首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A synthetic pentadecapeptide, Pro-Leu-Ser-Arg-Thr-Leu-Ser-Val-Ser-Ser-Leu-Pro-Gly-Leu-Glu, corresponding to the phosphorylatable site at the NH2 terminus of glycogen synthase, could be phosphorylated stoichiometrically at seryl residue 7 by both phosphorylase kinase and cAMP-dependent protein kinase. Phosphorylation of seryl residue 3 also occurred after prolonged incubation with cAMP-dependent protein kinase. Kinetic studies show that the pentadecapeptide is a better substrate for phosphorylase kinase. A peptide consisting of residues 1-11 was not as good a substrate and substitution of Arg-4 by Lys and Ser-9 by ARg in the unidecapeptide decreased and increased phosphorylase kinase reaction rates, respectively. Higher rates of phosphorylation were obtained with peptides of the phosphorylatable site of phosphorylase. A peptide with the sequence, Leu-Ser-Tyr-Arg-Arg-Tyr-Ser-Leu was phosphorylated initially by phosphorylase kinase and cAMP-dependent protein kinase at Ser-2 and Ser-7, respectively. Upon longer incubation, second site phosphorylation occurred with both kinases. A peptide of the same sequence with D-amino acids could not be phosphorylated but was a competitive inhibitor of both enzymes. The results suggest that optimal interaction of the two kinases depends on various factors including the orientation of arginyl groups with respect to the phosphorylatable serine.  相似文献   

2.
The pseudorabies virus protein kinase prefers model substrates containing arginyl residues on the amino-terminal side of a target seryl or threonyl residue. We have defined this substrate specificity more precisely in experiments using a new series of synthetic model peptides. When the number of arginyl residues was varied from two to four in substrates of the type RnASVA it was found that peptides with four arginyl residues constituted the best substrates, although the most marked decrease in Km was seen on increasing the number of arginyl residues from two to three. The effect of varying the number of 'spacer' alanyl residues from zero to three was investigated in peptides of the type R4AmSVA, and the peptide with one alanyl residue was found to be the best substrate, making R4X the optimal amino-terminal environment for this enzyme. A similar substrate specificity was observed with the herpes simplex type 1 protein kinase. Protein kinase C was found to have a quite similar substrate preference to the viral enzyme as far as the number and position of the amino-terminal basic residues was concerned; but, unlike the viral protein kinase, it also requires carboxy-terminal basic residues in optimal peptide substrates, and can tolerate the substitution of lysyl for arginyl residues. The cyclic AMP-dependent protein kinase, like the viral enzyme, had favourable kinetic constants for this series of peptides, but differed from the latter in being able to catalyze the phosphorylation of the peptides with two to four arginyl residues with similar efficiency. Studies with the protein, clupeine Y1, as substrate indicated that the pseudorabies virus protein kinase can tolerate arginyl residues on the carboxyl-terminal side of its target residue when there are suitable amino-terminal arginyl determinants. In this respect the virus protein kinase resembled protein kinase C but differed from the cyclic AMP-dependent protein kinase which cannot tolerate such carboxyl-terminal basic residues. The relationship of substrate specificity with model peptides to the ability of the pseudorabies virus protein kinase to phosphorylate proteins in vitro and in vivo is discussed.  相似文献   

