首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dog alpha 1-proteinase inhibitor (alpha 1-PI) was found to be an effective inhibitor of bovine chymotrypsin and also of porcine pancreatic elastase as in the case of human inhibitor. The dog inhibitor inactivated both proteinases at a molar ratio of 1:1. However, compared to the human inhibitor, dog alpha 1-PI was a relatively poor inhibitor of bovine trypsin. The association rate constants (kass) of the interactions of dog alpha 1-PI with bovine chymotrypsin and with porcine elastase were determined to be 6.9 +/- 0.3 X 10(6) M-1 s-1 and 6.4 +/- 0.1 X 10(5) M-1 s-1, respectively. These values are 1.3- and 2.7-fold higher than the corresponding values for the human inhibitor. On the other hand, kass for the dog inhibitor with bovine trypsin (2.6 +/- 0.3 X 10(4)M-1 s-1) was found to be about 5 times smaller than that of the human inhibitor.  相似文献   

2.
Bronchial leucocyte proteinase inhibitor (BLPI) is an 11 000 Mr protein found in human mucous secretions. This inhibitor apparently controls the serine proteinases elastase and cathepsin G, released from extravascular polymorphonuclear leucocytes. A simple, single-step chromatographic procedure for the isolation of BLPI based on its affinity for chymotrypsin was developed. The purified inhibitor was homogeneous by electrophoresis and gel filtration. Amino acid analyses were in close agreement with previous reports, and showed BLPI to be rich in proline and cystine, but lacking histidine. We have further characterized the role of BLPI with respect to human leucocyte elastase and cathepsin G by close examination of the kinetic parameters. Additionally, we have determined the kinetics of association (kon) and dissociation (koff) for BLPI with bovine trypsin and chymotrypsin. Equilibrium dissociation constants (Ki) of 1.87 X 10(-10) M, 4.18 X 10(-9) M, 8.28 X 10(-9) M and 2.63 X 10(-8) M were obtained for human leucocyte elastase, cathepsin G, bovine trypsin and chymotrypsin, respectively. These results are discussed with respect to BLPI's possible function in vivo and its role relative to other inhibitors in bronchial secretions.  相似文献   

3.
The acid-labile inter-alpha-trypsin inhibitor is cleaved enzymatically in vivo, liberating a smaller acid-stable inhibitor. The molar ratio of native inhibitor to this smaller inhibitor in plasma is significantly changed in some severe cases of inflammation and kidney injury. To clarify this observation on a molecular basis, the action of four different types of proteinases (trypsin, plasmin, kallikrein and granulocyte elastase) on the inter-alpha-trypsin inhibitor was studied. The initial rate of cleavage of the inter-alpha-trypsin inhibitor by a 1.3-fold molar excess of proteinase over inhibitor was found to be 4375 nM x min-1 with granulocyte elastase, 860 nM x min-1 with trypsin, 67 nM x min-1 with plasmin, and 0.3 nM X min-1 with kallikrein. Obviously, of the enzymes studied so far, the granulocyte elastase known to be released during severe inflammatory processes is by far the most potent proteinase in the transformation of the inter-alpha-trypsin inhibitor. The inter-alpha-trypsin inhibitor and its cleavage products inhibit bovine trypsin very strongly (Ki = 10(-9)--10(-11) M), porcine plasmin much less strongly, human plasmin very weakly and pancreatic kallikrein practically not at all.  相似文献   

4.
Two proteic inhibitors (I and II) of serine proteases have been purified from the parasitic worm Parascaris equorum by affinity chromatography on immobilized trypsin followed by preparative electrophoresis. They have an apparent relative molecular mass of 9000 and 7000 as determined by gel filtration, a slightly acid isoelectric point (5.5 and 6.1) and a similar amino acid composition. Both inhibitors lack serine, methionine and tyrosine. They bind bovine trypsin extremely strongly with an association constant, Ka, larger than 10(9) M-1, and form a 1:1 complex with this protease. The Ka values for the binding to bovine chymotrypsin are approximately 3.3 X 10(8) M-1 (inhibitor I) and approximately 2 X 10(6) M-1 (inhibitor II). Inhibitor I interacts also with porcine elastase (Ka approximately 5 X 10(7) M-1), while inhibitor II is inactive towards this enzyme.  相似文献   

