首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The complete genomic sequence of Plasmodium falciparum strain 3D7 was published in October 2002. At the Next Steps in Malaria Research meeting in April 2005, the next practical steps were considered and the priorities ranked for postgenomic research in Plasmodium. The high-throughput approaches that will help to answer the major biological questions regarding Plasmodium should, like the genome project itself, build community-shared resources, and efforts must be made to help researchers ready themselves to use the tools that will become available.  相似文献   

2.
The knowledge of the genomic structure of Plasmodium falciparum and of its main vector, Anopheles gambiae, may offer new perspectives for malaria therapy, vaccines or control of mosquito-borne transmission. New targets for future antimalarial drugs were identified, mainly apicoplast (a vestige of a vegetal structure incorporated by the parasite) and several enzymes, particularly proteases. The practical difficulty is now to select a few number of these "promising molecules", probably no more than 3 or 4, for a preclinical and clinical pharmaceutical development. Indeed, several other antimalarial drugs are already under development, and the industrial possibilities for developing new drugs are evidently limited. Many new vaccination targets and antigenic proteins were also identified. According to scientific and industrial limitations, a complete evaluation of these antigens is absolutely necessary to select a few of them for clinical development. For anti-malarial vaccinations, DNA vaccines may offer the most interesting perspectives, with the possibility of simultaneous immunisation against different Plasmodium stages and of an adjuvant effect by adding a gene encoding certain cytokines. In Anopheles gambiae genome, several genes encoding key-proteins (particularly odorant receptors necessary for blood feeding) were identified, as other genes encoding for proteins limiting the sexual development of Plasmodium inside its vector. From a theoretical viewpoint, genetically modified non biting or non transmitting mosquitoes offer new perspectives for the control of malaria transmission, but until now, the preliminary practical attempts gave rather poor results. On the whole, the genomic and proteomic of Plasmodium falciparum and Anopheles gambiae yielded exciting scientific results, but it is still too early and very speculative to imagine their practical applications for the control of malaria.  相似文献   

3.
Technologies for the study of gene and protein expression in Plasmodium   总被引:1,自引:0,他引:1  
With the imminent completion of the genome sequences of several species of Plasmodium, attention is now turning to the exploitation of these genomic sequence data for vaccine, drug and diagnostic development. Several technologies have been developed over the past decade to assist in the determination of gene and protein expression on a global scale. Of these, DNA microarrays, novel high-throughput proteomic technologies and recombinational cloning technologies are lowering the barrier to functional genomic studies in Plasmodium. Of equal importance is the capacity to manipulate, store, retrieve and analyse the tremendous quantity of data generated from these genomic studies. This paper will address the use of these technologies as well as some of the computational tools that will be ultimately required to adequately study gene and protein expression in Plasmodium.  相似文献   

4.
Mosquito immunity against Plasmodium   总被引:6,自引:0,他引:6  
Understanding the molecular mechanisms of the innate immune responses of Anopheles gambiae against Plasmodium parasites is of great importance for current efforts to develop novel strategies for malaria disease control. The parasite undergoes substantial stage-specific losses during its development in the mosquito, which in some cases lead to complete refractoriness of the mosquito against the parasite. The underlying genetics of refractoriness are complex and multifactorial. Completion of the genome sequence of An. gambiae 2 years ago, together with the development of DNA microarrays in this species and the extension of the RNAi technique to adult mosquitoes, has allowed comparative and functional genomic approaches of the mosquito innate immune system. A variety of factors were shown to negatively affect the development of Plasmodium parasites in the mosquito, in some cases leading to complete transmission blockage. In addition, mosquito factors have been identified that play positive roles and are required for successful transmission of the parasite. These findings indicate a highly complex interplay between parasite and vector. Research is continuing to identify new factors involved in this interaction and to decipher the interplay of these molecules and their regulation.  相似文献   

5.
Genome sequence information has continued to accumulate at a spectacular pace during the past year. Details of the sequence and gene content of human chromosome 22 were published. The sequencing and annotation of the first two Arabidopsis thaliana chromosomes was completed. The sequence of chromosome 3 from Plasmodium falciparum, the second sequenced malaria chromosome, was reported, as was that of chromosome 1 from Leishmania major. The complete genomic sequences of five microbes were reported. Approaches to using data from completely sequenced microbial genomes in phylogenetic studies are being explored, as is the application of microarrays to whole genome expression analysis.  相似文献   

6.
Serruto D  Rappuoli R 《FEBS letters》2006,580(12):2985-2992
For over a century, vaccines were developed according to Pasteur's principles of isolating, inactivating and injecting the causative agent of an infectious disease. The availability of a complete microbial genome sequence in 1995 marked the beginning of a genomic era that has allowed scientists to change the paradigm and approach vaccine development starting from genomic information, a process named reverse vaccinology. This can be considered as one of the most powerful examples of how genomic information can be used to develop therapeutic interventions, which were difficult or impossible to tackle with conventional approaches. As the genomic era progressed, it became apparent that multi-strain genome analysis is fundamental to the design of universal vaccines. In the post-genomic era, the next challenge of the vaccine biologist will be the merging of the vaccinology with structural biology.  相似文献   