3.
Phosphorylation of connexin 32, the major liver gap-junction protein, was studied in purified liver gap junctions and in hepatocytes. In isolated gap junctions, connexin 32 was phosphorylated by cAMP-dependent protein kinase (cAMP-PK), by protein kinase C (PKC) and by Ca2+/calmodulin-dependent protein kinase II (Ca2+/CaM-PK II). Connexin 26 was not phosphorylated by these three protein kinases. Phosphopeptide mapping of connexin 32 demonstrated that cAMP-PK and PKC primarily phosphorylated a seryl residue in a peptide termed peptide 1. PKC also phosphorylated seryl residues in additional peptides. CA2+/CaM-PK II phosphorylated serine and to a lesser extent, threonine, at sites different from those phosphorylated by the other two protein kinases. A synthetic peptide PSRKGSGFGHRL-amine (residues 228-239 based on the deduced amino acid sequence of rat connexin 32) was phosphorylated by cAMP-PK and by PKC, with kinetic properties being similar to those for other physiological substrates phosphorylated by these enzymes. Ca2+/CaM-PK II did not phosphorylate the peptide. Phosphopeptide mapping and amino acid sequencing of the phosphorylated synthetic peptide indicated that Ser233 of connexin 32 was present in peptide 1 and was phosphorylated by cAMP-PK or by PKC. In hepatocytes labeled with [32P]orthophosphoric acid, treatment with forskolin or 20-deoxy-20-oxophorbol 12,13-dibutyrate (PDBt) resulted in increased 32P-incorporation into connexin 32. Phosphopeptide mapping and phosphoamino acid analysis showed that a seryl residue in peptide 1 was most prominently phosphorylated under basal conditions. Treatment with forskolin or PDBt stimulated the phosphorylation of peptide 1. PDBt treatment also increased the phosphorylation of seryl residues in several other peptides. PDBt did not affect the cAMP-PK activity in hepatocytes. It has previously been shown that phorbol ester reduces dye coupling in several cell types, however in rat hepatocytes, dye coupling was not reduced by treatment with PDBt. Thus, activation of PKC may have differential effects on junctional permeability in different cell types; one source of this variability may be differences in the sites of phosphorylation in different gap-junction proteins.  相似文献   

4.
The specificities of cAMP-dependent and cGMP-dependent protein kinases were studied using synthetic peptides corresponding to the phosphorylation site in 6-phosphofructo-2-kinase/Fru-2,6-P2ase (Murray, K.J., El-Maghrabi, M.R., Kountz, P.D., Lukas, T.J., Soderling, T.R., and Pilkis, S.J. (1984) J. Biol. Chem. 259, 7673-7681) as substrates. The peptide Val-Leu-Gln-Arg-Arg-Arg-Gly-Ser-Ser-Ile-Pro-Gln was phosphorylated by the catalytic subunit of cAMP-dependent protein kinase on predominantly the first of its 2 seryl residues. The Km (4 microM) and Vmax (14 mumol/min/mg) values were comparable to those for the phosphorylation of this site within native 6-phosphofructo-2-kinase/Fru-2,6-P2ase. An analog peptide containing only two arginines was phosphorylated with poorer kinetic constants than was the parent peptide. These results suggest that the amino acid sequence at its site of phosphorylation is a major determinant that makes 6-phosphofructo-2-kinase/Fru-2,6-P2ase an excellent substrate for cAMP-dependent protein kinase. Although 6-phosphofructo-2-kinase/Fru-2,6-P2ase was not phosphorylated by cGMP-dependent protein kinase, the synthetic peptide corresponding to the cAMP-dependent phosphorylation site was a relatively good substrate (Km = 33 microM, Vmax = 1 mumol/min/mg). Thus, structures other than the primary sequence at the phosphorylation site must be responsible for the inability of cGMP-dependent protein kinase to phosphorylate native 6-phosphofructo-2-kinase/Fru-2,6-P2ase. Peptides containing either a -Ser-Ser- or -Thr-Ser- moiety were all phosphorylated by cGMP-dependent kinase to 1.0 mol of phosphate/mol of peptide, but the phosphate was distributed between the two hydroxyamino acids. Substitution of a proline in place of the glycine between the three arginines and these phosphorylatable amino acids caused the protein kinase selectively to phosphorylate the threonyl or first seryl residue and also enhanced the Vmax values by 4-6-fold. These results are consistent with a role for proline in allowing an adjacent threonyl residue to be readily phosphorylated by cGMP-dependent protein kinase.  相似文献   