5.
A trypsin and chymotrypsin inhibitor was partially purified from Bauhenia purpurea seeds and separated from a second inhibitor by Ecteola cellulose chromatography. The factor inhibited bovine trypsin and chymotrypsin as well as pronase trypsin and elastase. It formed a complex with trypsin and with chymotrypsin, but a ternary complex could not be detected. Differences were detected in the effect on trypsin and on chymotrypsin, although one enzyme interfered with the inhibition of the other. The results obtained point to two active centers on the inhibitor for the trypsin and chymotrypsin inhibition such that the one cannot complex with the inhibitor after this inhibitor had complexed with the other.  相似文献   

6.
Complex formation between two new double-headed protease inhibitors from black-eyed peas, trypsin-chymotrypsin inhibitor (BEPCI) and a trypsin inhibitor (BEPTI), and trypsin and chymotrypsin was investigated in the concentration range from 10-8 to 10-4 M by titration experiments and gel filtration chromatography. Dissociation equilibrium constants measured for complexes detected in the titration experiments range from as large as 10-8 M for trypsin bound nonspecifically to the chymotrypsin site of BEPCI to as small as 10-18 M2 for the interaction of BEPCI with chymotrypsin. The identity and stoichiometry of complexes detected during titration experiments were confirmed by gel filtration of mixtures of native and fluorescently labeled proteases and inhibitors. Half-site reactivity is observed in the formation of complexes between BEPCI or BEPTI and trypsin and chymotrypsin at all experimentally practical concentrations. The double-headed complex contains 1 molecule each of trypsin, chymotrypsin, and BEPCI dimer. The bimolecular rate constants of complex formation between trypsin or chymotrypsin and isolated BEPCI oligomers range from 1.8 X 10(5) M-1 S-1 for chymotrypsin and BEPCI monomer to 4.4 X 10(7) M-1 S-1 for trypsin and the rapidly equilibrating BEPCI dimer. The estimated rate constants for the dissociation of half-site-liganded dimer complexes and liganded monomer complexes range from 7.5 X 10-3 S-1 for the trypsin-liganded BEPCI monomer complex to 1.6 X 10-6 S-1 for the chymotrypsin-liganded BEPCI dimer complex.  相似文献   

7.
A trypsin inhibitor isolated from a potato acetone powder has been purified by affinity chromatography. This protein inhibits trypsin mole per mole. To a lesser extent it combines also with chymotrypsin and elastase. For trypsin, K1 = 8 X 10(-7) M. The inhibitor has a single polypeptide chain of 207 amino acid residues. It contains no sugar or free sulfhydryl groups. Its extinction coefficient E2801% = 10.3 and its isoelectric point is 6.9. Its molecular weight is of the order of 21 000-22000, as determined by sedimentation equilbrium, by inhibition experiment or from its amino acid composition. These same techniques, taken together with the single band observed at different pH on polyacrylamide gel electrophoresis, indicate that the protein purified is monodisperse. However, the finding of two N-terminal amino acid residues, leucine and aspartic acid, and the different stoichometry observed during the interaction of the inhibitor, either with trypsin or with chymotrypsin and elastase, raises the possibility that our preparation is contaminated by a polyvalent inhibitor not detectable by physiochemical methods.  相似文献   

8.
The urinary trypsin inhibitor was recently shown to inhibit human leukocyte elastase. Complexes of human urinary trypsin inhibitor with human leukocyte elastase or human trypsin were produced and subjected to gel filtration. The complexes were found to be sufficiently stable up to 24 h incubation (at least 70% recovery). When human serum was added, elastase and trypsin dissociated from the urinary trypsin inhibitor and associated with alpha 1-proteinase inhibitor or alpha 2-macroglobulin. The addition of alpha 1-proteinase inhibitor to a complex of urinary trypsin inhibitor and leukocyte elastase caused a rapid dissociation of the complex (kdiss = 3.2 X 10(-2) s-1).  相似文献   