7.
Up until recently, the relevance of Plasmodium falciparum-infected humanized mice for malaria studies has been questioned because of the low percentage of mice in which the parasite develops. Advances in the generation of new immunodeficient mouse strains combined with the use of protocols that modulate the innate immune defenses of mice have facilitated the harvesting of exoerythrocytic and intraerythrocytic stages of the parasite. These results renew the hope of working with P. falciparum in a laboratory animal and indicate that the next challenge (i.e. a complete parasite cycle in the same mouse, including transmission to mosquito) could be reached in the future.  相似文献   

8.
9.
With the availability of the nearly complete genomic sequence of C. elegans, the first multicellular organism to be sequenced, molecular biology has definitely entered the postgenomic era. Annotation of the genomic sequence, which refers to identifying the genes and other biologically relevant sections of the genome, is an important and nontrivial next step. A first-pass annotation will be necessarily incomplete but will drive further biological experiments, which in turn will help to annotate the genome better. Given the scale of the genome sequence analysis, it is clear that the annotation should be automated as much as possible without sacrificing the quality of analysis. In this work, we outline our approach to identifying the protein kinases of C. elegans from the genomic sequence. We describe new tools we have developed for analysis, management and visualization of genomic data. By developing modular and scalable solutions, this study has provided a framework for future analysis of the Drosophila and human genomes.  相似文献   

10.
11.
A great deal of progress has been made in the studies of fruiting body development and social gliding in Myxocococcus xanthus in the past few years. This includes identification of the bone fide C-signal and a receptor for type IV pili, and development of a model for the mechanism of adventurous gliding motility. It is anticipated that the next few years will see even more progress as the complete genome sequence is available and genomic and proteomic tools are applied to the study of M. xanthus social behaviors.  相似文献   

12.
A genomic library of Plasmodium berghei DNA was constructed using lambda 47.I as a vector. It represents 90% of Plasmodium genome. Genes expressed during the intraerythrocytic stage of P. berghei were isolated among the recombinant clones of the library using labelled cDNA complementary to the polyA + Plasmodium mRNA extracted during this stage. The purified coding strand of an expressed clone was utilized to catch the corresponding mRNA(s). The hybridized mRNA fraction was eluted and in vitro translated. Translation products were analyzed by gel electrophoresis; the gel fluorography revealed a single protein band of 32.500 daltons of molecular weight, corresponding to a 900bp coding region in the examined clone.  相似文献   

13.
目的:对获得的3株肠道病毒71(EV71)型毒株进行全基因组序列测定,并对其进化特点及分型进行初步分析。方法:提取病毒RNA,反转录得到eDNA,PCR分段扩增覆盖病毒全长序列的6个重叠片段(不包括多聚腺苷酸尾);用软件将3株EV71的备片段序列进行拼接、编辑和校正,随后进行氨基酸翻译及序列比较;用MEGA4.1软件构建系统进化树。结果:获得了3株EV71的全长序列:GDV103株基因组全长7404 nt,包括741bp的5’端非编码区(UTR)、6582bp的病毒基因组编码区(ORF)及81bp的3’UTR;安徽株(Anhui2007)基因组全长7405nt,包括742bp的5'UTR、6582bp的ORF及81bp的3'UTR;VR1432株基因组全长7408nt,包括743bp的5’UTR、6582bp的ORF及83bp的3’UTR长。经同源性比对和进化树分析,证实GDV103和安徽株EV71属于C基因型的C4基因亚型。而VR1432株则属于C基因型的C2基因亚型。结论:获得了3株EV71的全长基因组序列,并进一步探讨了其型别,为下一步的干扰素保护宴,哈重定了基础.  相似文献   

14.
Despite substantial work, the phylogeny of malaria parasites remains debated. The matter is complicated by concerns about patterns of evolution in potentially strongly selected genes as well as the extreme AT bias of some Plasmodium genomes. Particularly contentious has been the position of the most virulent human parasite Plasmodium falciparum, whether grouped with avian parasites or within a larger clade of mammalian parasites. Here, we study 3 classes of rare genomic changes, as well as the sequences of mitochondrial ribosomal RNA (rRNA) genes. We report 3 lines of support for a clade of mammalian parasites: 1) we find no instances of spliceosomal intron loss in a hypothetical ancestor of P. falciparum and the avian parasite Plasmodium gallinaceum, suggesting against a close relationship between those species; 2) we find 4 genomic mitochondrial indels supporting a mammalian clade, but none grouping P. falciparum with avian parasites; and 3) slowly evolving mitochondrial rRNA sequences support a mammalian parasite clade with 100% posterior probability. We further report a large deletion in the mitochondrial large subunit rRNA gene, which suggests a subclade including both African and Asian parasites within the clade of closely related primate malarias. This contrasts with previous studies that provided strong support for separate Asian and African clades, and reduces certainty about the historical and geographic origins of Plasmodium vivax. Finally, we find a lack of synapomorphic gene losses, suggesting a low rate of ancestral gene loss in Plasmodium.  相似文献   