5.
Purified lamb thymus high-mobility-group (HMG) proteins 1, 2, and 17 have been investigated as potential substrates for the Ca2+-phospholipid-dependent protein kinase and the cAMP-dependent protein kinase. HMG proteins 1, 2, and 17 are phosphorylated by the Ca2+-phospholipid-dependent protein kinase; the reactions are totally Ca2+ and lipid dependent and are not inhibited by the inhibitor protein of the cAMP-dependent protein kinase. HMG 17 is phosphorylated predominantly in a single seryl residue, Ser 24 in the sequence Gln-Arg-Arg-Ser 24-Ala-Arg-Leu-Ser 28-Ala-Lys, with the second seryl moiety, Ser 28, modified to a markedly lesser degree. HMGs 1 and 2 are also phosphorylated in only seryl residues but with each there are multiple phosphorylation sites. HMG 17, but not HMG 1 or 2, is also phosphorylated by the cAMP-dependent protein kinase with the site phosphorylated being the minor of the two phosphorylated by the Ca2+-phospholipid-dependent protein kinase; the Km for phosphorylation by the cAMP-dependent enzyme is 50-fold higher than that by the Ca2+-phospholipid-dependent enzyme. HMG 17 is an equally effective substrate for the Ca2+-phospholipid-dependent protein kinase either as the pure protein or bound to nucleosomes. Preliminary evidence has indicated that lamb thymus HMG 14 is also a substrate for the Ca2+-phospholipid-dependent enzyme. It is phosphorylated with a Km similar to that of HMG 17 (4-6 microM), and a comparison of tryptic peptides suggests that it is phosphorylated in a site that is homologous with Ser 24 of HMG 17 and distinct from the sites phosphorylated by the cAMP-dependent protein kinase.  相似文献   

6.
Analogs of a synthetic heptapeptide substrate corresponding to the sequence around a phosphorylation site in histone H2B were used to assess the substrate specificity of cGMP-dependent protein kinase. cGMP-dependent kinase phosphorylated the oligopeptide Arg-Lys-Arg-Ser32-Arg-Lys-Glu with favorable kinetic parameters as compared to those for cAMP-dependent kinase (Glass, D. B., and Krebs, E. G. (1979) J. Biol. Chem. 254, 9728-9738). The contribution of each amino acid to the ability of the peptide to be phosphorylated by cGMP-dependent or cAMP-dependent kinase was studied by replacement of individual residues and evaluation of the kinetic constants of the substituted peptides. Peptides containing acetylated lysine residues or nitroarginine residues were poor substrates for both kinases. Substitution of either arginine 29 or lysine 30 with alanine increased the Km values and decreased the Vmax values for both kinases. Substitution of lysine 34 with alanine increased the Vmax values for both kinases but did not affect the Km values for either enzyme. Substitution of the phosphorylatable serine with a threonine residue greatly depressed the Vmax for both kinases. Peptides in which arginine 31 or arginine 33 were replaced by an alanine residue revealed several apparent differences in the specificity requirements between cGMP-dependent and cAMP-dependent kinases.  相似文献   

7.
Although the Ca2+/phospholipid-dependent protein kinase, protein kinase C, has a broad substrate specificity in vitro, the enzyme appears considerably less promiscuous in vivo. To date only a handful of proteins have been identified as physiological substrates for this protein kinase. In order to determine the basis for this selectivity for substrates in intact cells, we have probed the substrate primary sequence requirements of protein kinase C using synthetic peptides corresponding to sites of phosphorylation from four of the known physiological substrates. We have also identified the acetylated N-terminal serine of chick muscle lactate dehydrogenase as an in vitro site of phosphorylation for this protein kinase. These comparative studies have demonstrated that, in vivo, the enzyme exhibits a preference for one basic residue C-terminal to the phosphorylatable residue, as in the sequence: Ser/Thr-Xaa-Lys/Arg, where Xaa is usually an uncharged residue. Additional basic residues, both N and C-terminal to the target amino acid, enhance the Vmax and Km parameters of phosphorylation. None of the peptides based on physiological phosphorylation sites of protein kinase C was an efficient substrate of cAMP-dependent protein kinase, emphasizing the distinct site-recognition selectivities of these two pleiotropic protein kinases. The favorable kinetic parameters of several of the synthetic peptides, coupled with their selectivity for phosphorylation by protein kinase C, will facilitate the assay of this enzyme in the presence of other protein kinases in tissue and cell extracts.  相似文献   