9.
We have characterized a Kazal family serine protease inhibitor, Toxoplasma gondii protease inhibitor 1 (TgPI-1), in the obligate intracellular parasite Toxoplasma gondii. TgPI-1 contains four inhibitor domains predicted to inhibit trypsin, chymotrypsin, and elastase. Antibodies against recombinant TgPI-1 detect two polypeptides, of 43 and 41 kDa, designated TgPI-1(43) and TgPI-1(41), in tachyzoites, bradyzoites, and sporozoites. TgPI-1(43) and TgPI-1(41) are secreted constitutively from dense granules into the excreted/secreted antigen fraction as well as the parasitophorous vacuole that T. gondii occupies during intracellular replication. Recombinant TgPI-1 inhibits trypsin, chymotrypsin, pancreatic elastase, and neutrophil elastase. Immunoprecipitation studies with anti-rTgPI-1 antibodies reveal that recombinant TgPI-1 forms a complex with trypsin that is dependent on interactions with the active site of the protease. TgPI-1 is the first anti-trypsin/chymotrypsin inhibitor to be identified in bradyzoites and sporozoites, stages of the parasite that would be exposed to proteolytic enzymes in the digestive tract of the host.  相似文献   

10.
Horse blood leucocyte cytosol exhibits a broad inhibitory activity against serine proteinases. The purified inhibitor was exposed to investigated enzymes (trypsin, chymotrypsin, elastases and serine proteinase from S. aureus) for variable time and the products were analyzed by gradient polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate. The molar ratio I:E, association rate constants k on and inhibition constants Ki for the enzymes and inhibitor were determined. The examined elastases form stable, stoichiometric complexes with the inhibitor (Ki less than 10(-10) M), and do not undergo proteolytic degradation during 30 min incubation at 20 degrees C even at the 2-fold molar excess of the proteinases. The reactions with elastases are extremely rapid (k on greater than 10(7) M-1 s-1) and are completed within one second whereas similar reactions with chymotrypsin and trypsin are much slower (k on = 3 X 10(5) M-1 s-5 and 5 X 10(2) M-1 s-1, respectively). Serine proteinase from S. aureus neither react nor inactivates the investigated inhibitor. The complexes of the inhibitor with trypsin and chymotrypsin are digested even at a molar ratio I:E = 2:1. All these observations point out that the inhibitor from horse leucocyte cytosol is a specific and effective inhibitor of elastases.  相似文献   

11.
A low molecular weight protein protease inhibitor was purified from Japanese horseshoe crab (Tachypleus tridentatus) hemocytes. It consisted of a single polypeptide with a total of 61 amino acid residues. This protease inhibitor inhibited stoichiometrically the amidase activity of trypsin (Ki = 4.60 X 10(-10) M), and also had inhibitory effects on alpha-chymotrypsin (Ki = 5.54 X 10(-9) M), elastase (Ki = 7.20 X 10(-8) M), plasmin, and plasma kallikrein. However, it had no effect on T. tridentatus clotting enzyme and factor C, mammalian blood coagulation factors (activated protein C, factor Xa and alpha-thrombin), papain, and thermolysin. The complete amino acid sequence of this inhibitor was determined and its sequence was compared with those of bovine pancreatic trypsin inhibitor (BPTI) and other Kunitz-type inhibitors. It was found that the amino acid sequence of this inhibitor has a high homology of 47 and 43% with those of sea anemone inhibitor 5-II and BPTI, respectively. Thus, this protease inhibitor appeared to be one of the typical Kunitz-type protease inhibitors.  相似文献   

12.
Human mucus proteinase inhibitor is a two-domain protein which inactivates bovine trypsin and chymotrypsin, leukocyte elastase and cathepsin G. In order to localize the site(s) responsible for these inhibitory activities, the two domains were isolated after specific cleavage of the Asp49-Pro50 bond following mild acid treatment of the bronchial inhibitor. The carboxy-terminal domain was active against leukocyte elastase, trypsin and chymotrypsin whereas the amino-terminal domain, which contained a putative antitryptic active site, was devoid of activity. This implicates that, in the whole molecule, the inhibitory activity region is localized only in the carboxy-terminal domain.  相似文献   

