共查询到19条相似文献,搜索用时 62 毫秒
1.
组织酸化是生理和病理下常见的现象.神经元可以通过酸敏感的离子通道(ASICs)来感受细胞周围的pH值的降低.ASICs属于NaC/DEG家族的一个成员.目前,已发现了6个ASICs亚基,它们在外周和中枢神经系统中广泛表达,其同聚体和异聚体通道有着各种不同的电生理学特性.ASICs在机体感觉尤其是痛觉中起着至关重要的作用. 相似文献
2.
酸感受离子通道(ASICs)为H -门控的阳离子通道,是一类新的配体门控性离子通道,属于钠通道超家族的新成员.作为近来研究的热点,ASICs具有许多重要的生物学功能,并很有可能成为抗癫痫、镇痛、提高学习记忆能力和保护神经元缺血损伤作用药理学新靶点.近来,ASICs各个亚基已被克隆,它们在生物体内分布、表达、功能和相关调节因素的研究正受到广泛重视. 相似文献
3.
酸敏感离子通道(acid-Sensing ion channels,ASlCs)是一类由细胞外质子(H )激活的配体门控阳离子通道.迄今为止,人们在哺乳动物体内已经发现了6种ASICs亚基蛋白,它们分布在多种组织器官中.越来越多的研究表明:ASICs参与了机体的生理、病理过程,如:学习、记忆、痛觉、脑中风和肿瘤.在过去的10年中,人们发现多种内源性或外源性分子可以调控ASICs通道活性.由于这些细胞外调控分子与多种生理和病理功能有关,因此研究细胞外调控分子对ASICs的调控及其分子机制,可以帮助我们更多地了解ASICs功能以及结构信息,也为人们设计ASICs靶点特异性药物提供了理论依据.文章将系统地介绍细胞外调控分子对ASICs的功能调控及其作用机制,特别是该研究领域的最新进展. 相似文献
4.
急性脑梗死约占全部脑卒中的70%,病死率和致残率高,且极易复发。但目前针对急性脑梗死在时间窗内溶栓、抗凝等治疗手段不能从根本上切实有效地修复受损脑组织,且伴有出血等风险。寻找脑梗死形成发展的原因并予以治疗迫在眉睫。酸中毒是引起缺血性脑损伤的重要机制。大量实验研究表明,酸中毒能加重神经元的缺血性损伤,且其梗死面积与酸中毒的程度直接相关。但缺血产生的酸中毒如何引起神经元损伤的确切机制尚不明确。最近研究发现酸中毒能激活一种在中枢及周围神经中广泛存在的膜通道,即酸敏感离子通道,它对Ca2+通透,能引起细胞内Ca2+超载,同时能激活胞内酶引起细胞内蛋白质、脂类及核酸的降解,加重缺血后脑损伤。本文就酸敏感离子通道1a与脑梗死做一综述。 相似文献
5.
急性脑梗死约占全部脑卒中的70%,病死率和致残率高,且极易复发。但目前针对急性脑梗死在时间窗内溶栓、抗凝等治疗手段不能从根本上切实有效地修复受损脑组织,且伴有出血等风险。寻找脑梗死形成发展的原因并予以治疗迫在眉睫。酸中毒是引起缺血性脑损伤的重要机制。大量实验研究表明,酸中毒能加重神经元的缺血性损伤,且其梗死面积与酸中毒的程度直接相关。但缺血产生的酸中毒如何引起神经元损伤的确切机制尚不明确。最近研究发现酸中毒能激活一种在中枢及周围神经中广泛存在的膜通道,即酸敏感离子通道,它对Ca^2+通透,能引起细胞内Ca^2+超载,同时能激活胞内酶引起细胞内蛋白质、脂类及核酸的降解,加重缺血后脑损伤。本文就酸敏感离子通道1a与脑梗死做一综述。 相似文献
6.
7.