8.
The hexapeptides AcSer-Glu-Glu-Glu-Val-Glu and Ser-Glu-Glu-Glu-Glu-Glu, reminiscent of the sites phosphorylated by type-2 casein kinase TS in troponin T and glycogen synthase, respectively, have been synthesized and tested as phosphorylatable substrates for casein kinase TS as well as for other protein kinases. Both peptides are readily phosphorylated by casein kinase TS but not, to any detectable extent, by either cAMP-dependent protein kinase or phosphorylase kinase. Phosphorylation by type-1 casein kinase S was almost negligible. On the other hand the hexapeptide Ser-Glu-Glu-Glu-Ala-Ala is phosphorylated much more slowly and the hexapeptide Ser-Glu-Glu-Ala-Ala-Ala is almost unaffected by casein kinase TS. While the Vmax values of casein kinase TS with the acidic hexapeptides are comparable to those obtained with the corresponding protein substrates, the apparent Km values for the peptides are about two orders of magnitude higher than those for the protein substrates. The heptapeptide Arg-Ser-Glu-Glu-Glu-Val-Glu is a very poor substrate of casein kinase TS in comparison with the corresponding hexapeptide lacking the N-terminal Arg; it is, however, a competitive inhibitor toward the protein substrates, exhibiting a Ki similar to those of Ser-Glu-Glu-Glu-Glu-Glu and (Glu)5 which, in turn, are one order of magnitude higher than that of (Glu)10. It is concluded that the minimum structural requirement of type-2 casein kinases consists of a phosphorylatable residue followed by an acidic cluster, whose length is critical for the binding to the enzyme. Additional residues on the N-terminal side are not required, but their nature can influence the transphosphorylation reaction considerably.  相似文献   

9.
The substrate specificity of protein kinase C was studied and compared with that of cyclic AMP-dependent protein kinase (protein kinase A) by using bovine brain myelin basic protein as a model substrate. This basic protein was phosphorylated at multiple sites by both of these protein kinases. In this analysis, the basic protein was thoroughly phosphorylated in vitro with [gamma-32P]ATP and each protein kinase, and then digested with trypsin. The resulting radioactive phosphopeptides were isolated by gel filtration followed by high performance liquid chromatography on a reverse-phase column. Subsequent amino acid analysis and/or sequential Edman degradation of the purified phosphopeptides, together with the known primary sequence of this protein, revealed that Ser-46 and Ser-151 were specifically phosphorylated by protein kinase C, whereas Thr-34 and Ser-115 were phosphorylated preferentially by protein kinase A. Both kinases reacted with Ser-8, Ser-11, Ser-55, Ser-110, Ser-132, and Ser-161 at various reaction velocities. Contrary to protein kinase A, protein kinase C appears to react preferentially with seryl residues that are located at the amino-terminal side close to lysine or arginine. The seryl residues that are phosphorylated commonly by these two protein kinases have basic amino acids at both the amino- and carboxyl-terminal sides. These results provide some clues to understanding the rationale that these kinases may show different but sometimes similar functions depending on the structure of target phosphate acceptor proteins.  相似文献   

10.
The substrate specificity of protein kinase C has been examined using a series of synthetic peptide analogs of glycogen synthase, ribosomal protein S6, and the epidermal growth factor receptor. The glycogen synthase analog peptide Pro1-Leu-Ser-Arg-Thr-Leu-Ser-Val-Ala-Ala10 was phosphorylated at Ser7 with a Km of 40.3 microM. Peptide phosphorylation was strongly dependent on Arg4. When lysine was substituted for Arg4 the Km was increased approximately 20-fold. Addition of basic residues on either the NH2-terminal or COOH-terminal side of the phosphorylation site of the glycogen synthase peptide improved the kinetics of peptide phosphorylation. The analog Pro-Leu-Ser-Arg-Thr-Leu-Ser-Val-Ala-Ala-Lys-Lys was phosphorylated with a Km of 4.1 microM. Substitution of Ser7 with threonine increased the apparent Km to 151 microM. The truncated peptide Pro1-Leu-Ser-Arg-Thr-Leu-Ser-Val8 was phosphorylated with similar kinetic constants to the parent peptide, however, deletion of Val8 increased the apparent Km to 761 microM. The ribosomal peptide S6-(229-239) was phosphorylated with a Km of approximately 0.5 microM predominantly on Ser236 and is one of the most potent synthetic peptide substrates reported for a protein kinase. The apparent Km for S6 peptide phosphorylation was increased by either deletion of the NH2-terminal 3 residues Ala229-Arg-231 or by substitution of Arg238 on the COOH-terminal side of the phosphorylation site with alanine. This analog peptide, [Ala238]S6-(229-239) was phosphorylated with an approximate 6-fold reduction in Vmax and a switch in the preferred site of phosphorylation from Ser236 to Ser235. These results support the concept that basic residues on both sides of the phosphorylation site can have an important influence on the kinetics of phosphorylation and site specificity of protein kinase C.  相似文献   