13.
A serine protease inhibitor, termed TsCEI, was purified from adult-stage Trichuris suis by acid precipitation, affinity chromatography (elastase-agarose), and reverse-phase HPLC. The molecular weight of TsCEI was estimated at 6.437 kDa by laser desorption mass spectrometry. TsCEI potently inhibited both chymotrypsin (K(i) = 33.4 pM) and pancreatic elastase (K(i) = 8.32 nM). Neutrophil elastase, chymase (mouse mast cell protease-1, mMCP-1), and cathepsin G were also inhibited by TsCEI, whereas trypsin, thrombin, and factor Xa were not. The cDNA-derived amino acid sequence of the mature TsCEI consisted of 58 residues including 9 cysteine residues with a molecular mass of 6.196 kDa. TsCEI displayed 48% sequence identity to a previously characterized trypsin/chymotrypsin inhibitor of T. suis, TsTCI. TsCEI showed 36% sequence identity to a protease inhibitor from the hemolymph of the honeybee Apis mellifera. Sequence similarity was also detected with the trypsin/thrombin inhibitor of the European frog Bombina bombina, the elastase isoinhibitors of the nematode Anisakis simplex, and the chymotrypsin/elastase and trypsin inhibitors of the nematode Ascaris suum. The inhibitors of T. suis, an intestinal parasite of swine, may function as components of a parasite defense mechanism by modulating intestinal mucosal mast cell-associated, protease-mediated, host immune responses.  相似文献   

14.
A proteinase inhibitor for elastases was isolated from extracts of the sea anemone Anemonia sulcata and purified to apparent homogeneity. The procedure comprises ethanolic extraction of the deep-frozen animals followed by gel filtration on Sephadex G-50 and by ion exchange chromatography on DEAE-Sephadex A-25 and SP-Sephadex C-25 and by hydroxylapatite chromatography. The slightly acidic inhibitor (isoelectric point 5.9) is a small protein consisting of 48 amino-acid residues without tryptophan and phenylalanine. The single chain molecule contains two methionines and no free sulfhydryl group but six cysteines presumably forming disulfide bonds. Reaction with cyanogen bromide abolishes the inhibitory properties. The inhibitor exhibits a rather narrow specificity for elastases. It strongly inhibits porcine pancreatic elastase in a permanent fashion with an equilibrium dissociation constant Ki of about 10(-10)M and somewhat weaker the elastase from human leucocytes with a Ki of about 10(-7)M. No obvious inhibition is observed of other serine proteinase such as bovine trypsin, bovine chymotrypsin, subtilisin from Bacillus subtilis and cathepsin G from human leucocytes when tested with synthetic substrates.  相似文献   

15.
Using hemoglobin modified by pyridoxal 5'-phosphate as substrate, a trypsin inhibitor from bovine brain was purified by extraction at pH 4.5, ion-exchange chromatography on DEAE-Sephadex A-50, gel filtration on Sephadex G-100 and isoelectric focusing. On a column of Sephadex G-100 the inhibitor exhibited a molecular mass of 78 kDa. The iso-electric point of the inhibitor was 4.3-4.4. The dissociation constant (Ki) for the complex of bovine trypsin and brain inhibitor was estimated to be 3.7 X 10(-10)M as tested with a protein substrate, and 2.4 X 10(-10)M when tested with a synthetic substrate. During purification two other brain trypsin inhibitors were detected.  相似文献   

16.
Protease inhibitory activity in jackfruit seed (Artocarpus integrifolia) could be separated into 5 fractions by chromatography on DEAE-cellulose at pH 7.6. A minor fraction (I) that did not bind to the matrix, had antitryptic, antichymotryptic and antielastase activity in the ratio 24:1.9:1.0. Fraction II bound least tightly to the ion exchanger eluting with 0.05 M NaCl and could be resolved into an elastase/chymotrypsin inhibitor and a chymotrypsin/trypsin inhibitor by chromatography on either immobilized trypsin or phenyl Sepharose CL-4B. Fractions III and IV eluted successively with 0.10 M NaCl and 0.15 M NaCl from DEAE-cellulose, inhibited elastase, chymotrypsin and trypsin in the ratio 1.0: 0.53:0.55 and 1.0:8.9:9.8 respectively. Fraction V, most strongly bound to the matrix eluting with 0.3 M NaCl and was a trypsin/chymotrypsin inhibitor accounting for 74% of total antitryptic activity. This inhibitor was purified further. The inhibitor with a molecular weight of 26 kd was found to be a glycoprotein. Galactose, glucose, mannose, fucose, xylose, glucosamine and uronic acid were identified as constitutent units of the inhibitor. Dansylation and electrophoresis in the presence of mercaptoethanol indicated that the inhibitor is made up of more than one polypeptide chain. The inhibitor combined with bovine trypsin and bovine α-chymotrypsin in a stoichiometric manner as indicated by gel chromatography. It had very poor action on subtilisin BPN′, porcine elastase, pronase,Streptomyces caespitosus protease andAspergillus oryzae protease. It powerfully inhibited the caseinolytic activities of rabbit and horse pancreatic preparations and was least effective on human and pig pancreatic extracts. Modification of amino groups, guanido groups and sulphydryl groups of the inhibitor resulted in loss of inhibitory activity. Reduction of disulphide bridges, reduction with sodium borohydride and periodate oxidation also decreased the inhibitory activity.  相似文献   