大鼠脊髓背角神经元中酸敏感离子通道的特性和功能研究 总被引:1,自引:0,他引:1
酸敏感离子通道(ASICs)是一类能被细胞外酸所激活的配体门控离子通道。本文综合报道大鼠脊髓背角神经元中ASICs的亚基组成及其功能性调节:(1)脊髓背角主要表达ASIC1a、ASIC2a和ASIC2b,但不表达ASIC1b和ASIC3;(2)在脊髓背角神经元中酸诱导电流可能由ASIC1a同聚体通道所介导;(3)胞外痛觉信号如实验性缺血和神经肽FMRF可以通过不同的机制增强脊髓背角神经元酸诱导电流;(4)炎症痛可以上调脊髓背角ASICs在转录和蛋白水平的表达。上述各点提示,在生理或病理情况下脊髓背角ASICs对脊髓水平的感觉信息传递特别是痛觉的传导可能发挥着重要作用。 相似文献
8.
酸敏感离子通道(ASICs)属于上皮 Na+ 通道/退化蛋白超家族,对细胞外 H+ 浓度变化敏感,其受多种外源性配体调控,产生 不同生理和病理学效应。越来越多研究发现,ASICs 参与脑缺血、炎症、肿瘤等具有酸化改变的病理过程。简介 ASICs 的结构及其配体 作用位点以及各亚基的组织分布和电生理特性,主要对各类 ASICs 外源性配体的研究进展作一综述。 相似文献
9.
10.
11.
Dorofeeva NA Barygin OI Staruschenko A Bolshakov KV Magazanik LG 《Journal of neurochemistry》2008,106(1):429-441
The inhibitory action of non-steroid anti-inflammatory drugs was investigated on acid-sensing ionic channels (ASIC) in isolated hippocampal interneurons and on recombinant ASICs expressed in Chinese hamster ovary (CHO) cells. Diclofenac and ibuprofen inhibited proton-induced currents in hippocampal interneurons (IC50 were 622 ± 34 μM and 3.42 ± 0.50 mM, respectively). This non-competitive effect was fast and fully reversible for both drugs. Aspirin and salicylic acid at 500 μM were ineffective. Diclofenac and ibuprofen decreased the amplitude of proton-evoked currents and slowed the rates of current decay with a good correlation between these effects. Simultaneous application of acid solution and diclofenac was required for its inhibitory effect. Unlike amiloride, the action of diclofenac was voltage-independent and no competition between two drugs was found. Analysis of the action of diclofenac and ibuprofen on activation and desensitization of ASICs showed that diclofenac but not ibuprofen shifted the steady-state desensitization curve to more alkaline pH values. The reason for this shift was slowing down the recovery from desensitization of ASICs. Thus, diclofenac may serve as a neuroprotective agent during pathological conditions associated with acidification. 相似文献
12.
Jingxin Chen Evan C. Ray Megan E. Yates Teresa M. Buck Jeffrey L. Brodsky Carol L. Kinlough Katie L. Winarski Rebecca P. Hughey Thomas R. Kleyman Shaohu Sheng 《The Journal of biological chemistry》2015,290(41):25140-25150
The extracellular regions of epithelial Na+ channel subunits are highly ordered structures composed of domains formed by α helices and β strands. Deletion of the peripheral knuckle domain of the α subunit in the αβγ trimer results in channel activation, reflecting an increase in channel open probability due to a loss of the inhibitory effect of external Na+ (Na+ self-inhibition). In contrast, deletion of either the β or γ subunit knuckle domain within the αβγ trimer dramatically reduces epithelial Na+ channel function and surface expression, and impairs subunit maturation. We systematically mutated individual α subunit knuckle domain residues and assessed functional properties of these mutants. Cysteine substitutions at 14 of 28 residues significantly suppressed Na+ self-inhibition. The side chains of a cluster of these residues are non-polar and are predicted to be directed toward the palm domain, whereas a group of polar residues are predicted to orient their side chains toward the space between the knuckle and finger domains. Among the mutants causing the greatest suppression of Na+ self-inhibition were αP521C, αI529C, and αS534C. The introduction of Cys residues at homologous sites within either the β or γ subunit knuckle domain resulted in little or no change in Na+ self-inhibition. Our results suggest that multiple residues in the α subunit knuckle domain contribute to the mechanism of Na+ self-inhibition by interacting with palm and finger domain residues via two separate and chemically distinct motifs. 相似文献
13.