11.
Synthetic peptides have been used to investigate the site specificity of highly purified virus induced protein kinase, a recently discovered protein kinase isolated from cells infected with alpha-herpesviruses. The enzyme from cells infected with pseudorabies virus can catalyse the phosphorylation of both seryl and threonyl residues in peptides that contain several arginyl residues on the amino-terminal side of the target residue. At least two arginyl residues are required, and the best substrates examined contain four to six such residues. Virus induced protein kinase differs in site specificity from protein kinase C in being unable to phosphorylate peptides in which multiple arginyl residues are on the carboxyl-terminal side of the target residue, or to phosphorylate peptides in which the arginyl residues are replaced by ornithyl residues. Virus induced protein kinase from cells infected with herpes simplex virus type I had similar substrate preferences to virus induced protein kinase from cells infected with pseudorabies virus. Although virus induced protein kinase and the cyclic AMP-dependent protein kinase have several peptide substrates in common, their relative preferences for these (as indicated by Km values) were found to be very different.  相似文献   

12.
As part of a search for peptides that have specificity for selected protein kinases, the possibility that adenosine cyclic 3',5'-phosphate dependent protein kinase (A-kinase) recognizes the hydrogen-bonding potential of its peptide substrates was investigated. A-Kinase catalyzes the phosphorylation of five N alpha-methylated and four depsipeptide derivatives of Leu-Arg-Arg-Ala-Ser-Leu-Gly (peptide 1) at rates that differ by at least 7 orders of magnitude. These peptide 1 analogues each lack the ability to donate a hydrogen bond at selected positions in the peptide chain. If a particular amide hydrogen of a peptide amide is involved in hydrogen bonding, which is important for enzyme recognition, the prediction is that peptides which contain an ester or a N-methylated bond at that position in peptide 1 will be comparatively poor substrates. In contrast, if a depsipeptide has a reactivity comparable to that of peptide 1 but the analogous N-methylated peptide has a poor reactivity with A-kinase, the result might indicate that the N-methyl group causes unfavorable steric effects. The depsipeptide that lacks a Leu6 amide proton is a good substrate for A-kinase, but the corresponding N-methylated peptide is phosphorylated far less efficiently. This result and others presented in this paper suggest that although enzyme-substrate hydrogen bonding may play some role in A-kinase catalysis of phosphoryl group transfer, other explanations are necessary to account for the relative reactivities of N alpha-methylated and depsi-containing peptide 1 analogues.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Four ubiquitin-peptide extensions prepared as cloned products in E. coli were tested as casein kinase II substrates. Two extensions containing the sequence Ser-Glu-Glu-Glu-Glu-Glu were readily phosphorylated by partially purified rabbit reticulocyte casein kinase II. The other two fusion proteins, which lack a consensus phosphorylation site for casein kinase II, did not serve as substrates under identical reaction conditions. Native ubiquitin was not phosphorylated by reticulocyte casein kinase II, nor have we observed its phosphorylation in crude extracts from HeLa cells, mouse liver, or Xenopus eggs. Ubiquitin's apparent lack of phosphorylatable residues coupled with its remarkable heat stability and rapid migration on sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels make the protein an attractive carrier for carboxyl-terminal peptides containing specific phosphorylation sites. Such ubiquitin extension proteins should prove valuable as protein kinase substrates.  相似文献   