17.
Sepharose 4B-bound bovine anhydrochymotrypsin (AnhCT), a catalytically inactive form of chymotrypsin, was shown to be effective for retaining active alpha-1-protease inhibitor (alpha-1-PI, also alpha-1-antitrypsin) from human plasma, while showing no measurable affinity for oxidized or protease complexed alpha-1-PI, or for most other plasma proteins. alpha-1-PI eluted from this resin with 0.1 M chymostatin retained full activity against trypsin, chymotrypsin, and elastase. In addition to alpha-1-PI, AnhCT-Sepharose binds a limited number of other plasma proteins. Using monospecific antisera to plasma protease inhibitors, one of these proteins was identified as inter-alpha-trypsin inhibitor, and it was recoverable in active form. Therefore, an AnhCT-Sepharose 4B resin has been demonstrated to be of value for isolating active forms of alpha-1-PI from solutions, and may also be useful for the isolation of inter-alpha-trypsin inhibitor.  相似文献   

18.
The major urinary trypsin inhibitor (UTI) was found to inhibit bovine chymotrypsin and human leucocyte elastase strongly, cathepsin G weakly. No inhibition of porcine pancreatic elastase was observed. The stoichiometry of the inhibition of bovine trypsin by UTI was determined spectrophotometrically to be 1:2 (I/E molar ratio). After incubation of UTI with this enzyme in various molar ratios, two complexes (C1 and C2) could be visualized in alkaline polyacrylamide gel electrophoresis. C1 was isolated by affinity chromatography on Con-A Sepharose. In dodecyl sulfate polyacrylamide gel electrophoresis, C1 was dissociated to give an inhibitory band with the same electrophoretic mobility as native UTI. C2 released an active inhibitory fragment with Mr near 20000. A time-course study demonstrated that at a molar ratio I/E of 1.5:1, the C2 complex appears after two hours of incubation.  相似文献   

19.
Peanut inhibitor B-III was found to form two types of complexes with trypsin, T2I and TI, by gel filtration HPLC. Two cleaved peptide bonds, Arg(10)-Arg(11) and Arg(38)-Ser(39), in the trypsin modified inhibitor (TM-B-III*R*S) (J. Biochem. 93, 479-485 (1983] were resynthesized by the complex formation with 2 mol of trypsin. These results suggest that the two peptide bonds may be the reactive sites for trypsin. TM-B-III*R*S inhibited bovine trypsin as well as native B-III but had little chymotrypsin inhibitory activity. The two peptide bonds, Arg(10)-Arg(11) and Arg(38)-Ser(39), in B-III were cleaved partly by prolonged incubation with a catalytic amount of chymotrypsin. But gel filtration HPLC of the chymotrypsin-inhibitor complex showed the formation of only CI complex. Incubation of TM-B-III*R*S with an equimolar amount of chymotrypsin resulted in the resynthesis of only the Arg(10)-Arg(11) bond. These findings suggest that Arg(10)-Arg(11) may be a true reactive site for chymotrypsin. An inhibition mechanism of B-III against trypsin and chymotrypsin was proposed from the results obtained by the present studies.  相似文献   

20.
A protease inhibitor from arrow root (Maranta arundinaceae) tuber has been isolated in a homogeneous form. The inhibitor has a Mr of 11,000-12,000; it inhibited bovine trypsin, bovine enterokinase, bovine α-chymotrypsin and the proteolytic activity of human and bovine pancreatic preparations. The inhibitor is resistant to pepsin, and elastase. It could withstand heat treatment at 100°C for 60 min and exposure to a wide range of pH (1.0–12.5) for 72 h at 4°C without loss of activity. Arginyl groups are essential for the action of the inhibitor. Preincubation of the inhibitor at pH 3.7 with trypsin or chymotrypsin caused nearly a two-fold increase in inhibitor potency  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号