Acid-sensing ion channels (ASICs) are proton-gated cation channels that are widely expressed in both the peripheral and central nervous systems. ASICs contribute to a variety of pathophysiological conditions that involve tissue acidosis, such as ischemic stroke, epileptic seizures and multiple sclerosis. Although much progress has been made in researching the structure-function relationship and pharmacology of ASICs, little is known about the trafficking of ASICs and its contribution to ASIC function. The recent identification of the mechanism of membrane insertion and endocytosis of ASIC1a highlights the emerging role of ASIC trafficking in regulating its pathophysiological functions. In this review, we summarize the recent advances and discuss future directions on this topic. 相似文献
14.
《Channels (Austin, Tex.)》2013,7(6):481-487
Acid-sensing ion channels (ASICs) are proton-gated cation channels that are widely expressed in both the peripheral and central nervous systems. ASICs contribute to a variety of pathophysiological conditions that involve tissue acidosis, such as ischemic stroke, epileptic seizures and multiple sclerosis. Although much progress has been made in researching the structure-function relationship and pharmacology of ASICs, little is known about the trafficking of ASICs and its contribution to ASIC function. The recent identification of the mechanism of membrane insertion and endocytosis of ASIC1a highlights the emerging role of ASIC trafficking in regulating its pathophysiological functions. In this review, we summarize the recent advances and discuss future directions on this topic. 相似文献
15.
Francesco Pietra 《化学与生物多样性》2012,9(2):331-351
Central inhibition of the acid‐sensing hASIC1a channel, acting upstream of the opiate system, might serve to treat any type of pain, avoiding the unwanted addiction problems of the opioid drugs. To this end, inhibition of hASIC1a channel by PcTx1, a peptide from the Trinidad chevron tarantula, is under development. New inhibitors of the hASIC1a channel are also being sought, in the hope of further modulating the activity, from which antiplasmodial amidine and guanidine phenyl drugs have emerged as promising candidates. However, how such current inhibition takes place remains obscure from the molecular point of view, hindering any further progress in developing drugs. Therefore, the nature of the binding sites, and how they are reached by the amidine‐guanidine drugs, was investigated here via automated docking and molecular dynamics with hASIC1a homology models. This study has revealed that this ion channel is rich in binding sites, and that flexible drugs, such as nafamostat, may penetrate it in a snake‐like elongated conformation. Then, crawling like a snake through temporary holes in the protein, nafamostat either simply flips, or changes to a high‐energy folded conformation to become adapted to the shape of the binding site. 相似文献
16.
Oleg I. Barygin Margarita S. Komarova Tatyana B. Tikhonova Anastasiia S. Korosteleva Maxim V. Nikolaev Lev G. Magazanik 《Channels (Austin, Tex.)》2017,11(6):648-659
Proton-gated channels of the ASIC family are widely distributed in the mammalian brain, and, according to the recent data, participate in synaptic transmission. However, ASIC-mediated currents are small, and special efforts are required to detect them. This prompts the search for endogenous ASIC ligands, which can activate or potentiate these channels. A recent finding of the potentiating action of histamine on recombinant homomeric ASIC1a has directed attention to amine-containing compounds. In the present study, we have analyzed the action of histamine, tyramine, and tryptamine on native and recombinant ASICs. None of the compounds caused potentiation of native ASICs in hippocampal interneurons. Furthermore, when applied simultaneously with channel activation, they produced voltage-dependent inhibition. Experiments on recombinant ASIC1a and ASIC2a allowed for an interpretation of these findings. Histamine and tyramine were found to be inactive on the ASIC2a, while tryptamine demonstrated weak inhibition. However, they induce both voltage-dependent inhibition of open channels and voltage-independent potentiation of closed/desensitized channels on the ASIC1a. We suggest that the presence of an ASIC2a subunit in heteromeric native ASICs prevents potentiation but not inhibition. As a result, the inhibitory action of histamine, which is masked by a strong potentiating effect on the ASIC1a homomers, becomes pronounced in experiments with native ASICs. 相似文献
17.
18.
