首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several synthetic peptides reproducing fragments of protamines have been used as model substrates for Ca2+/phospholipid-dependent protein kinase C, tested both in the absence of any effector (basal conditions) and upon activation by either Ca2+ and phosphatidylserine (or diacylglycerol) or limited proteolysis. Only the peptide Arg4-Tyr-Gly-Ser-Arg6-Tyr [Ga(52-65)] shares the unique property of protamines of being readily phosphorylated even under basal conditions. Optimal activity in the absence of effectors is observed with Tris/HCl buffer pH 7.5; Pipes and Hepes are less effective at pH 7.5, and at pH 6.5 basal phosphorylation is reduced. Under the best conditions for basal phosphorylation of Ga(52-65), its derivative with ornithine replaced for arginine and those corresponding to its C-terminal fragments Gly-Ser-Arg6-Tyr [Ga(57-65)] and Gly-Ser-Arg3 [Ga(57-61)], as well as the peptides Pro-Arg5-Ser2-Arg-Pro-Val-Arg [Th(1-12)], Arg4-Tyr-Arg2-Ser-Thr-Val-Ala [Th(13-23)] and Arg2-Leu-Ser2-Leu-Arg-Ala are not significantly affected though all of them, like histones, are more or less readily phosphorylated upon activation of protein kinase C by Ca2+/phosphatidylserine. The peptide Ser2-Arg-Pro-Val-Arg [Th(7-12)] however, corresponding to the C-terminal part of Th(1-12), is not phosphorylated even in the presence of activators. Limited proteolysis can roughly mimic the Ca2+/phosphatidylserine effect inducing however different extents of activation depending on the nature of the peptide substrates. Our results support the following two conclusions. Basal phosphorylation by protein kinase C in the absence of any effector requires peptide substrates whose target residue(s) are included between two extended arginyl blocks and is also dependent on pH and nature of the buffer. Peptides having extended clusters of either arginyl or ornithyl residues on the C-terminal side of serine are also readily phosphorylated, but they need activation of protein kinase by either Ca2+/phosphatidylserine or limited proteolysis. The same is true of peptides having basic residues only on the N-terminal side, or even on both sides but in limited number.  相似文献   

2.
Mouse 3T3 cells were grown and synchronized in monolayer with the double thymidine block. Their infection with SV40 took place continuously during the cellular cycle. However, integration of viral DNA into host cell DNA occurred preferentially during the S phase. Phase G1 appeared to be necessary for virus-cell DNA recombination in S phase. Phase G2 did not alter the stability of the integrated viral genome.  相似文献   

3.
The matrix protein from avian myeloblastosis virus and the Rous sarcoma virus, Prague C strain, is a phosphoprotein. A comparison of the amino acid sequences shows these phosphoproteins are very similar. The sites of phosphorylation of the matrix protein purified from virions are identified as serine residues 68 and 106. Treatment with purified rabbit skeletal-muscle protein phosphatase 1 or 2A, selectively releases phosphate from serine 68, while alkali treatment releases phosphate from both sites. When analyzed as a substrate for six different protein kinases, only the Ca2+/phospholipid-dependent protein kinase modifies the matrix protein. The serine residues phosphorylated in vivo are identical to those phosphorylated in vitro by this protein kinase. The role of these phosphorylation events in viral production is discussed.  相似文献   

4.
A method was devised for assaying protein kinases that phosphorylate either Kemptide, such as cAMP-dependent protein kinase, or a glycogen synthase peptide, which is an excellent substrate for protein kinase C. Upon sequential processing of reaction mixtures through tandem columns of cation and anion exchange resins, radioactivity in background samples is nearly nil and the yield of phosphorylated peptides is high. This method reduces labor, radioactivity, enzyme requirements, and costs of assaying protein kinases.  相似文献   