14.
A peptide containing 2 seryl residues, (1)Leu(2)Ser(3)Tyr(4)Arg(5)Aly(6)Tyr(7)Ser(8)Leu, was chemically synthesized and used as a substrate for phosphorylase kinase and cyclic AMP-dependent protein kinase. The sequence, TryArgGlyTyr, makes up a beta turn in the native protein. Phosphorylase kinase was found to phosphorylate specifically seryl residue2 and protein kinase seryl residue7. Km and Vmax values were obtained and compared with natural substrates. The differences in the specificity of the two enzymes might be explained by a different requirement for organized structure. As a working hypothesis, it is suggested the results could be explained if the two enzymes interacted with seryl residues at different sides of a beta turn.  相似文献   

15.
We present here a first appraisal of the phosphorylation site specificity of KIS (for 'kinase interacting with stathmin'), a novel mammalian kinase that has the unique feature among kinases to possess an RNP type RNA-recognition motif (RRM). In vitro kinase assays using various standard substrates revealed that KIS has a narrow specificity, with myelin basic protein (MBP) and synapsin I being the best in vitro substrates among those tested. Mass spectrometry and peptide sequencing allowed us to identify serine 164 of MBP as the unique site phosphorylated by KIS. Phosphorylation of synthetic peptides indicated the importance of the proline residue at position +1. We also identified a tryptic peptide of synapsin I phosphorylated by KIS and containing a phosphorylatable Ser-Pro motif. Altogether, our results suggest that KIS preferentially phosphorylates proline directed residues but has a specificity different from that of MAP kinases and cdks.  相似文献   

16.
The substrate specificity of phospholipid/Ca2+-dependent protein kinase (protein kinase C) was studied using synthetic peptides, in particular those corresponding to the amino acid sequence around serine 115 in bovine myelin basic protein (MBP). It was found that MBP (104-118) and MBP (104-123) were substrates for the enzyme, with apparent Km values of 14 and 10 microM, respectively. Neither MBP (111-118) nor MBP (111-123) were phosphorylated, indicating that an additional segment of sequence extending toward the N terminus, but not toward the C terminus, was essential for the substrate activity of the peptides. Of the alanine-substituted analogs examined, [Ala 105] MBP (104-118) was comparable to the parent peptide, whereas [Ala 107] MBP (104-118) and [Ala 113] MBP-(104-118) were much poorer substrates. These findings indicated that lysine 105 was not essential, but both arginine 107 and arginine 113 were important specificity determinants. Initial studies revealed that [Ala 113] MBP (104-118) inhibited phosphorylation by the enzyme of the parent peptide and, to a lesser extent, the intact MBP(1-170). Serine 115 was the only site phosphorylated in the analog peptides [Ala 105] MBP (104-118) and [Ala 107]MBP (104-118). In the parent peptide, serine 115 was the initial site of phosphorylation but after prolonged phosphorylation other sites became phosphorylated (serine 110 and/or serine 112), further supporting the concept that arginine residues act as essential substrate specificity determinants for phospholipid/Ca2+-dependent protein kinase.  相似文献   

17.
Synthetic peptides have been used to investigate the site specificity of highly purified virus induced protein kinase, a recently discovered protein kinase isolated from cells infected with α-herpesviruses. The enzyme from cells infected with pseudorabies virus can catalyse the phosphorylation of both seryl and threonyl residues in peptides that contain several arginyl residues on the amino-terminal side of the target residue. At least two arginyl residues are required, and the best substrates examined contain four to six such residues. Virus induced protein kinase differs in site specificity from protein kinase C in being unable to phosphorylate peptides in which multiple arginyl residues are on the carboxyl-terminal side of the target residue, or to phosphorylate peptides in which the arginyl residues are replaced by ornithyl residues. Virus induced protein kinase from cells infected with herpes simples virus type I had similar substrate preferences to virus induced protein kinase from cells infected with pseudorabies virus. Although virus induced protein kinase and the cyclic AMP-dependent protein kinase have several peptide substrates in common, their relative preferences for these (as indicated by Km values) were found to be very different.  相似文献   