骨癌痛(BCP)是恶性肿瘤患者最常见的疼痛之一,严重影响患者的生活质量。BCP的分子作用机制和新药研发都迫在眉睫。2-溴棕榈酸(2-BP)作为一种蛋白质棕榈化抑制剂在病理性疼痛中有镇痛效果,而在骨癌痛中作用仍不清楚。酸敏感离子通道3型(ASIC3),作为一个重要的疼痛因子能否受到2-BP的调控也未知。为了检测2-BP在骨癌痛中的作用,并研究其对背根神经节(DRG)中ASIC3的调控,本文开展了相关工作。1)首先建立BCP大鼠模型,将大鼠乳腺癌细胞(MRMT-1)注射入雌大鼠胫骨骨髓腔内,21 d后通过X射线和机械痛检测,发现与假性手术组相比,BCP模型大鼠的胫骨被破坏;同时,BCP组大鼠的机械疼痛值明显上升(假性手术组PWT vs. BCP PWT:16.1 ± 1.5 vs. 5.3 ± 1.5; P<0.01);表明大鼠乳腺癌骨转移疼痛模型成功构建。2)蛋白质免疫印迹检测结果显示,与正常和假性手术组相比,BCP大鼠L4-L6 DRG中酸敏感离子通道3蛋白表达上调(0.63 ± 0.03, 0.64 ± 0.1 和 1.07 ± 0.05)。3)在术后第21 d,给BCP大鼠腹腔注射2-BP,发现给药组BCP大鼠的机械疼痛值下调 (6 h后,PWT 对照 vs. PWT 2-BP: 6.9 ± 2.0 vs. 10.8 ± 1.6, P<0.01),表明2-BP在骨癌痛模型大鼠中具有镇痛作用。4)蛋白质免疫印迹结果显示,与给药前相比,2-BP处理后降低了BCP大鼠L4-L6 DRG中膜上ASIC3蛋白的表达(1.05 ± 0.13, 0.66 ± 0.12)。同时,在ASIC3介导的酸痛模型中,2-BP给药降低大鼠震颤的次数(对照组为27 ± 1.8次,2-BP组为10 ± 1.5次),表明2-BP给药阻断ASIC3介导的酸痛。5)在ASIC3转染的SH-SY5Y细胞中,与对照相比,2-BP给药后明显降低膜上ASIC3蛋白表达量(1.0 ± 0.2, 0.58 ± 0.10)。这些结果表明,2-BP在骨癌痛中具有镇痛作用,其镇痛机制涉及到调控背根神经节中膜上酸敏感离子通道3的表达。 相似文献
19.
The selectivity of Ca2+ over Na+ is approximately 3.3-fold larger in cGMP-gated channels of cone photoreceptors than in those of rods when measured under saturating cGMP concentrations, where the probability of channel opening is 85-90%. Under physiological conditions, however, the probability of opening of the cGMP-gated channels ranges from its largest value in darkness of 1-5% to essentially zero under continuous, bright illumination. We investigated the ion selectivity of cGMP-gated channels as a function of cyclic nucleotide concentration in membrane patches detached from the outer segments of rod and cone photoreceptors and have found that ion selectivity is linked to gating. We determined ion selectivity relative to Na+ (PX/PNa) from the value of reversal potentials measured under ion concentration gradients. The selectivity for Ca2+ over Na+ increases continuously as the probability of channel opening rises. The dependence of PCa/PNa on cGMP concentration, in both rods and cones, is well described by the same Hill function that describes the cGMP dependence of current amplitude. At the cytoplasmic cGMP concentrations expected in dark-adapted intact photoreceptors, PCa/PNa in cone channels is approximately 7.4-fold greater than that in rods. The linkage between selectivity and gating is specific for divalent cations. The selectivity of Ca2+ and Sr2+ changes with cGMP concentration, but the selectivity of inorganic monovalent cations, Cs+ and NH4+, and organic cations, methylammonium+ and dimethylammonium+, is invariant with cGMP. Cyclic nucleotide-gated channels in rod photoreceptors are heteromeric assemblies of alpha and beta subunits. The maximal PCa/PNa of channels formed from alpha subunits of bovine rod channels is less than that of heteromeric channels formed from alpha and beta subunits. In addition, Ca2+ is a more effective blocker of channels formed by alpha subunits than of channels formed by alpha and beta subunits. The cGMP-dependent shift in divalent cation selectivity is a property of alphabeta channels and not of channels formed from alpha subunits alone. 相似文献