5.
Several recent studies have shown that Ca2+/calmodulin-dependent protein kinase I (CaMKI) is phosphorylated and activated by a protein kinase (CaMKK) that is itself subject to regulation by Ca2+/calmodulin. In the present study, we demonstrate that this enzyme cascade is regulated by cAMP-mediated activation of cAMP-dependent protein kinase (PKA). In vitro, CaMKK is phosphorylated by PKA and this is associated with inhibition of enzyme activity. The major site of phosphorylation is threonine 108, although additional sites are phosphorylated with lower efficiency. In vitro, CaMKK is also phosphorylated by CaMKI at the same sites as PKA, suggesting that this regulatory phosphorylation might play a role as a negative-feedback mechanism. In intact PC12 cells, activation of PKA with forskolin resulted in a rapid inhibition of both CaMKK and CaMKI activity. In hippocampal slices CaMKK was phosphorylated under basal conditions, and activation of PKA led to an increase in phosphorylation. Two-dimensional phosphopeptide mapping indicated that activation of PKA led to increased phosphorylation of multiple sites including threonine 108. These results indicate that in vitro and in intact cells the CaMKK/CaMKI cascade is subject to inhibition by PKA-mediated phosphorylation of CaMKK. The phosphorylation and inhibition of CaMKK by PKA is likely to be involved in modulating the balance between cAMP- and Ca2+-dependent signal transduction pathways.  相似文献   

6.
The actions of parathyroid hormone (PTH) on the renal cortex are thought to be mediated primarily by cAMP-dependent protein kinase (PKA) with some suggestion of a role for protein kinase C (PKC). However, present methods for assaying PKA and PKC in subcellular fractions are insensitive and require large amounts of protein. Recently, a sensitive method for measuring the activity of protein kinases has been reported. This method uses synthetic peptides as substrates and a tandem chromatographic procedure for isolating the phosphorylated peptides. We have adapted this method to study the effect of PTH on PKA and PKC activity using thin slices of rat renal cortex. PTH (250 nM) stimulated cytosolic PKA activity four- to fivefold within 30 s, and PKA activity was sustained for at least 5 min. PTH also rapidly stimulated PKC activity in the membrane fraction and decreased PKC activity in the cytosol. These changes were maximal at 30 s, but unlike changes in PKA, they declined rapidly thereafter. PTH significantly activated PKC only at concentrations of 10 nM or greater. This study demonstrates that PTH does activate PKC in renal tissue, although the duration of activation is much less than for PKA. It also demonstrates that a combination of synthetic peptides with tandem chromatography can be used as a sensitive assay procedure for protein kinase activity in biological samples.  相似文献   

7.
Phosphorylation of connexin 32, the major liver gap-junction protein, was studied in purified liver gap junctions and in hepatocytes. In isolated gap junctions, connexin 32 was phosphorylated by cAMP-dependent protein kinase (cAMP-PK), by protein kinase C (PKC) and by Ca2+/calmodulin-dependent protein kinase II (Ca2+/CaM-PK II). Connexin 26 was not phosphorylated by these three protein kinases. Phosphopeptide mapping of connexin 32 demonstrated that cAMP-PK and PKC primarily phosphorylated a seryl residue in a peptide termed peptide 1. PKC also phosphorylated seryl residues in additional peptides. CA2+/CaM-PK II phosphorylated serine and to a lesser extent, threonine, at sites different from those phosphorylated by the other two protein kinases. A synthetic peptide PSRKGSGFGHRL-amine (residues 228-239 based on the deduced amino acid sequence of rat connexin 32) was phosphorylated by cAMP-PK and by PKC, with kinetic properties being similar to those for other physiological substrates phosphorylated by these enzymes. Ca2+/CaM-PK II did not phosphorylate the peptide. Phosphopeptide mapping and amino acid sequencing of the phosphorylated synthetic peptide indicated that Ser233 of connexin 32 was present in peptide 1 and was phosphorylated by cAMP-PK or by PKC. In hepatocytes labeled with [32P]orthophosphoric acid, treatment with forskolin or 20-deoxy-20-oxophorbol 12,13-dibutyrate (PDBt) resulted in increased 32P-incorporation into connexin 32. Phosphopeptide mapping and phosphoamino acid analysis showed that a seryl residue in peptide 1 was most prominently phosphorylated under basal conditions. Treatment with forskolin or PDBt stimulated the phosphorylation of peptide 1. PDBt treatment also increased the phosphorylation of seryl residues in several other peptides. PDBt did not affect the cAMP-PK activity in hepatocytes. It has previously been shown that phorbol ester reduces dye coupling in several cell types, however in rat hepatocytes, dye coupling was not reduced by treatment with PDBt. Thus, activation of PKC may have differential effects on junctional permeability in different cell types; one source of this variability may be differences in the sites of phosphorylation in different gap-junction proteins.  相似文献   

