cross sections of the 4I13/24I15/2 laser related transition have been determined at 77 K. The 4I13/2 Er3+ lifetime (τ) was measured in the temperature range of 77–300 K, and was found to change from τ (77K) ≈ 4.5 ms to τ (300K) ≈ 3.5 ms. Laser operation is demonstrated at 77 K and 300 K by resonantly pumping the 4I13/2 multiplet at λ≈1500 nm with a broadband (FWHM≈20 nm) diode laser source perfectly matching the 77 K crystal 4I15/24I13/2 absorption profile. At 77 K as much as 5.5 W of output power were obtained in π-polarized configuration with a slope efficiency versus absorbed pump power of 57%, the free running laser wavelength in air was λ≈1611 nm with the laser output bandwidth of 3.5 nm. The laser emission was tunable over 30.7 nm, from 1590.7 nm to 1621.4 nm, for the same π-polarized configuration.  相似文献   

17.
Forty-eight 2-year-old Liaoning Cashmere goats (body weight = 38.0 ± 2.94 kg) were used to investigate the effects of dietary iodine (I) and selenium (Se) supplementation on nutrient digestibility, serum thyroid hormones, and antioxidant status during the cashmere telogen period to learn more about the effects of dietary I and Se on nutrition or health status of Cashmere goats. The goats were equally divided into six groups of eight animals each that were treated with 0, 2, or 4 mg of supplemental I/kg dry matter (DM) and 0 or 1 mg of supplemental Se/kg DM in a 2 × 3 factorial arrangement of treatments. The six treatments were I0Se0, I2Se0, I4Se0, I0Se1, I2Se1, and I4Se1. The concentrations of I and Se in the basal diet were 0.67 and 0.09 mg/kg DM, respectively. The study started in March and proceeded for 45 days. Supplemental I or Se alone had no effect on nutrient digestibility and nitrogen metabolism. However, the interaction between I and Se was significant regarding the digestibility of acid detergent fiber (ADF; P < 0.05), and compared with group I4Se1, the digestibility of ADF was significantly increased in group I4Se0 (P < 0.05). Selenium supplementation did not affect serum triiodothyronine (T3) or thyroxine (T4) concentrations. However, the concentration of serum T4 but not that of T3 was significantly increased with I supplementation (P < 0.05). In addition, serum superoxide dismutase (SOD) activity was not affected (P > 0.05), but serum glutathione peroxidase (GSH-Px) activity was significantly decreased by I supplementation (P < 0.05). The antioxidant status was improved by Se supplementation, and the activities of SOD and GSH-Px were significantly increased (P < 0.05).  相似文献   

18.
 Electrogenic cation transport across the caecal epithelium of the leech Hirudo medicinalis was investigated using modified Ussing chambers. Transepithelial resistance (R T ) and potential difference (V T ) were 61.0±3.5 Ω ⋅ cm2 and −1.1±0.2 mV (n=149), respectively, indicating that leech caecal epithelium is a “leaky” epithelium. Under control conditions short circuit current (I SC ) and transepithelial Na+ transport rate (I Na ) averaged at 22.1±1.5 μA ⋅ cm-2 and 49.7±2.6 μA ⋅ cm-2, respectively. Mucosal application of amiloride (100 μmol ⋅ l-1) or benzamil (50 μmol ⋅ l-1) influenced neither I SC nor I Na . The transport system in the apical membrane showed no pronounced cation selectivity and a linear dependence on mucosal Na+ concentration. Removal of mucosal Ca2+ increased I SC by about 50% due to an increase of transepithelial Na+ transport. Trivalent cations (La3+ and Tb3+, 1 mmol ⋅ l-1 both) added to the mucosal Ringer solution reduced I Na by more than 40%. Serosal ouabain (1 mmol ⋅ l-1) almost halved I SC and I Na while 0.1% (=5.4 mmol ⋅ l-1) DNP decreased I Na to 11.8±5.1% of initial values. Serosal addition of cAMP increased both I SC and I Na whereas the neurotransmitters FMRFamide, acetylcholine, GABA, L-dopa, serotonin and dopamine failed to show any effects; octopamine, glycine and L-glutamate reduced I Na markedly. On the basis of these results we conclude that in leech caecal epithelium apical uptake of monovalent cations is mediated by non-selective cation conductances which are sensitive to extracellular Ca2+ but insensitive to amiloride. Basolaterally Na+ is extruded via ouabain-sensitive and -insensitive ATPases. cAMP activates Na+ transport across leech caecal epithelium, although the physiological stimulus for cAMP-production remains unknown. Accepted: 20 May 1996  相似文献   

19.
Sr3(PO4)2:Dy3+,Li+ phosphors were prepared using a simple high temperature solid method for luminescence enhancement. The structures of the as‐prepared samples agreed well with the standard phase of Sr3(PO4)2, even when Dy3+ and Li+ were introduced. Under ultraviolet excitation at 350 nm, the Sr3(PO4)2:Dy3+ sample exhibited two emission peaks at 483 nm and 580 nm, which were due to the 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 transitions of Dy3+ ions, respectively. A white light was fabricated using these two emissions from the Sr3(PO4)2:Dy3+ phosphors. The luminescence properties of Sr3(PO4)2:Dy3+,Li+ phosphors, including emission intensity and decay time, were improved remarkably with the addition of Li+ as the charge compensator, which would promote their application in near‐ultraviolet excited white‐light‐emitting diodes.  相似文献   

20.
Quantum-chemical calculations were performed for all possible isomers of neutral aniline and its redox forms, and intramolecular proton-transfer (prototropy) accompanied by π-electron delocalization was analyzed. One-electron oxidation (PhNH2 – e → [PhNH2]+•) has no important effect on tautomeric preferences. The enamine tautomer is preferred for oxidized aniline similarly as for the neutral molecule. Dramatical changes take place when proceeding from neutral to reduced aniline. One-electron reduction (PhNH2 + e → [PhNH2]-•) favors the imine tautomer. Independently on the state of oxidation, π- and n-electrons are more delocalized for the enamine than imine tautomers. The change of the tautomeric preferences for reduced aniline may partially explain the origin of the CH tautomers for reduced nucleobases (cytosine, adenine, and guanine).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号