18.
A peptide library approach based on electrospray mass-spectrometric (ESI-MS) detection of phosphopeptides was designed for rapid and quantitative characterization of protein kinase specificity. The k(cat)/K(m) values for the protein kinase Cbeta (PKCbeta) were determined for a systematically varied set of individual substrate peptides in library mixtures by the ESI-MS method. The analysis revealed a complex structural specificity profile in positions around the phosphorylated serine with hydrophobic and/or basic residues being mostly preferred. On the basis of the kinetic parameters, a highly efficient peptide substrate for PKCbeta (K(m)value below 100 nM) FRRRRSFRRR and its alanine substituted pseudosubstrate-analog inhibitor (K(i) value of 76 nM) were designed. The quantitative specificity profiles obtained by the new approach contained more information about kinase specificity than the conventional substrate consensus motifs. The new method presents a promising basis for design of substrate-site directed peptide or peptidomimetic inhibitors of protein kinases. Second, highly specific substrates could be designed for novel applications such as high-throughput protein kinase activity screens on protein kinase chips.  相似文献   

19.
Ca(2+)/calmodulin-dependent protein kinase phosphatase (CaMKPase) dephosphorylates and regulates multifunctional Ca(2+)/calmodulin-dependent protein kinases. In order to elucidate the mechanism of substrate recognition by CaMKPase, we chemically synthesized a variety of phosphopeptide analogs and carried out kinetic analysis using them as CaMKPase substrates. This is the first report using systematically synthesized phosphopeptides as substrates for kinetic studies on substrate specificities of protein Ser/Thr phosphatases. CaMKPase was shown to be a protein Ser/Thr phosphatase having a strong preference for a phospho-Thr residue. A Pro residue adjacent to the dephosphorylation site on the C-terminal side and acidic clusters around the dephosphorylation site had detrimental effects on dephosphorylation by CaMKPase. Deletion analysis of a model substrate peptide revealed that the minimal length of the substrate peptide was only 2 to 3 amino acid residues including the dephosphorylation site. The residues on the C-terminal side of the dephosphorylation site were not essential for dephosphorylation, whereas the residue adjacent to the dephosphorylation site on the N-terminal side was essential. Ala-scanning analysis suggested that CaMKPase did not recognize a specific motif around the dephosphorylation site. Myosin light chain phosphorylated by protein kinase C and Erk2 phosphorylated by MEK1 were poor substrates for CaMKPase, while a synthetic phosphopeptide corresponding to the sequence around the phosphorylation site of the former was not dephosphorylated by CaMKPase but that of the latter was fairly good substrate. These data suggest that substrate specificity of CaMKPase is determined by higher-order structure of the substrate protein rather than by the primary structure around its dephosphorylation site. Use of phosphopeptide substrates also revealed that poly-L-lysine, an activator for CaMKPase, activated the enzyme mainly through increase in the V(max) values.  相似文献   

20.
The specificity of the cyclic AMP-dependent protein kinase was examined using two series of dodecapeptides as substrates. One series consisted of peptides of the general sequence (Gly)x-Arg-Arg-(Gly)y-Ala-Ser-Leu-Gly in which x + y = 6. The other series consisted of peptides of the sequence (Gly)x-Lys-Arg-(Gly)y-Ala-Ser-Leu-Gly in which x + y was again equal to 6. The peptides Gly-Gly-Gly-Gly-Gly-Gly-Gly-Arg-Arg-Ser-Leu-Gly and Gly-Gly-Gly-Gly-Gly-Gly-Gly-Lys-Arg-Ser-Leu-Gly were also examined. In the series in which the adjacent arginines were located various distances from the serine, the substrate for which the enzyme clearly exhibited optimal kinetic constants contained one amino acid residue between the basic residues and serine. Direct binding studies of N alpha-[3H]acetyl peptides to catalytic subunit of cyclic AMP-dependent protein kinase revealed a correlation between binding affinity and the ability to serve as substrate for the enzyme. In the second series in which the adjacent basic amino acids were Lys-Arg, optimal kinetic constants were again obtained when these residues were separated from serine by a single amino acid. This latter result was surprising in view of phosphorylation site sequences in the known physiologically significant protein substrates for the kinase, since those containing Lys-Arg all contain two amino acids between these residues and serine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号