8.
The proenzyme form of protease-activated kinase (PAK) II from reticulocytes has been shown to be activated in vitro by limited proteolysis and characterized using 40 S ribosomal subunits as substrate (T.H. Lubben and J.A. Traugh (1983) J. Biol. Chem. 258, 13992-13997). In these studies, we have shown that PAK II can be activated in a Ca2+-independent manner with phospholipids/diolein using histone 1, eukaryotic initiation factor 2, and 40 S ribosomal subunits as substrates. The addition of Ca2+ results in a diminution of PAK II activity. The Ca2+/phospholipid-dependent protein kinase (protein kinase C) is present in reticulocytes and is separated from PAK II during purification by chromatography on ADP-agarose. PAK II activated by limited proteolysis has the same substrate specificity as PAK II activated by phospholipids/diolein as shown by two-dimensional finger-printing of tryptic phosphopeptides of histone 1 and ribosomal protein S6, indicating proteolysis did not alter the specificity of the enzyme. Lipid vesicles decrease the Km of PAK II for histone 1 by 10-fold, while no effect is observed on the Km or the Vmax of PAK II for ATP. These results are strikingly different from the kinetics reported for protein kinase C, where the activators increase the Vmax for ATP. The two enzymes have similar, if not identical, substrate specificity with histone 1, as determined by phosphopeptide mapping, but at least 8-fold more protein kinase C than PAK II is required to incorporate a comparable amount of phosphate into S6 and it is not possible to incorporate stoichiometric amounts of phosphate into S6 with protein kinase C. The two protein kinases also differentially phosphorylate other substrates. The data support the hypothesis that PAK II and protein kinase C are closely related, but unique enzymes.  相似文献   

9.
Ca2+/phospholipid-dependent protein kinase (protein kinase C) and trypsin-activated protein kinase C (protein kinase M) phosphorylated the synthetic peptide R1-A13 (Arg-Arg-Leu-Ser-Ser-Leu-Arg-Ala-Ser-Thr-Ser-Lys-Ala) which contains both cAMP- and insulin-regulated phosphorylation sites in rat liver ribosomal protein S6 [Wettenhall, R. E. H. & Morgan, F. J. (1984) J. Biol. Chem. 259, 2084-2091]. Both enzymes showed essentially the same kinetic properties; V and apparent Km were determined to be 0.16 mumol min-1 mg-1 and 30 microM, respectively. At first, tryptic phosphopeptides were prepared at the early stage of phosphorylation and purified by high-performance liquid chromatography (HPLC). Through these analyses, four radioactive peptides were isolated. When protein kinase C was employed, phosphorylation was observed on all four peptides in a Ca2+/phospholipid-dependent manner. Irrespective of the protein kinase employed, phosphate incorporation into these peptides increased linearly with time; the peptide concentration did not affect the ratio of phosphate distribution into these four peptides. Analysis of amino acid composition and phosphoamino acid of radioactive peptides obtained after extensive phosphorylation showed that phosphates were incorporated into Ser-4, Ser-5, Ser-9 and Ser-11. The latter three serine residues were major phosphorylated sites. When rat liver 40-S ribosomal subunits were employed as substrate for protein kinases C and M, a radioactive protein with Mr,app = 31,000, which corresponded to S6 protein, was detected on an autoradiogram of a sodium dodecyl sulfate/polyacrylamide slab gel. The rate of phosphorylation with protein kinase M was twice as fast as that with protein kinase C. The elution profile of radioactive tryptic peptides in HPLC suggest that phosphorylation occurred on the sites in S6 protein corresponding to Ser-5, Ser-9 and Ser-11 as major sites and Ser-4 as the minor one. These results indicate that protein kinase C has an ability to recognize at least four sites derived from hormone-dependent phosphorylation sites in ribosomal protein S6 irrespective of the mode of activation of this enzyme.  相似文献   