15.
The Plasmodium falciparum parasite is an obligate intracellular pathogen whose invasion and remodelling of the human erythrocyte results in the clinical manifestations of malarial disease. The functional analysis of erythrocyte determinants of invasion and growth is a relatively unexplored frontier in malaria research, encompassing studies of natural variation of the erythrocyte, as well as genomic, biochemical and chemical biological and transgenic approaches. These studies have allowed the functional analysis of the erythrocyte in vitro, resulting in the discovery of critical erythrocyte determinants of Plasmodium infection. Here, we will focus on the varied approaches used for the study of the erythrocyte in Plasmodium infection, with a particular emphasis on erythrocyte invasion.  相似文献   

16.
The complex human and parasite determinants that influence disease severity in Plasmodium falciparum malaria reflect thousands of years of selective pressure. Emerging genetic and genomic resources offer the prospect of unraveling interactions of these determinants.  相似文献   

17.
Attempts are being made to adapt Old World monkey malarial parasites to New World monkeys for vaccine and molecular studies. Several of these (Plasmodium cynomolgi Berok, Plasmodium fragile, and Plasmodium knowlesi) grow readily but have failed to produce infective gametocytes. Plasmodium gonderi and Plasmodium fieldi develop in the liver after sporozoite inoculation but have failed to establish infection in the erythrocyte. Anopheles dirus mosquitoes infected with Plasmodium inui shortti by feeding on infected macaques transmitted the infection to Saimiri boliviensis monkeys. Infective gametocytes were produced, and sporozoite transmission from Saimiri to Saimiri monkey was obtained. Exoerythrocytic stages have also been observed in the liver tissue of Saimiri monkeys. The availability of the complete transmission cycle provides an additional resource for immunologic and vaccine studies.  相似文献   

18.
Genetic studies of Plasmodium falciparum laboratory crosses and field isolates have produced valuable insights into determinants of drug responses, antigenic variation, disease virulence, cellular development and population structures of these virulent human malaria parasites. Full-genome sequences and high-resolution haplotype maps of SNPs and microsatellites are now available for all 14 parasite chromosomes. Rapidly increasing genetic and genomic information on Plasmodium parasites, mosquitoes and humans will combine as a rich resource for new advances in our understanding of malaria, its transmission and its manifestations of disease.  相似文献   

19.
Mitochondrial (mt) genomes from diverse phylogenetic groups vary considerably in size, structure and organization. The genus Plasmodium, the causative agent of malaria, has the smallest mt genome in the form of a tandemly repeated, linear element of 6 kb. The Plasmodium mt genome encodes only three protein genes (cox1, cox3 and cob) and large- and small-subunit ribosomal RNA (rRNA) genes, which are highly fragmented with 19 identified rRNA pieces. The complete mt genome sequences of 21 Plasmodium species have been published but a thorough investigation of the arrangement of rRNA gene fragments has been undertaken for only Plasmodium falciparum, the human malaria parasite. In this study, we determined the arrangement of mt rRNA gene fragments in 23 Plasmodium species, including two newly determined mt genome sequences from P. gallinaceum and P. vinckei vinckei, as well as Leucocytozoon caulleryi, an outgroup of Plasmodium. Comparative analysis reveals complete conservation of the arrangement of rRNA gene fragments in the mt genomes of all the 23 Plasmodium species and L. caulleryi. Surveys for a new rRNA gene fragment using hidden Markov models enriched with recent mt genome sequences led us to suggest the mtR-26 sequence as a novel candidate LSU rRNA fragment in the mt genomes of the 24 species. Additionally, we found 22-25 bp-inverted repeat sequences, which may be involved in the generation of lineage-specific mt genome arrangements after divergence from a common ancestor of the genera Eimeria and Plasmodium/Leucocytozoon.  相似文献   

20.
Functional genomics: identifying drug targets for parasitic diseases   总被引:1,自引:0,他引:1  
The genomic sequences of parasitic diseases are rapidly becoming available and, recently, the full sequence of Plasmodium falciparum has been published. Much has been promised from this genomic revolution including the identification of new drug targets and novel chemotherapeutic treatments for the control of parasitic diseases. The challenge to use this information efficiently will require functional genomics tools such as bioinformatics, microarrays, proteomics and chemical genomics to identify potential drug targets, and to allow the development of optimized lead compounds. The information generated from these tools will provide a crucial link from genomic analysis to drug discovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号