10.
Bovine brain tau protein (tau) consists of four closely related phosphoproteins named tau 1, tau 2, tau 3 and tau 4, that range in size from 55 to 68 kDa (as determined by gel electrophoresis). Here we report an improved large-scale purification method for tau protein and the separation of the four individual tau protein species. The separation of the individual tau protein was accomplished by two chromatographic techniques: hydroxyapatite chromatography allowed the separation of two pairs of tau protein (tau 1 and tau 3) and (tau 2 and tau 4); fast protein liquid chromatography on a Mono Q column at basic pH achieved the resolution of the individual tau protein species in each pair derived from hydroxyapatite columns. Chromatography on the Mono Q column revealed that tau protein possesses previously unrecognized, highly reactive sulfhydryl groups that may oxidize to form intermolecular disulfide bridges. The isolation of individual species of tau in substantial quantities permitted an improved amino acid analysis that demonstrated the occurrence of cysteine and tryptophan in the protein. The availability of individual tau protein species greatly simplified the analysis for mode II phosphorylation of tau, which was found to be catalyzed by the calcium/phospholipid-dependent protein kinase C. The mode II phosphorylation of tau by protein kinase C was not associated with a mobility shift for tau protein in SDS-polyacrylamide gel electrophoresis, in contrast to mode I phosphorylation of tau by the Ca2+/calmodulin-dependent kinase, which produces a substantial shift in mobility.  相似文献   

11.
A potent synthetic peptide inhibitor of the cAMP-dependent protein kinase   总被引:60,自引:0,他引:60  
As an important new reagent for studying the cAMP-dependent protein kinase, a 20-residue peptide has been synthesized that corresponds to the active site of the skeletal muscle inhibitor protein. This synthetic peptide inhibits the protein kinase competitively with a Ki = 2.3 nM; its sequence, Thr-Thr-Tyr-Ala-Asp-Phe-Ile-Ala-Ser-Gly-Arg-Thr- Gly-Arg-Arg-Asn-Ala-Ile-His-Asp, is that of a peptide previously reported by us which was derived from the native inhibitor protein by V8 protease digestion (Cheng, H. C., Van Patten, S. M., Smith, A. J., and Walsh, D. A. (1985) Biochem. J. 231, 655-661). Studies with analogues of this peptide show that its high affinity binding to the protein kinase (as also of the inhibitor protein) appears to be due to it mimicking the protein substrate by binding to the catalytic site via the arginine-cluster basic subsite (Formula: see text), and also to a critical contribution from one or more of the 6 N-terminal residues (Formula: see text). The availability of this high affinity synthetic peptide should open up a variety of avenues to probe the cellular actions of cAMP.  相似文献   

12.
Ca2+/calmodulin-dependent protein kinase phosphatase (CaMKPase) is a protein phosphatase which dephosphorylates autophosphorylated Ca2+/calmodulin-dependent protein kinase II (CaMKII) and deactivates the enzyme (Ishida, A., Kameshita, I. and Fujisawa, H. (1998) J. Biol. Chem. 273, 1904-1910). In this study, a phosphorylation-dephosphorylation relationship between CaMKII and CaMKPase was examined. CaMKPase was not significantly phosphorylated by CaMKII under the standard phosphorylation conditions but was phosphorylated in the presence of poly-L-lysine, which is a potent activator of CaMKPase. The maximal extent of the phosphorylation was about 1 mol of phosphate per mol of the enzyme and the phosphorylation resulted in an about 2-fold increase in the enzyme activity. Thus, the activity of CaMKPase appears to be regulated through phosphorylation by its target enzyme, CaMKII.  相似文献   

13.
Protein kinase C (PKC) exhibits both negative and positive cross-talk with multifunctional Ca2+/calmodulin-dependent protein kinase (CaM kinase) in PC12 cells. PKC effects negative cross-talk by inhibiting the mobilization of intracellular Ca2+ stores and by inhibiting Ca2+ influx through voltage-sensitive Ca2+ channels. In the absence of cross-talk, Ca2+ influx induced by depolarization with 56 mM K+ stimulates CaM kinase and its autophosphorylation and converts up to 50% of the enzyme to a Ca(2+)-independent or autonomous species. Acute treatment with phorbol myristate acetate (PMA) elicits a parallel reduction in depolarization-induced Ca2+ influx and in generation of autonomous CaM kinase. Negative cross-talk also occurs during stimulation of the phosphatidylinositol signaling system with bradykinin, which activates both PKC and CaM kinase. The extent of CaM kinase activation is attenuated by the simultaneous activation of PKC; it is enhanced by prior down-regulation of PKC. PKC also exhibits positive cross-talk with CaM kinase. Submaximal activation of CaM kinase by ionomycin is potentiated by concurrent activation of PKC with PMA. Such PMA treatment is found to increase the level of cytosolic calmodulin. Enhanced activation of CaM kinase by PKC may result from PKC-mediated phosphorylation of calmodulin-binding proteins, such as neuromodulin and MARCKS, and the subsequent increase in the availability of previously bound calmodulin for activation of CaM kinase.  相似文献   

14.
Wnt ligands trigger the activation of a variety of β-catenin–dependent and β-catenin–independent intracellular signaling cascades. Despite the variations in intracellular signaling, Wnt pathways share the effector proteins frizzled, dishevelled, and β-arrestin. It is unclear how the specific activation of individual branches and the integration of multiple signals are achieved. We hypothesized that the composition of dishevelled–β-arrestin protein complexes contributes to signal specificity and identified CamKII as an interaction partner of the dishevelled–β-arrestin protein complex by quantitative functional proteomics. Specifically, we found that CamKII isoforms interact differentially with the three vertebrate dishevelled proteins. Dvl1 is required for the activation of CamKII and PKC in the Wnt/Ca2+ pathway. However, CamKII interacts with Dvl2 but not with Dvl1, and Dvl2 is necessary to mediate CamKII function downstream of Dvl1 in convergent extension movements in Xenopus gastrulation. Our findings indicate that the different Dvl proteins and the composition of dishevelled–β-arrestin protein complexes contribute to the specific activation of individual branches of Wnt signaling.  相似文献   

15.
Nuclear Ca(2+)/calmodulin-dependent protein kinase phosphatase (CaMKP-N/PPM1E) is an enzyme that dephosphorylates and downregulates multifunctional Ca(2+)/calmodulin-dependent protein kinases (CaMKs) as well as AMP-dependent protein kinase. In our previous study, we found that zebrafish CaMKP-N (zCaMKP-N) underwent proteolytic processing and translocated to cytosol in a proteasome inhibitor-sensitive manner. In the present study, we found that zCaMKP-N is regulated by phosphorylation at Ser-480. When zCaMKP-N was incubated with the activated CaMKI, time-dependent phosphorylation of the enzyme was observed. This phosphorylation was significantly reduced when Ser-480 was replaced by Ala, suggesting that CaMKI phosphorylates Ser-480 of zCaMKP-N. Phosphorylation-mimic mutants, S480D and S480E, showed higher phosphatase activities than those of wild type and S480A mutant in solution-based phosphatase assay using various substrates. Furthermore, autophosphorylation of CaMKII after ionomycin treatment was more severely attenuated in Neuro2a cells when CaMKII was cotransfected with the phosphorylation-mimic mutant of zCaMKP-N than with the wild-type or non-phosphorylatable zCaMKP-N. These results strongly suggest that phosphorylation of zCaMKP-N at Ser-480 by CaMKI activates CaMKP-N catalytic activity and thereby downregulates multifunctional CaMKs in the cytosol.  相似文献   

16.
The autophosphorylation of Ca2+/calmodulin-dependent protein kinase II (CaM-KII) results in the generation of kinase activity that is largely Ca2+/CaM-independent. We report that continued Ca2+/CaM-independent autophosphorylation of CaM-KII results in the generation of distinct phosphopeptides as identified by high performance liquid chromatography and enzymatic properties that are different than those observed for Ca2+/CaM-dependent autophosphorylation. These Ca2+/CaM-independent properties include (a) increased catalytic activity, (b) higher substrate affinity for the phosphorylation of synapsin I, and (c) decreased CaM-binding to both CaM-KII subunits as analyzed by gel overlays. Our results indicate that the autophosphorylation of only one subunit per holoenzyme is required to generate the Ca2+/CaM-independent CaM-KII. We suggest a two-step process by which autophosphorylation regulates CaM-KII. Step I requires Ca2+/CaM and underlies initial kinase activation. Step II involves continued autophosphorylation of the Ca2+/CaM-independent kinase and results in increased affinity for its substrate synapsin I and decreased affinity for calmodulin. These results indicate a complex mechanism through which autophosphorylation of CaM-KII may regulate its activity in response to transient fluctuations in intracellular calcium.  相似文献   

17.
Characterization of synthetic peptide substrates for p34cdc2 protein kinase   总被引:8,自引:0,他引:8  
Synthetic peptide substrates for the cell division cycle regulated protein kinase, p34cdc2, have been developed and characterized. These peptides are based on the sequences of two known substrates of the enzyme, Simian Virus 40 Large T antigen and the human cellular recessive oncogene product, p53. The peptide sequences are H-A-D-A-Q-H-A-T-P-P-K-K-K-R-K-V-E-D-P-K-D-F-OH (T antigen) and H-K-R-A-L-P-N-N-T-S-S-S-P-Q-P-K-K-K-P-L-D-G-E-Y-NH2 (p53), and they have been employed in a rapid assay of phosphorylation in vitro. Both peptides show linear kinetics and an apparent Km of 74 and 120 microM, respectively, for the purified human enzyme. The T antigen peptide is specifically phosphorylated by p34cdc2 and not by seven other protein serine/threonine kinases, chosen because they represent major classes of such enzymes. The peptides have been used in whole cell lysates to detect protein kinase activity, and the cell cycle variation of this activity is comparable to that measured with specific immune and affinity complexes of p34cdc2. In addition, the peptide phosphorylation detected in mitotic cells is depleted by affinity adsorption of p34cdc2 using either antibodies to p34cdc2 or by immobilized p13, a p34cdc2-binding protein. Purification of peptide kinase activity from mitotic HeLa cells yields an enzyme indistinguishable from p34cdc2. These peptides should be useful in the investigation of p34cdc2 protein kinase and their regulation throughout the cell division cycle.  相似文献   

18.
To search for the downstream target protein kinases of Ca (2+)/calmodulin-dependent protein kinase kinase (CaMKK), we performed affinity chromatography purification of a rat brain extract using a GST-fused CaMKKalpha catalytic domain (residues 126-434) as the affinity ligand. Proteomic analysis was then carried out to identify the CaMKK-interacting protein kinases. In addition to identifying the catalytic subunit of 5'-AMP-activated protein kinase, we identified SAD-B as interacting. A phosphorylation assay and mass spectrometry analysis revealed that SAD-B was phosphorylated in vitro by CaMKK at Thr (189) in the activation loop. Phosphorylation of Thr (189) by CaMKKalpha induced SAD-B kinase activity by over 60-fold. In transfected COS-7 cells, kinase activity and Thr (189) phosphorylation of overexpressed SAD-B were significantly enhanced by coexpression of constitutively active CaMKKalpha (residues 1-434) in a manner similar to that observed with coexpression of LKB1, STRAD, and MO25. Taken together, these results indicate that CaMKKalpha is capable of activating SAD-B through phosphorylation of Thr (189) both in vitro and in vivo and demonstrate for the first time that CaMKK may be an alternative activating kinase for SAD-B.  相似文献   

19.
20.
Phospholipid-dependent, Ca++-sensitive protein kinase (protein kinase C) is activated by phorbol esters and diacylglycerols. A series of diacylglycerols was synthesized with different substituents at positions 1 and 2 in order to expand known structure-activity relationships for these compounds with respect to binding and activating purified protein kinase C. Compounds were synthesized with saturated and unsaturated long chain fatty acyl groups at position 1 and acetyl, butyryl, or hexanoyl groups at position 2. Binding to protein kinase C correlated well with in-vitro activation of the enzyme. These diacylglycerols activated protein kinase C in an intact cellular system causing the phosphorylation of pp60c-src. This indicates that the length of the fatty acyl group at C2 is critical and that the existence of unsaturation in the fatty acyl group at C1 is not essential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号